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Figure S1. Posterior mean with/without FPR. When the prompt
y is given by “portrait of a worried-looking woman in a dress”,
the posterior mean z0|t is obtained (first row) without FPR,
(second row) with FPR w.r.t zt, and (third row) with FPR w.r.t
ϵ.

A. Posterior mean analysis

To investigate how much identity of the original image z is
contained in the text-conditioned score ϵϕ(z, y, t), we con-
duct the experiment in which the posterior mean is obtained
from various timesteps. As shown in the first row of Fig. S1,
more primary information is damaged as the timestep t in-
creases. On the other hand, when using FPR, since the
score ϵϕ(z, y, t) is modified to preserve the identity of z,
we can see that it has more information than before, even at
large timestep, as described in the second and third row of
Fig. S1. Note that the score ϵϕ(z, y, t) can be controlled by
updating the injection noise ϵ or the noisy latent zt. Of the
two options, it has been updated for zt because it contains
more content details.

B. Metrics for FPR

As defined in Eq. (6), d(x1, x2) can be any metric to calcu-
late the difference between two inputs. For comparison, we
consider three different strategies: (1) Euclidean loss, (2)
L1 loss, and (3) SSIM loss. As demonstrated in Fig. S2, all
metrics can be applied to our method for image editing ac-
cording to text prompts. Among these, the use of Euclidean
loss is particularly notable, as it effectively preserved the
original information while producing visually superior re-
sults.

Source Euclidean loss L1 loss SSIM loss

Figure S2. Ablation study for loss function. Edited results of
(first) the source image from prompt “a drawing of a cat” to
“a drawing of a dog” using (second) Euclidean, (third) L1, and
(fourth) SSIM loss function for FPR.

C. Implementation details
For experiments, we implement our method based on the
official code of CDS 1 by using Stable Diffusion v1.4. All
baselines are implemented based on the official code and
setting for each method. For the proposed FPR, we set
the scale λ to 1.0 and iteration N to 3. The range of
timesteps, optimization, learning rate, and number of opti-
mization steps correspond to the default settings employed
in DDS and CDS. All experiments are conducted on a single
NVIDIA RTX 3090.

D. Evaluation metrics
Our purpose is to preserve the source information by opti-
mizing the score ϵsrc

ϕ . Thus, in addition to the LPIPS, we
newly utilize IoU and background PSNR as our metrics to
measure the structural similarity between the source and
edited image.
IoU. The aim of Cat-to-Others task is to translate the cat
into another animal. Thus, the segmentation mask of the
cat and translated animal can be obtained using the lan-
guage Segment-Anything model (lang-SAM)2, which is an
open-source project to segment some objects from the text
prompt. IoU of the source and target mask represents how
much the area of the cat changes after image editing. The
lower the IoU, the more similar the region of the cat and the
region of the translated animal, meaning the overall shape
is preserved. To this end, first, the mask about the prompt
is obtained from an image using lang-SAM. For example,
‘cat’ is segmented from the source image to get the mask
Msrc, while ‘dog’ is segmented from the edited image to
obtain the mask Mtrg, as shown in Fig. S3 (a). After getting
masks, we calculate IoU from the masks that are given by:

IoU =
(Msrc ∩Mtrg)

(Msrc ∪Mtrg)

1https://hyelinnam.github.io/CDS/
2https://github.com/paulguerrero/lang-sam

https://hyelinnam.github.io/CDS/
https://github.com/paulguerrero/lang-sam


Background PSNR. Since the editing prompts of IP2P
dataset [1] is complex than Cat-to-Others dataset [7, 8], it
is hard to get mask by lang-SAM. Therefore, we use back-
ground PSNR to evaluate how much the original informa-
tion is preserved. The residual of the source and target im-
ages is calculated, and the standard deviation σ of each pixel
of the residual image is computed with window size 30.
Then, the mask MPSNR is acquired by thresholding the σ.
Since the range of σ varies according to the edited results
for each method, we use the mean or median values of σ to
set an appropriate threshold (see Fig. S3 (b)). For the back-
ground PSNR of Tab. 1, we use mean threshold. Finally,
we calculate PSNR values from masked source and target
images:

PSNRback = PSNR(MPSNR ⊙ zsrc,MPSNR ⊙ ztrg)

where ⊙ is pixel-wise multiplication.
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Figure S3. Calculated masks for IoU and background PSNR.
In (a), (second row) each mask for (first row) the source and target
image is obtained by using lang-SAM for IoU. In (b), (second row)
a mask is calculated for (first row) the source and target image to
measure background PSNR between the masked source and target
image. The mask can be generated by thresholding method, mean
and median

E. Extension to other methods
Since our method optimizes the source latent to estimate a
more accurate score, it can be applied to other methods that
are based on SDS despite that we report the results using
our method to DDS.

During SDS optimization, FPR can be used to preserve
the original content and reduce the blurry effect. As shown
in Fig. S4, the conserved rate of the information of the
source image is controllable by the number of FPR itera-
tion.

When the proposed FPR is integrated into CDS, the tex-
ture of the source image is further maintained, as illustrated
in Fig. S5. In addition, FPR promoted reducing the over-
boosting of color often found in the translated images of

Source SDS Iter 30 Iter 50

Figure S4. SDS with FPR. Given (first) source image and prompt
“a drawing of a cat”, (second) SDS optimization, (third, fourth)
SDS optimization with FPR for 30 and 50 iterations are applied.
Each result uses 200 steps for optimization.

Source CDS FPR+CDS

Figure S5. CDS with FPR. Given (first) source image, source
prompt “a drawing of a cat”, and target prompt “a drawing of
a pig”, (second) CDS translation, (third) CDS optimization with
FPR for N = 3 and λ = 1.0.

CDS. This confirms that the proposed FPR can be a uni-
versal regularization to preserve the identity of the source
image for text-guided image editing.

Furthermore, FPR can help optimize not only pixel space
but also the parametric editor such as PDS [6]. As demon-
strated in Fig. S6, Fig. S7, and Tab. S1, the edited results
with our method show that FPR assists in maintaining the
original contents. By comparing the first and second rows of
Fig. S6, the use of FPR results in the preservation of source
components more effectively compared to PDS. Similarly,
in the third and fourth rows, the results obtained using FPR
retain key original features, such as the shape and color of
the face as well as the color of the clothing. Furthermore,
the gradient weights, FPR assigns minimal weight to the
structure of the source image, such as the background, while
primarily focusing the weights on the editing points. For
3D and 2D editing, we implement the experiments based
on official code of PDS3. We use the subset of Instruct-
NeRF2NeRF [2] for 3D editing and Scalable Vector Graph-
ics (SVGs) with their text description used in [5] for 2D
editing.

NeRF SVG

Metric CLIP(↑) LPIPS(↓) CLIP(↑) LPIPS(↓)

SDS 0.305 0.814 0.346 0.552
DDS 0.306 0.875 0.344 0.557
PDS 0.292 0.662 0.324 0.326
Ours+PDS 0.295 0.587 0.327 0.274

Table S1. Quantitative results for PDS.

3https://github.com/KAIST-Visual-AI-Group/PDS

https://github.com/KAIST-Visual-AI-Group/PDS
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“A man with curly hair with a beard”
→ “A man wearing with red glasses ... ”

Figure S6. 3D Qualitative results for PDS on subset of Instruct-
NeRf2NeRF [2]. From left to right, each column represents the
source image, the edited image, and the gradient weight. The
gradient weight indicates which regions the model primarily ref-
erences during the editing process. The results demonstrate that
FPR operates effectively in End-to-End NeRF while preserving
the structure and identity of the source image.

Source FPR+PDS PDS DDS SDS

SVG: “An owl” → “A monkey”

Figure S7. 2D Qualitative results for PDS on VectorFusion [5].
In SVG editing, our method can be utilized with PDS and help the
source identity maintained.

F. Additional results
We also provide qualitative results for Cat-to-Others task,
as demonstrated in Fig. S8. With DDS and CDS, the di-
rection of the gaze changes when translated from the cat to
the squirrel, while it remains the same with IDS. Note that
the proposed IDS can also retain the hue of the source im-
age without overemphasizing the colors, as demonstrated
in Cat-to-Tiger task. This confirms that the proposed IDS
consistently offers suitable editing of cat images into the di-
verse animals, while conserving the identity of the source
against other algorithms.

The trends in the quantitative results are also consistent
with the qualitative result, as represented in Tab. S2. Our
method provides the best performance for LPIPS and IoU
in most Cat-to-Others tasks. This shows again that the self-

C
ow

Source IDS (Ours) CDS DDS

D
og

L
io

n
Sq

ui
rr

el
Ti

ge
r

Figure S8. Qualitative results of Cat-to-Others task. The leftmost
text means each target prompt, and each row shows the editing
results from ‘Cat” to the target prompt.

correction of the score using the proposed algorithm is cru-
cial for maintaining the identity.

G. Limitations
Success rate. As discussed in Sec. 7, our method opti-
mizes the latents only for source information, resulting in
low CLIP scores. To demonstrate it does not mean ”IDS
fails to translate the source image”, we measure the success
rate. To calculate the success rate, we classify the trans-
formed images with the pre-trained ResNet classifier on the
Cat-to-dog task. We treat the results of classified top 1 as
the success sample if they belonged to the class of dog. The
success rate in Tab. S3 claims that the low CLIP score of
IDS did not fall to convert, but occurred in the process of
maintaining the source identity.
Failure case for complex prompt. Because our method
only considers the source information, it struggles with
translating the given image for complex text prompts. Al-
though we tried to modify the image with more complex
prompts, it failed not only in our method but also in all SDS-
based translation methods, as shown in Fig. 8.
Computational overhead. Our method requires additional



cat2cow cat2dog cat2lion cat2tiger cat2penguin
Metric LPIPS (↓) IoU (↑) LPIPS (↓) IoU (↑) LPIPS (↓) IoU (↑) LPIPS (↓) IoU (↑) LPIPS (↓) IoU (↑)
P2P [4] 0.43 0.57 0.42 0.51 0.46 0.57 0.47 0.57 0.46 0.54
PnP [9] 0.52 0.55 0.47 0.59 0.51 0.58 0.52 0.58 0.52 0.52
DDS [3] 0.29 0.65 0.22 0.72 0.29 0.69 0.30 0.71 0.28 0.66
CDS [7] 0.25 0.72 0.19 0.74 0.25 0.74 0.27 0.75 0.24 0.72

IDS (Ours) 0.21 0.74 0.17 0.75 0.21 0.71 0.21 0.76 0.21 0.72

Table S2. Quantitative results for Cat-to-Others task. LPIPS [10] and IoU are used. Lower LPIPS and higher IoU mean better identity
preserving.

computational costs due to repetitive adaptations of FPR for
each optimization steps. However, it can be controlled by
adjusting hyperparameters such as the number of FPR iter-
ations or the number of optimization steps, as reported in
Tab. 4.

IDS CDS DDS
success rate (%) 37.40 34.87 34.03

Table S3. Success rate for Cat-to-dog task. A higher score means
more translated results are classified as dog.

H. Social impact
By optimizing for a given image, our method properly miti-
gates the undesired biases introduced by the generative pri-
ors of large text-to-image diffusion models. However, the
issue of bias toward target information persists. Further-
more, the method’s potential misuse for generating fake
content highlights a critical ethical challenge commonly as-
sociated with image editing techniques. To mitigate these
risks, it is essential to implement robust safeguards, such
as stricter content authentication mechanisms, and ethical
guidelines for usage.
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