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Figure 8. Overview of interactive image generation under various scenarios. Our approach can easily generate diverse images by
editing in different ways.

A. Implementation Details

We provide comprehensive implementation details of our
framework and baseline methods used for comparison. This
section covers the technical specifications of baseline im-
plementations, our interactive editing process, and the de-
tailed algorithmic workflow.

Implementation Details of Baselines. We compare our
method against three recent image inpainting approaches:
Blended Latent Diffusion (BLD) [3], HD-Painter [32] and
Stable Diffusion 3 (SD3) [20]. For BLD, we utilize SD-
XL [38] as the base model with a DDIM scheduler config-
ured for 50 denoising steps.

For HD-Painter, we enhance the baseline by employ-
ing DreamShaper-v8 as the pretrained weight instead of
the original SD 1.5 or 2.1, ensuring better output quality.
To maintain consistent comparison, we match the resolu-
tion with our PixArt-α implementation using HD-Painter’s
built-in upscaler. The framework operates with a DDIM
scheduler over 50 denoising steps and employs classifier-
free guidance of 7.5, adhering to the original configuration.

For SD3, we use ControlNet [54] Inpainting version of
SD3. We use a guidance scale of 7.0 with a ControlNet
scale of 0.95, with 28 inference steps, which is the original
setting.

Interactive Editing Process. Our framework enables it-
erative image editing through a sequence of mask-guided
modifications. Our framework processes each edit through
three primary components: (1) Layer-wise Memory, (2)
Background Consistency Guidance (BCG), and (3) Multi-
Query Disentangled Cross-attention (MQD).

The Layer-wise Memory component maintains a com-
prehensive record of the editing history, storing latent rep-
resentations, prompt embeddings, and mask information for
each modification. This storage system enables retrieval of
previous states while ensuring consistency across multiple
edits. BCG leverages this stored information to maintain
background integrity, implementing selective latent blend-
ing based on mask regions while minimizing the computa-
tional overhead of repetitive forward passes.

MQD handles the integration of new elements by pro-
cessing edited regions and background content separately.
This separation ensures the natural adaptation of new ob-
jects while preserving existing spatial relationships and
background details, enabling the natural adaptation of di-
verse foreground objects into the background as presented
in Fig. 8. “A man standing” or “A knight riding a horse” is
naturally blended into “A night city”, and when a user adds
“A woman wearing a red dress” or “A golden retriever”, a
diverse result is achieved, meeting the user’s need.



Algorithm 1: Layer-wise Memory with Background Consistency Guidance (BCG) and Multi-query Disentangled
Cross-Attention (MQD)

Given: Prompts Pl = {p0, p1, . . . , pN}, Masks Ml = {m0,m1,m2, . . . ,mN}, Pre-trained diffusion model fθ , Diffusion steps
T , Number of DiT blocks K

Initialization:
Initialize model parameters θ;
Generate background latent Z0 = fθ(p0); # Generate background
Store Z0, p0, m0 in memory; # Store initial background
for i = 1 to N do

Retrieve Zi−1 = {Zt
i−1}Tt=0, pi−1, mi−1 from memory; # Recall previous latent

Initialize Latent z0,Ti ∼ N (0, I);
for t = T to 0 do # Loop over diffusion steps

for k = 1 to K do # Perform MQD within each DiT block
zk,ti = SelfAttention(zk−1,t

i );
zk,attni = CrossAttention(zk,ti ⊙mi, pi); # MQD for current object
for j = i− 1 to 0 do

Retrieve pj , mj from memory; # Recall previous prompt embedding and mask
Update zk,attni = CrossAttention(zk,ti ⊙ (mj −

∑i
l=j+1 ml), pj); # MQD for previous objs

Merge zmerge
i = zattni +

∑i−1
j=1 z

attn
j ; # Merge attention results

zk,ti = FeedForward(zmerge
i )

Update latent Zt
i = zKi ⊙mi + Zt

i−1 ⊙ (1−mi−1); # Apply BCG
Store Zt

i in memory after final block for step t; # Store final latent for each step
Store pi, mi in memory after denoising; # Store prompt embedding and mask

Final Image Generation:
Decode final latent ZN into Imagefinal = Decoder(ZN ); # Decode final latent
Return Imagefinal;

Workflow Details. Algorithm 1 presents our complete
editing pipeline, which operates through four principal
stages. The process starts with initialization, where we first
generate a background latent Z0 from the initial prompt p0
and store it in layer-wise memory. During iterative edit-
ing, we retrieve previous states (Zi−1, pi−1, mi−1) and pro-
cess them through T diffusion steps, applying K DiT blocks
with MQD and BCG.

The cross-attention separately processes edited regions
and background content, ensuring coherent integration of
new elements while preserving existing content. BCG then
blends to update the latents with retrieved latents and stores
results in layer-wise memory, maintaining a complete edit
history for future modifications. This proposed pipeline en-
sures robust background preservation while enabling natu-
ral object integration through the coordinated operation of
our key components.

Our framework maintains editing to be coherent by
leveraging MQD to disentangle cross-attention between
edited regions, previously edited content and background,
ensuring each modification integrates naturally with the ex-
isting scene while preserving intended spatial relationships.
This approach enables seamless integration of new elements
while maintaining the overall compositional integrity and
spatial context of the image.
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Figure 9. Analysis on computational resources for iterative
editing.

B. Analysis on Computational Overhead
Sequential editing multiple times, as in Figs. 8 and 10, can
make the user achieve the intended images. However, mul-
tiple editing with layer-wise memory requires additional
computational cost, and we analyze computational resource
utilization during iterative editing processes. We create a
new dataset for this analysis following a similar generation
protocol as Multi-Edit Bench and perform 5 independent
trials of sequential edits up to 10 iterations, measuring both
memory consumption and processing overhead.

Fig. 9 illustrates the resource utilization patterns on a
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Figure 10. Extensive multi-editing scenario. Our framework enables sequential editing of multiple edits, more than just two or three
times editing, meeting the user’s need to edit extensively on generated images.

Table 5. Human preference study results with recent founda-
tional models [13, 38]. We evaluate our model with SD-XL and
PixArt-alpha on various prompts regarding spatial relationships on
alignment and overall image quality.

Method Spatial Alignment Overall Quality

SD-XL [28] 3.16 3.66
PixArt-alpha [3] 2.76 3.43

Ours 3.57 3.47

single NVIDIA RTX-A6000 GPU. Due to our layer-wise
memory architecture, we observe a predictable linear in-
crease in RAM usage from 2,653MB to 2,954MB across
10 iterations, representing an 11% increment over the base
memory footprint. This moderate increase is attributed to
the storage of latent representations necessary for maintain-
ing edit history and ensuring consistency across modifica-
tions. Notably, the VRAM consumption shows remark-
able efficiency, increasing marginally from 16,882MB to
16,925MB - a mere 0.2% overhead over the initial usage.

C. Perceptual Study
We additionally compare complex scenarios with recent
Text-to-Image models [13, 38] and compare it in two as-
pects: (1) spatial alignment with the user’s intention and (2)
overall quality. The result is shown in Tab. 5.

Our approach outperforms these latest models by more
than 0.4 Likert scale in spatial alignment, showing the ca-
pability of synthesizing images while aligning well with
a user’s intention through an interactive editing process.
Furthermore, through multiple editing processes, we main-

tain the overall quality of the image (i.e., natural blend-
ing), achieving competitive results with recent models with
a score of 3.47. While this performs slightly lower than SD-
XL, it shows improvement over the original PixArt-alpha
model it builds upon.

D. Dataset and Benchmark
In this section, we first showcase our result on other bench-
marks for single-turn editing [45]. Afterward, we discuss
the limitations of existing datasets and benchmarks, partic-
ularly in the context of interactive image generation and se-
quential image editing. We present details of the benchmark
proposed in Sec.4 of the manuscript, which is designed to
address these shortcomings by introducing scenarios tai-
lored to evaluate spatial arrangement and semantic align-
ment in iterative editing tasks.

D.1. Comparison on EditBench
We evaluate our framework on EditBench [45] to assess
its performance on single-turn image editing scenarios. As
shown in Tab. 6, our method achieves competitive results
on EditBench’s metrics, demonstrating CLIP Text-to-Image
scores and R-Precision (Prec.) comparable to state-of-the-
art methods like Blended Latent Diffusion (BLD) with SD-
XL and HD-Painter.

For CLIP Text-to-Image (T2I) score, ours outperforms
all the baselines of Blended Latent Diffusion (BLD) with
SD-XL, HD-Painter, and SD3-ControlNet-Inpaint. Also,
ours outperforms Imagen-Editor [45] in CLIP T2I score,
demonstrating the effectiveness. Especially, SD3-Inpaint
showcases competitive results to ours in single-turn edits,



Table 6. Comparison of latest works on single-turn editing.
We evaluate our model with Blended Latent Diffusion (BLD)
with SD-XL and HD-Painter on single inpainting on EditBench.
Following EditBench, we evaluate the CLIP Text-to-Image (T2I)
score and CLIP R-Precision (Prec.). IM denotes Imagen-Editor
proposed in EditBench. [45]

Training Method CLIP (T2I) CLIP R-Prec.

O IM 31.5 98.6

X

BLD 29.84 70.83
HD-Painter 31.44 87.50
SD3-Inpaint 31.65 87.92

Ours 31.69 90.42

but they show lower performance compared to BLD or HD-
Painter in multiple edits demonstrated in Sec. 5 of the
main paper. Also, BLD and HD-Painter show lower perfor-
mance on CLIP-Score in the result of Sec. 5. This demon-
strates that traditional methods like BLD, HD-Painter, and
SD-3-ControlNet-Inpaint are quite effective for single ed-
its. However, they struggle with maintaining consistency
across multiple editing steps as they lack mechanisms for
preserving editing history and ensuring cross-edit coher-
ence. This highlights a limitation of current benchmarks
like EditBench that focus solely on single-turn editing.

D.2. Limitations of Existing Datasets
Existing datasets and benchmarks in image editing [31, 45]
or image synthesis [4, 21] often fail to evaluate the complex
tasks involved in interactive image generation adequately.
Most notably, they fail to assess how well-generated images
align with specific prompts and spatial relationships in the
editing or generation process. To summarize, prior works
have the following limitations:
• Lack of Interactive Generation Evaluation: Current

benchmarks do not provide an effective means to evaluate
interactive generation scenarios where objects are intro-
duced sequentially into a scene with precise control over
spatial arrangements.

• Lack of Semantic Alignment Evaluation: Evaluating
the semantic alignment between the generated image and
the prompt is often reduced to general-purpose metrics
such as the CLIP score or mean Average Precision (mAP)
from object detection models [40]. These metrics are in-
sufficient to measure how well the generated image aligns
with the intended semantics of the prompt, especially in
complex, layered scenarios.

• Inadequacy for Mask Order-aware Arrangement
Evaluation: Existing datasets are not designed to assess
spatial relationships and image ordering. They rarely fo-
cus on occlusions or specific arrangements of objects in
depth-aware compositions, making it difficult to evaluate
whether the edited image faithfully captures the intention.

Considering these limitations, a novel benchmark is re-
quired to evaluate both interactive generation and editing
scenarios while ensuring strong alignment with the input
prompts.

D.3. Details of Proposed Benchmark

We introduce a new benchmark for evaluating sequential
image generation and editing interactively, focusing specif-
ically on the limitations mentioned above. This benchmark
introduces novel evaluation metrics and scenarios that rig-
orously test the model’s ability to generate images aligned
with spatial constraints (i.e., mask for inpainting) and se-
mantic intent.

Design. The proposed benchmark is crafted to assess the
performance of models in generating images under an inter-
active generation scenario with sequential iterative editing.
Specifically, this includes the following components:
• Mask-ordered Prompts and Masks: Each image gen-

eration task involves sequential prompts and correspond-
ing masks that define the region of interest (RoI) for each
object. This simulates an interactive generation process
where objects are introduced layer by layer.

• High Occlusion Ratio: The benchmark is designed to
test mask order-aware generation, ensuring that the sce-
narios involve significant object occlusion, a critical fac-
tor in realistic editing.

• Complex Backgrounds and Detailed Object Arrange-
ments: Each scene includes a detailed and complex back-
ground, as well as intricate arrangements of objects, re-
quiring the model to manage both background consis-
tency and precise object placement effectively.

Features. To evaluate both the spatial alignment and over-
all visual quality of generated images, our benchmark in-
cludes the following features:
• Evaluation of Spatial Alignment: The benchmark in-

troduces tasks that require the model to add objects in
specified spatial arrangements while maintaining spatial
relationships after editing.

• Semantic & Visual-alignment Evaluation Metrics: We
propose several evaluation metrics that measure the align-
ment quality between the generated image and the in-
tended prompt.

D.4. Dataset Generation Process

We generate the benchmark through a semi-automated pro-
cess that ensures diversity in composition while maintaining
a high degree of control over spatial relationships and oc-
clusions. The details for each step of the dataset generation
process are as follows:
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Figure 11. Comparison of BLEU, METOER, and CLIP score
on each step.

Step 1: Decide on the number of layers (n): Each im-
age in the dataset consists of n layers, where n ranges be-
tween 3 and 6, including the background layer.

Step 2: Select reference class from ImageNet-1K:
One object class is selected as the reference class from
ImageNet-1K. This class serves as the anchor for the com-
position.

Step 3: Select additional classes via GPT-4: Using the
GPT-4 API, n − 1 additional classes are selected based on
their natural compositional compatibility with the reference
class. This ensures that the objects in the scene follow a
coherent visual and semantic composition.

Step 4: Generate random layouts (masks) for n
classes: For each of the n classes, random layouts are gen-
erated with constraints such as “margin from the edges” and
the “size of mask”. These constraints ensure the objects are
well-distributed without excessive overlap or clutter.

Step 5: Generate template-based captions: Based on
the center coordinates of each object mask, template-based
captions are generated to describe the spatial relationships
and contents of the scene. These templates are used to gen-
erate global captions for the entire scene and for individual
layers regarding the spatial relations.

Step 6: Generate global and layer-wise captions: The
global caption is generated to describe the entire scene,
while individual layer-wise (i.e., editing steps) captions are
generated for each object, ensuring that background de-
tails are excluded from the layer-wise descriptions with
template-based captions through GPT API.

Through this approach, our dataset is designed to rig-
orously evaluate models’ performance: capabilities in han-
dling interactive generation scenarios, spatial alignments,
and semantic accuracy within complex, mask order-aware
environments. As a result of this rigorous dataset construc-
tion, our benchmark evaluates editing performance across 2
to 5 steps, with distributions of 19% (2-step), 18% (3-step),
26% (4-step), and 37% (5-step), with average occlusion ra-
tio of 18.53% across the layers.

D.5. Evaluation Details
We evaluate each individual editing step of the edited im-
age by cropping the generated image based on the masks
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Figure 12. Qualitative comparison on LooseControl.

Table 7. Quantitative comparison on LooseControl. † denotes
Attribute Editing with cross-frame attention in LooseControl.

Method Semantic Align Visual Align

BLEU-2/3/4↑ METEOR↑ CLIPcrop↑
LayoutGuidance 36.44 / 26.13 / 18.85 0.1361 62.92
NoiseCollage 55.75 / 42.43 / 32.96 0.1402 64.01

LooseControl 63.30 / 46.24 / 34.15 0.1373 63.13
LooseControl + Edit† 58.74 / 45.00 / 34.76 0.1359 62.32

Ours (512× 512) 61.19 / 45.04 / 34.06 0.1465 64.28
Ours (1024× 1024) 64.99 / 47.69 / 36.59 0.1513 64.29

provided for each step. This method allows for fine-grained
evaluation of how well each individual object was added
following its corresponding prompt and spatial arrange-
ment.

Cropped Image Evaluation All cropped images from
the individual editing step’s evaluation are resized to a reso-
lution of 224× 224 for evaluation. This uniform resolution
ensures that variations in image size do not introduce incon-
sistencies in the evaluation results. The evaluation metrics
used on the cropped images include the following metrics:
• CLIP Score: We measure the similarity between each

cropped image and its corresponding prompt. Since
CLIP’s text encoder input is limited to 77 tokens and our
prompt exceeds its length, CLIP score’s expressiveness
can be constrained [44, 52]. Hence, we adopt the tem-
plate “An image of {CLASS} in {BACKGROUND}” to
describe the local cropped region within the token limit.

• LLaVa-based Alignment with BLEU and METEOR
For each cropped editing step’s image, LLaVa gener-
ates captions based on the bounding box of each object.
The alignment between these captions and the intended
prompt is measured using BLEU and METEOR scores,
ensuring the model accurately captures the intended se-
mantic information for all editing steps.
By evaluating each individual editing step, we ensure

a comprehensive assessment of the model’s ability to edit
holistically in a spatially aligned and semantically accurate
manner.
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A. A large bird flies between cliffs with a kite overhead, and a cliff dwelling built into the rock.

B. A scuba diver swims near a sunken boat on the ocean floor, surrounded by coral reefs and 
illuminated by sunlight streaming down from the surface.

C. A butterfly hovers next to a large cabbage, surrounded by lush green foliage and flowers. 
D. A white cat sits on the floor in front of a fireplace, while a black cat on the mantel, in a cozy room.
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Figure 13. Comparison with other latest editing approaches [2, 32] with Multi-Edit Bench Dataset. The approaches in the first two
rows show results with baseline editing approaches. The background image is generated by our framework.

D.6. Effect of Editing Steps
We conduct additional experiments on editing steps and
present the results in Fig. 11 with BLEU, METEOR, and
CLIP scores. Our method maintains stable performance
as steps increase, whereas BLD and HD-Painter exhibit a
continuous decline in CLIP and METEOR after three steps,
along with consistently lower BLEU. Overall, our method
remains steady across all metrics as editing steps increase.

D.7. Comparison with 3D-lifted Work
We further compare our method with 3D-lifted ap-
proaches [10, 19]. Since Build-A-Scene [19] is unavailable,
we evaluate against LooseControl [10] and its 3D-Editing
approach in Tab. 7 and Fig. 12.

For fair evaluation, we lift 2D boxes to 3D using pseudo-
depth maps and project them back for appropriate mask us-
age. LooseControl outperforms in BLEU at 512 × 512 but
lags in METEOR and CLIP, while our method surpasses
across all metrics at 1024× 1024 resolution.

Additionally, we compare with LooseControl’s attribute
editing. In multi-step editing, LooseControl consistently
underperforms across all metrics compared to our method.

E. Qualitative Results

We provide extensive qualitative results demonstrating our
framework’s versatility in handling various image editing
scenarios. Fig. 8 demonstrates the capability of interactive
image generation under diverse scenarios. We also provide
Fig. 10 to demonstrate the effectiveness of image synthesis
under extensive multi-editing scenarios.

As we tackle the challenge of multiple editing, we show-
case the qualitative comparison on our proposed Multi-Edit
Bench in Sec. E.1 In addition, we present more qualita-
tive result on advanced editing (i.e., deleting the object
behind the generated object in overlapped scenario.) un-
der Sec. E.2. Furthermore, we show the application of
our method in depth-order aware generation in Sec. E.3
by comparing with depth-aware approaches, denoting our
model’s possibility in order-aware generation empowered
by Background Consistency Guidance (BCG) and Multi-
Query Disentangled cross-attention (MQD), maintaining
the overlapped object’s shape and context even we add an
additional object with high occlusion ratio.



E.1. Comparison on Multi-Edit Bench
We present the result on Multi-Edit Benchmark dataset.
Note that we utilized prompts inside our generated dataset.
Due to the lack of space, we omit the prompt as a short sen-
tence inside the qualitative result.

Qualitative Comparison. In Fig. 13, we present results
on our Multi-Edit Bench, compared to other baselines of
Blended Latent Diffusion (BLD) [3] and HD-Painter [32].
HD-Painter shows a quality image, but as seen in column
A, ‘kite’ is not apparent in the image compared to the natu-
rally blended kite in ours. For BLD, they fail to add objects
in most examples, showing degraded image quality. In con-
trast, ours show images that align with the given masks in
the dataset.

Comparison under Real-world Interaction Scenarios.
As we proposed Multi-Edit Bench to evaluate sequential
editing scenarios, we additionally compare with arbitrary
cases, as this work focuses on interactive generation. We
gave arbitrary prompts and masks to look out for more in-
teractive editing scenarios. We designed prompts and masks
arbitrarily but used the same prompts and masks for all the
baseline models. We sampled 5 times and used the best-
appearing sample for the qualitative comparison. We show-
case the comparison in Fig. 14 and Fig. 15.

E.2. Comparison on Improved Editing
We present a qualitative comparison under an improved
editing scenario in Fig. 16. To achieve improved editability,
we utilize our method to delete the object behind the fore-
ground object (i.e., previous mask order). Other methods,
including commercial products [1, 37] and baselines [3, 32]
show artifacts when removing the previously ordered ob-
ject in the examples in Fig. 16. However, ours removes the
previous object without any artifact, re-gaining the previous
background through layer-wise memory. Also, we maintain
the foreground object’s identity through MQD, describing
our method’s efficacy.

E.3. Comparison with Depth-aware Approaches
We additionally compare our method with depth-aware
models in Fig. 17, as we can also generate order-aware
images. ControlNet [54], T2I-Adapter [33], or Uni-
ControlNet [57] show artifacts, but ours show results fol-
lowing the user’s intention, like the model which is trained
from scratch [26].
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Figure 14. Comparison with other latest editing approaches. The approaches in the first two rows for each example show results with
baseline editing approaches. The background image is generated by our framework.
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