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A. Appendix

In this supplementary material, we provide additional ex-
perimental results and analysis to support our method, in-
cluding qualitative results.

A.1. Feature map analysis
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Figure S1. Relative log amplitudes of Fourier transformed feature
maps.

The recent work [3, 4] shows that ViT structure learns
low-frequency signals, which capture the global informa-
tion, then high-frequency signals which capture the local
spatial information, i.e., fine-grained details. Following the
previous work [3, 4], we visualize the result of the Fourier
transform on feature maps to investigate the impact of the
Locality Adapter. Specifically, we reshape the patch tokens
from the output of the last layer into their original spatial
structure and then apply the Fourier transform. As shown
in Figure S1, the CLIP struggles to capture high-frequency
signals. In contrast, we observe that our LAIN captures
more high-frequency signals compared to the CLIP. These
results indicate the effectiveness of LAIN in capturing fine-
grained details for an HO pair by incorporating locality

awareness, thus leading to a performance increase in the
zero-shot HOI detection where the fine-grained details are
crucial.

A.2. Ablation study on zero-shot settings

Setting LA IA Unseen Seen  Full
28.15 3299 32.02

<

- 3096  35.01 34.20

RE-UC v - 29.44 3490 33.80
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Table S1. Ablation studies on each adapter under various zero-
shot settings. The ‘Setting’ column indicates different evaluation
setups: RF-UC, NF-UC, and UO. LA and IA denote locality and
interaction adapter, respectively.

To further validate the effectiveness of our approach,
we conduct a comprehensive ablation study across various
zero-shot settings. Similar to the ablation study on UV set-
ting in Table 3 in the main paper, we gradually add each
component and report the results under the RF-UC, NF-UC,
and UO settings in Table S1. Similar to the UV setting, both
the Locality Adapter (LA) and the Interaction Adapter (IA)
independently improve performance for both unseen and
seen classes in the RF-UC, NF-UC, and UO settings. When
both LA and TA are applied together, they provide further
improvement by jointly enhancing locality and interaction
awareness in the CLIP representation. These demonstrate
the effectiveness of the proposed method and its generaliza-
tion ability across seen and unseen classes.
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Figure S2. Qualitative comparison of non-interactive pairs between our model and the baseline, without LA and IA, on the HICO-DET
under various zero-shot settings (RF-UC, NF-UC, UO, UV). We represent a human with a red box and an object with a blue box, along
with similarity scores with an HO pair and text embedding. The first and second columns visualize interactions for seen classes only, while

the third and fourth columns focus exclusively on unseen classes.

K Unseen  Seen Full

0 2488  31.06 30.19
{1} 2617 3384 3276
{3} 2710 3210 3141
{5} 2726 3233 31.63

{35} 2771 3255 3195
{135} 2756 3242 3174

Table S2. The impact of combining different kernel sizes under
the UV settings.

A.3. The impact of combining different kernel sizes.

To investigate the impact of the combination of different
kernel sizes, we conduct experiments varying the combi-
nation of kernel size in LA as shown in Table S2. When
utilizing {1}, i.e., without locality awareness, the model
tends to overfit to the seen classes, as it struggles to cap-
ture the fine-grained details of the object. In contrast, us-
ing {3} or {5} demonstrates better generalization to unseen
classes by providing locality awareness to CLIP represen-
tation. This result indicates that considering locality aware-
ness is crucial for zero-shot HOI detection. We observe that

combining different kernel sizes yields further performance
improvements, with the best results achieved when using
{3,5} by providing the local information across multiple
spatial scales.

A 4. Additional qualitative results

We provide additional qualitative results under the various
zero-shot settings in Figures S2 and S3 to show the model’s
effectiveness.

In Figure S2, we present image pairs to investigate the
impact of incorporating IA and LA: the left displays the re-
sults of the baseline model without these components, while
the right illustrates the results of LAIN. As shown in the
first column of Figure S2, we observe that our LAIN effec-
tively distinguishes interactive pairs. For example, in the
RF-UC setting, the baseline model assigns a high similar-
ity score to ‘sitting on a bicycle’ for a scenario where a
person is actually sitting on a bench, indicating confusion
in distinguishing interactive pairs. In contrast, our model
assigns a significantly lower score to non-interactive pairs.
Similarly, as shown in the second column of Figure S2,
LAIN assigns higher similarity scores to the correct interac-
tive pairs, demonstrating its enhanced understanding of the



Preds: eating(0.66),holding(0.65)
an orange.

GTs: eating, holding an orange.

Preds: hugging(0.68), holding(0.73),
d petting (0.45) a cow.

GTs: hugging, holding, petting a cow.

Preds: holding(0.66), eating(0.65),
.| carrying(0.70) a donut.

GTs: holding, eating a donut.

Preds: carrying(0.63), holding(0.66),
dragging(0.78) a suitcase.

GTs: carrying, dragging a suitcase.

Preds: riding(0.80), standing(0.70),

GTs: riding, standing a skateboard.

Preds: riding(0.80), standing(0.71)
wearing (0.72) a skis.

GTs: riding, standing, wearing a skis.

Preds: riding (0.90), holding (0.65),
sitting(0.92), straddling (0.88)
a motorcycle.

GTs: riding, holding, sitting a motorcycle.

Preds: riding (0.74), running(0.81),
holding(0.46), straddling (0.79),
training (0.21) a horse

GTs: riding, holding, running, straddling a horse.

Figure S3. Qualitative results comparing our model’s predictions (denoted as “Preds”) with the ground truths (denoted as "GTs”) are
presented. Seen classes are highlighted in blue, while unseen classes are highlighted in green, along with their corresponding similarity
scores. Humans are represented by red bounding boxes, and objects are represented by blue bounding boxes.

interactive pairs by providing fine-grained details about an
HO pair with locality and interaction awareness. Similar re-
sults were also observed not only across different zero-shot
settings but also for unseen classes presented in the third and
fourth columns of Figure S2, further confirming its strong
generalization ability. These results indicate the importance
of integrating locality and interaction awareness into CLIP
representations, enabling the model to capture fine-grained
details of HO pairs for zero-shot HOI detection.

Figure S3 shows qualitative results comparing LAIN’s
predictions (‘Preds’) with the ground truths (‘GTs’), along
with similarity scores, under various zero-shot settings. We
observe that LAIN accurately identifies interactions for both
seen (highlighted in blue) and unseen classes (highlighted
in green) in the HO pairs. Furthermore, LAIN identifies
interactions for both seen and unseen classes that are ab-
sent in the ground truths. For example, in the NF-UC set-
ting, LAIN successfully identifies the seen class ‘carrying,’
which is not annotated in the ground truths. Similarly, in
the UO setting, LAIN accurately predicts the unseen classes
‘flipping’ and ‘jumping,” demonstrating its ability to gener-
alize to interactions beyond those explicitly annotated.

A.5. Implementation details

In this section, we provide additional implementation de-
tails about LAIN to facilitate reproducibility and under-
standing. We adopt the pre-trained DETR [1] as the de-

tector, utilizing ResNet-50 as the CNN backbone. Follow-
ing previous work [7], we discard detection results with a
confidence score under 0.2 and retain between 3 and 15 in-
stances each of humans and objects, choosing those with the
highest confidence scores. In all experiments, we leverage
the ViT-B/16 backbone of CLIP. During the training, the
CLIP and the detector are kept frozen except for LA, IA,
and learnable tokens inserted in the text description. The
initial learning rate is set to le-3 and is multiplied by 0.1 af-
ter the first 10 epochs. The model is trained for 20 epochs.
We optimize our network using AdamW [2]. All experi-
ments are trained with a batch size of 8 on a single RTX
4090 GPU. The dimensionalities of the key components in
our model are as follows: Dget, Delip, and D, are 512, 768,
and 32, respectively. For the feed-forward network (FFN),
we use a simple two-layer MLP with ReLU activation to
implement Eq. 2, while a fully-connected layer is applied
for others. The cross-attention layer is composed of two
attention heads. Following prior work [6, 7], The value of
A, used to suppress overconfidence in object predictions, is
set to 1.0 during training and 2.8 during inference. yp4 and
YrA are initially set to zero to prevent drastic changes in the
CLIP representations during the early stages of training.

Implementation details for CLIP baseline. We design
the HOI detection process using CLIP as follows. Given an
image, we first detect object candidates using a pre-trained
object detector, DETR [1]. For all valid HO pairs (u, v), we



create a union box of the human b,, and object box b,,, then
crop the union box region from the image to classify the
interaction label. The cropped images are fed into the pre-
trained CLIP [5] visual encoder to obtain image features.
Then, we use the template ‘A photo of a person [verb]-ing
a [object]’ to obtain text descriptions for the 600 HOI cate-
gories in HICO-DET. The text descriptions are fed into the
pre-trained CLIP text encoder to obtain text features. We
then calculate the similarity between the image and text fea-
tures. Finally, we compute the final score for each HOI cat-
egory for evaluation. The CLIP baseline is not fine-tuned
and is utilized with the original parameters provided by [5],
being evaluated in a training-free manner.
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