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Supplementary Material

A. Additional Data Samples

A.1. Dataset Samples

Figure A and Figure B display examples of Factual-

Counterfactual (F-CF) sets and Factual-Only (F-Only) im-

ages. Figure A includes multiple objects, where F-CF

sets (left) contain multiple object positions and their cor-

responding background-only images, while F-Only images

(right) show object variations in different scenes. Figure B,

on the other hand, focuses on a single object (object #2), il-

lustrating its placement across various contexts, emphasiz-

ing the dataset’s ability to capture real-world diversity for

individual objects.

A.2. Object Categories

Figure C illustrates the diversity of ORIDa through objects

categorized by attributes such as the number of colors, se-

mantic class, transparency, reflectivity, and roughness. Ob-

jects are grouped by color complexity (1–2 to 7–8 col-

ors) and semantic classes, including daily/office supplies,

human-related items, animal-related objects, figures, and

miscellaneous categories. Transparency, reflectivity, and

roughness levels further represent diverse material proper-

ties and surface textures, capturing variations in light inter-

action and texture. These categories reflect the thoughtful

curation of ORIDa, enabling support for a broad range of

image editing tasks.

A.3. ISP-augmented data

Figure A also demonstrates images processed through five

distinct ISP settings using Adobe Lightroom Classic. These

settings include: (1) as-shot (default settings), (2) higher

temperature, (3) lower temperature, (4) higher vibrance,

and (5) lower vibrance. These augmentations expand the

dataset’s variety, enabling better generalization for training

models under varying lighting and color conditions.

B. Experimental Details

B.1. Train Schedule

We fine-tune our models starting from the pre-trained SD-

Inpaint model [4, 8] using the Adam optimizer [6] with a

learning rate of 5e-5 and a cosine scheduler [7]. The batch

size is set to 64 for both object removal and insertion tasks.

For object removal, the model is fine-tuned for 5,000

steps, resulting in 320,000 training samples, significantly

fewer than ObjectDrop’s 6.4 million samples, generated

over 50,000 steps with a batch size of 128. For object in-

sertion, we train the model for 500,000 steps, resulting in

32 million training samples. This is still fewer than Object-

Drop’s 56.3 million samples, generated through a two-stage

process: 100,000 iterations with a batch size of 512 on syn-

thetic data, followed by 40,000 iterations with a batch size

of 128 on real-captured data [11]. It is also fewer than Paint-

by-Example’s 76 million samples, produced over 40 epochs

using a synthetic dataset of 1.9 million images [12]. Train-

ing the object insertion model takes about 150 hours using

4 NVIDIA A100-PCIE (40GB) GPUs.

B.2. Model Inputs

Our framework is built upon the pre-trained SD-Inpaint

model [4, 8], where the U-Net processes a 9-channel input:

four channels for the input latent, four for the condition la-

tent, and one for the object mask.

Object Removal. For training, the input latent is a per-

turbed version of the original image’s latent representation

The condition latent is created by masking the input latent

using the object mask. During inference, the model inputs

for object removal remain identical to the training setup.

Object Insertion. For training, the input latent is the

perturbed latent of the ground truth (real-captured) object-

included image. The condition latent is the latent of a Copy

& Paste image, which is generated by masking and pasting

the source object into the target image. During inference, as

the ground truth object-included image is unavailable, we

use the Copy & Paste image as the input latent. All other

settings remain consistent with the training configuration.

B.3. Diffusion Model

We primarily follow the pipeline of SD-Inpaint [4], making

minimal modifications only during the inference stage. To

better preserve the source object’s identity in the object in-

sertion task, we employ skip residual connections inspired

by DemoFusion [3]. This method combines the noised la-

tent reference z′t ∼ q(zt|z0), derived from the original input

image’s latent representation z0, with the current denoised

latent zt ∼ pθ(zt|zt+1). The contributions of z
′

t and zt

are dynamically weighted using a cosine scheduling mecha-

nism, which adjusts the balance between the two throughout

the denoising process. For more details on this weighting

approach, refer to the original paper [3].

By leveraging information from z0, the model retains the

source object’s identity while seamlessly blending it into the

target scene. Apart from this inference-stage adjustment

using skip residuals, the underlying SD-Inpaint model re-

mains unchanged.



C. Additional Experiments

C.1. Object Removal

Figure E presents further object removal results using multi-

ple models, including SD-Inpaint [4, 8], LaMa [10], MGIE

[5], and SD-Oursr. The examples highlight how different

methods handle challenges such as background reconstruc-

tion, shadow removal, and artifact elimination.

C.2. Object Insertion

Additional qualitative results for object insertion are shown

in Figure F with ORIDa test set and Figure G with in-the-

wild data from internet and an external dataset, MureCom

[1]. The results demonstrate the effectiveness of different

models – Copy & Paste, Paint-by-Example [12], AnyDoor

[2], ObjectStitch [9], and SD-Oursi – in maintaining object

identity, harmonizing colors, and generating shadows and

reflections for seamless integration.

C.3. Ablation Study on Data Scale

We performed an ablation study to evaluate the impact of

dataset scale (25%, 50%, 100%) on object insertion per-

formance, focusing on shadow generation and source ob-

ject preservation (Figure H). Models trained on 25% of

the dataset struggled with context-aware shadow generation

and exhibited artifacts in object appearance. Increasing to

50% improved performance, however, some inconsistencies

still remained. Training on the full dataset (100%) yielded

the best results, with accurate shadows and faithful preser-

vation of object identity and appearance. This demonstrates

the importance of dataset scale for achieving high-quality,

context-aware object insertion.

D. Limitations and Future Works

Excluded object types. Our dataset excludes certain cate-

gories of objects to maintain consistency and feasibility dur-

ing data collection. First, human subjects are excluded due

to complexities related to appearance variability and ethi-

cal considerations. Additionally, we have excluded objects

characterized by significant temporal variability (e.g., liv-

ing organisms, perishable food items, and deformable or

flexible materials), as well as large-scale objects imprac-

tical for repeated captures. Addressing these exclusions in

future dataset versions could significantly expand the range

of applicable research and practical scenarios.

Dataset scale-up. We introduced a dataset for object-

centric image composition at an unprecedented scale, con-

taining 200 unique objects across 30,000 images. Despite

this significant advancement, it remains insufficient to fully

represent the vast diversity and complexity of real-world vi-

sual scenarios. We envision that both our dataset and the

methodologies developed to capture it will serve as founda-

tional resources for future datasets. An important direction

is to simplify and streamline our data collection process,

enabling scalable crowd-sourced dataset acquisition.

Limited 3D information and pose variability. Our dataset

does not include explicit 3D information, such as multi-

view captures or ground truth depth maps. Additionally,

the dataset intentionally restricts variation in object poses to

maintain consistency and highlight object placement across

scenes, resulting in limited diversity in pose dynamics. Fu-

ture datasets might address this limitation by incorporat-

ing more comprehensive pose variations and additional 3D-

related annotations.

Limited novelty in model development. To emphasize

the value of our high-quality real-world dataset, which can

directly serve as training samples for advanced diffusion

models, we primarily employed vanilla models [4, 8] with

minimal modifications. Consequently, our research did

not explore potential performance improvements achievable

through advanced architectural innovations or customized

model enhancements. Future work may benefit from inte-

grating novel model architectures specifically tailored for

object-centric image composition tasks.

E. Broader Impact

ORIDa advances realistic image compositing, supporting

augmented/virtual reality and AI-driven content production.

However, its realism raises concerns about misuse, such as

deepfakes or deceptive media. We encourage responsible

use and adherence to ethical guidelines to balance innova-

tion with societal safeguards.
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Figure A. Additional examples of Factual-Counterfactual (F-CF) sets and Factual-Only (F-Only) images.
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Figure B. Additional examples of Factual-Counterfactual (F-CF) sets and Factual-Only (F-Only) images for object #2.
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Figure C. Examples of objects categorized by number of colors, semantic class, transparency, reflectivity, and surface roughness.
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Figure D. Example images data for five different ISP settings: (1) as-shot, (2) higher temperature, (3) lower temperature, (4) higher

vibrance, and (5) lower vibrance.
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Figure E. Additional results of object removal with various models.
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Figure F. Additional results of object removal generated by various models.
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Figure G. Additional results for object insertion with objects and scenes from internet and an external dataset.
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Figure H. Ablation study results on the effect of training dataset size for the object insertion task.
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