
Supplementary Material for ParaHome: Parameterizing Everyday Home
Activities Towards 3D Generative Modeling of Human-Object Interactions

Figure 1. Rendered scenes and text annotation for each scene from
example scenario.

1. Dataset Details

1.1. Dataset Contents

Scanned Object Mesh. We obtain high-quality 3D mesh
scans of all objects placed in our system via an Einstar3D
scanner [5]. We scan each object at least twice to reduce the
unscanned areas or holes by changing the orientations of the
objects (e.g., up-side-down), and fuse the scanned meshes
via manual alignments. They are zero-centered and scaled
to a metric scale.
Object Articulation Information. Objects with articula-
tion contain axis ae. If the part has a revolute joint, we
include pivot point pe additionally. These are defined in the
object canonical space and are utilized in getting each object
part-transformation toward the camera space.
Object Position and Orientation in the Camera Space.
Each object’s spatial information is computed using the per-
frame transformation of markers attached to each object.
Relative Orientation of Hand/Body Joints. Orientation of

each hand and body joints with respect to their parent joints
is recorded and processed via a motion capture system.
3D Hand/Body Joint Positions in the Camera Space.
With the positions of markers attached to the body in the mo-
cap space acquired via body alignment protocol, translation
and orientation of body to camera space are obtained using
the positions of corresponding markers in the camera spaces.
We compute the positions of two hands and body using the
obtained translation and orientation.
Text Annotation for Each Action. For each capture, partic-
ipants receive verbal instructions detailing the actions they
will perform. These instructions specify which objects to
interact with and how to interact with them, as illustrated
in Fig. 1. The instructions are recorded and synchronized
with the motion data. Additionally, we manually inspect the
instrument to create more accurate text annotations, ensuring
they are reliably mapped to each action.
Per-frame Contact Information. At each frame where con-
tact between Left/Right/Body and object occurs, the corre-
sponding frame and object category/body part information
is recorded.

1.2. Dataset Comparison

As shown, our ParaHome dataset is the comprehensive
dataset which captures all authentic and dynamic human-
object interaction scenarios in a natural room environment.
Compared to virtual setup using object placeholders [13] or
the simulator environment, our data collection pipeline fea-
tures more precise and reliable capture during manipulation,
resulting in lower temporal jitter and reduced rate of object
movement without hand contact. The impact of our dataset’s
higher accuracy on the downstream task is evaluated and
discussed in Sec. 5.2. Our dataset includes dexterous body
motion and movement of all objects in the scene and encom-
passes various manipulation motions involving articulated
objects and multiple objects even in concurrent usage sce-
narios. Our capture scenarios feature natural and sequential
manipulations like cooking, resulting in longer semantically
concurrent action sequences (e.g. placing a pot on a stove
and turning it on), as shown in our supplementary video.
And such logically connected interactions are hard to find
in a less structured setting and with randomly performed
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Dataset hours # subject # object # body hand # contact obj. 6d. obj. artic. multi obj. setup

GRAB [25] 3.8 10 51 3 2 3 3 7 7 standing
BEHAVE [2] 4.2 8 20 3 - 3 3 7 7 portable
InterCap [11] 0.6 10 10 3 2 3 3 7 7 portable

FHPA [7] 0.9 6 26 7 1 7 3 7 7 room
H2O [14] 1.1 4 8 7 2 7 3 7 7 table

H2O-3D [9] - 5 10 7 2 7 3 7 7 table
HOI4D [17] 22.2 9 800(16) 7 1 7 3 3 7 room
Chairs [12] 17.3 46 81 3 2 - 3 3 7 standing

ARCTIC [6] 1.2 10 11 3 2 3 3 3 7 standing
NeuralDome [27] 4.6 10 23 3 2 3 3 3 7 standing
OAKINK2 [26] 12.38 9 75 3 2 3 3 3 3 table

TACO [18] 2.53 14 196(20) 7 2 3 3 7 3 table
TRUMANS [13] 15 7 20(placeholders) 3 2 3 3 3 3 room

Ours 8.1 38 22 3 2 3 3 3 3 room

Table 1. Comparison of existing human-object interaction datasets

Figure 2. System Devices. (a) RGB cameras with 3 types of lenses.
(b) Signal distributers (c) Desktop machines (d) LED Lights (e)
NAS storage systems

actions. Furthermore, we collected data from 38 participants,
capturing a wide range of motion styles across individuals.

2. System Details
2.1. Using ArUco Markers

Even though several works [6, 12] utilized IR markers
for motion tracking, we find using ArUco markers to be
more suitable in our capture system. We aim to capture
in a broader spatial spectrum(i.e. entire room setting filled
with objects) involving multiple interactions in a single cap-
ture time. Such environments filled with multiple furni-
ture/objects and hand-object interactions involving multiple
direct contacts, cause a significant occlusion as simulated
in Sec.4.1 of our main manuscript. Even though ArUco
markers have its downsides in corrupting RGB data and in-
fluencing natural human motions, using RGB data is not
within our interest as mentioned Sec 6. of main manuscript
and we empirically placed markers to minimize such inter-
ruptions.

2.2. Hardware Details

In order to cover the entire volume of the room and to re-
duce occlusion issues, we install 70 RGB industrial cameras,
BFLY-31S4C-C. The cameras capture videos at 30Hz in

2048×1536 resolution. We set the exposure time at 3msec,
which shows a good balance between low-motion blur and
sufficient brightness. We use three types of lenses (thirty
3mm lenses, twenty 5mm lenses, and twenty 6mm lenses),
where the wide-angle lens (3mm) is helpful in capturing
wide area. We calibrate the cameras using Structure-from-
Motion via COLMAP [24] with multiple randomly patterned
fabrics placed in our system. We provide pre-calibrated ini-
tial intrinsic parameters for the three types of lenses derived
from 2 or 3 samples of lenses for better convergence in cam-
era pose estimation. We scale the calibrated 3D space into
a real-world metric (in meters) by locating checkerboards
with known sizes during camera calibration.

All cameras, the motion capture suit, and gloves are
synced and gen-locked via a common square wave signal
that comes from the motion capture device to synchronize
two heterogeneous systems, which is crucial to precise HOI
captures. To deliver the sync signals to a large number of
cameras, we utilized 11 signal distributors in a hierarchical
manner, each of which can be connected to 8 cameras via
GPIO cables. We use 1 master and 18 slave desktop ma-
chines to control the cameras and process captured records.
Each slave machine is connected to 3 or 4 cameras via Eth-
ernet cables and equipped with a 4-port 1G ethernet board,
and 2 SSDs with a capacity of 500GB and 1TB each. 15
LED lights (4500lm) are installed to provide sufficient il-
lumination. Pictures of our system devices are shown in
Fig. 2.

To capture both body motion and subtle hand motions, we
use IMU-based motion capture equipments, Xsens motion
suit [21] and Manus hand gloves [20]. The body motion
system captures the motions at 60Hz.
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Object Part1 Part2

Sink revolute revolute
Laptop revolute -
Drawer sliding sliding

Gas stove revolute revolute
Microwave revolute -
Trashbin revolute -

Washing machine revolute -
Refrigerator revolute revolute

Table 2. Part information of articulated objects

3. Data Acquisition

3.1. Modeling Object Articulations.

To capture the movement of articulated objects, we model
each object as a parametric 3D model by defining the object-
specific articulated motion parameters. This modeling re-
quires scanning individual parts separately and compositing
them in a canonical space by defining axis direction, pivot
points, revolute joints, and so on, based on the object types.
During HOI captures, we track the motion of each part via
our marker system (e.g. monitor of a laptop and the base),
from which we compute the articulated motion parameters.
In this subsection, we describe the process of modeling
articulated objects as parametric 3D models. Articulation
information of each object with multiple parts is shown in
Tab. 2.

To find axis ae and pivot point pe of the articulated ob-
jects, we capture markers attached to each object part at
different part states separately and acquire each marker cor-
ners in the ParaHome space as {mi(t)}nt=1. Prior to applying
algorithm, we transform marker corners {mi(t)}nt=1 back
to object canonical space with T−1

mar→obj and utilize trans-
formed marker corners in the canonical space {m′i(t)}nt=1.
For the sliding joint, axis ae can easily be calculated using
marker corners at time t and t′ as:

ae =
m′i(t)−m′i(t′)
‖m′i(t)−m′i(t′)‖

In case object part has a revolute joint, we start initializing
an axis ae and each relative state ∆se(t, t

′) = |se(t)−se(t′)|
between time t and t′ (for the target articulated object cap-
tured at different n number of states, time t and time t′

satisfies t 6= t′ and t, t′ ∈ {1, 2, · · · , n}). Then we apply
optimization with marker corners toward all possible pairs of
times t and t′. Let f be a map defining rotation transforma-
tion with respect to pivot and given axis-angle and denote as
Tt′→t = f(ae,∆se(t, t

′), pe). Then for a set of all possible
time pairs P, the optimization target for axis ae, relative

state ∆se and pivot pe is defined as:

arg min
ae,∆se(t,t′),pe

∑
(t,t′)∈P

‖m′i(t)−Tt′→tm
′
i(t
′)‖2

Since initial axis ae and pivot pe are initialized in the object
canonical space, we directly utilize acquired information
to derive transformations using detected markers for each
capture data.

3.2. Body Alignment Detail (Sec 3.4 in Main Paper)

In this subsection, we provide additional details of our
spatial alignment process between a multiview camera sys-
tem and wearable motion capture systems, described in Sec.
3.2 in our main manuscript.

To resolve the issue of imperfect body and hand skeleton
scale from the wearable motion capture system, we attach
3 or 4 ArUco markers to each near-rigid body part (torso,
hands, upper arms, lower arms, upper legs, lower legs) to
assign correspondences. During alignment capture, partic-
ipants perform the range-of-motion movement by rotating
their arms and legs while pinned or bent, particularly twist-
ing their wrists to locate each hand wrist. With the captured
data, we optimize body skeleton configuration B = {O}
and body markers locationsMb via gradient decent with a
learning rate of 0.008 for 50 epochs. Specifically for weights
of body and foot, λb = 100, λf = 5000 are used. In the
case that alignment is not well optimized, we additionally
penalize excessive length change in spines and difference
in skeleton lengths between the left and right sides of the
body by adding an extra regularization term. Once the align-
ment procedure is finished, we remove markers (all from the
upper legs, one for each upper arm, lower arm, and lower
leg) to minimize interference with the movements of the par-
ticipant. The selection of remaining markers is determined
based on their importance during captures, where we assess
their importance by evaluating whether their absence would
compromise the accuracy of body positioning in the camera
space. Check our supplementary video for an example of
body alignment motion.

3.3. Hand Calibration Structure and Protocol (Sec
3.4 in Main Paper)

As human usually handle objects with their fingers, finger-
tips play an important role during interaction. We made the
calibration structure to better locate fingertips and find the
hand skeletons and relative locations between the attached
hand markers to each wrist. The hand calibration structure
is composed of three cubes with ArUco markers and the
ordered 3D corner vertices of the structure are defined as
C = {ci ∈ R3}6i=1 as shown in Fig. 3. During the hand
calibration procedure, we request each participant to touch
the calibration structure’s corners with their fingertips. We
instruct them to touch specified multiple corners at each step
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Figure 3. (Left) The hand calibration structure to precisely measure
hand skeleton configuration and to find the relative locations of hand
markers attached to the wrist in hand-centric coordinate (Right)
Hand skeleton and Calibration targets

Corner # Hand Side Seq1 Seq2 Seq3 Seq4

1,2 Right 1, 2 1, 3 1, 4 1, 5
1,3 Right 1, 2 1, 3 1, 4 1, 5
2,4 Right 1, 2 1, 3 1, 4 1, 5
5,2 Right 1, 2 1, 3 1, 4 1, 5
6,2 Right 1, 2 1, 3 1, 4 1, 5

6,3,2 Right 1, 2, 3 1, 3, 4 1, 4, 5 -

2,1 Left 1, 2 1, 3 1, 4 1, 5
3,1 Left 1, 2 1, 3 1, 4 1, 5
4,2 Left 1, 2 1, 3 1, 4 1, 5
5,2 Left 1, 2 1, 3 1, 4 1, 5
6,2 Left 1, 2 1, 3 1, 4 1, 5

2,5,6 Left 1, 2, 3 1, 3, 4 1, 4, 5 -

Table 3. Hand Calibration Protocol

using two or three fingertips. A participant undergoes 23
steps of such touching processes per-hand. The Tab. 3 com-
prises hand calibration instructions for subjects to follow.
Corner # is a set of two or three target corner numbers of
the calibration structure which the subject should contact
with their fingertips. Also, the orders of fingers to touch the
target corners are specified with numbers corresponding to
each finger, which are (1:Thumb, 2:Index, 3:Middle, 4:Ring,
5:Little). An example of the hand calibration procedure is
shown in our supplementary video.

3.4. Implementation Details on Hand Calibration

Here we describe the details of the hand calibration
method. As described in section 3.4, optimization param-
eters are hand skeleton configuration H = {Sh,Oh} and
positions of 3D markers in the local hand-centric coordinate
Mh. We empirically decide the general target range of the
optimization skeleton to the palm area shown in Fig. 3 and
add constraints that limit the skeleton scales(si) for each
skeleton segment i between 0.8 ≤ si ≤ 1.2, and additional
skeleton offset value(δj) for target joints j with |δ| ≤ 0.01 in
meter scale to avoid unnatural deformation of hand skeleton.
The location of hand markersMh is optimized through a
total of 150 iterations. The skeleton scale and additional
offset are optimized starting from 50 and 100 iterations each.
We use three losses, Ltip to measure the Euclidean distance

Figure 4. Synthesized RGBs and Comparison between with or
without text annotation.

from the hand tips to paired corners, Lwrist to measure the
distance from the wrist location from body motion capture
device and the wrist position computed by hand marker posi-
tion and Lpen to measure penetration of hand to the calibra-
tion structure. The penetration loss is computed by a cosine
similarity between the calibration structure’s normal vector
and the target corner-to-hand tip vector. In summed loss
λtLtip + λwLwrist + λpLpen, losses are weighted equally
by λt = 1, λw = 1, λp = 1. But they are manually adjusted
based on the touch accuracy and body calibration accuracy
per participant. After the alignment process, the average Eu-
clidean distance between the corner and the target fingertip
results in 0.83 (in centimeters).

3.5. Fitting Human Body Model

We illustrate details on fitting SMPL-X [19] pose parame-
ters to Xsens skeletons using the optimized shape parameters.
For SMPL-X hand pose, we devise an optimization scheme
which runs FABRIK solver [1] initially to get SMPL-X hand
skeleton retargetted to Xsens hand and optimize each hand
joint pose directly to fit into each retargetted joint positions.
For body pose, we do not consider global orientation and
translation in acquiring body pose for simplicity. As an input
data representation, we split each sequence with a window
size of 60, and reform body joint rotations except for hands
in 6D representations [29], thus xin ∈ R60×21×6 per batch.
For the model, we use a variation of Temporal Convolution
Network [15] for the encoder and decoder. During training,
we define the default reconstruction loss, Lrecon, for joint
rotation and further incorporate the end effector loss, Lend.
This additional loss includes the SMPL-X vertices of the
hands and legs, as well as the wrist, foot, and hand tip joints.
To regulate any present noise in the motion, we also add joint
velocity loss as an regularization. Then the loss sums up to:

L = λreconLrecon + λendLend + λvelLvel

After training, we extract windows of all sequences with
step size of 30, and initialize a latent code zpose by feeding
the encoder with the Xsens joint rotation data by roughly
matching joint category between two different skeletons(i.e.
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Figure 5. Augmented data visualization of layout change (Left)
and asset replacement (Right)

Dataset Method AUC@IoU25↑ AUC@IoU50↑ AUC@IoU75↑
ROPE [28] IST-Net [16] 28.7 10.6 0.5
ROPE [28] GenPose++ [28] 39.9 19.1 2.0

ParaHomeall GenPose++ [28] 26.4 10.3 0.6
ParaHomerigid GenPose++ [28] 29.7 12.2 0.9

Table 4. Quantitative comparison of category-level object pose
estimation on ROPE [28] and ParaHome synthetic data. Since
the two datasets differ in the presence of articulation, we divide
ParaHome data into two subsets, all including articulation objects
and rigid with only rigid objects.

jLeftT4Shoulder of Xsens to left collar of SMPL-X). Then
we optimize zpose by feeding into the trained decoder to fit
with Xsens skeleton wrist, hand tip, ankle, and foot joints.
Thus denoting a set of paired Xsens and SMPL-X target
joints as J , we formulate the optimization problem as:

z∗pose = arg min
zpose

∑
jxsens,jsmplx∈J

‖jxsens − jsmplx‖2

After optimization, we use decoded output body pose
using z∗pose. Since we sample sequences as 60-length win-
dows with step size of 30, there exists discrepancies in body
poses where contiguous windows overlap. We use slerp
to compensate for such discontinuities for each joint pose
parameters.

3.6. Extending Dataset

To provide variations in our dataset, augmenting dataset
is possible in two ways: (1) Changing object layout and
(2) Asset replacement with ShapeNet/SAPIEN. For layout
changes, human motion has to be modified accordingly con-
sidering target displacement. We utilize MDM model trained
with AMASS and ParaHome for motion in-betweening from
source pose to target pose in different location. For asset
replacement, we perform ICP to replace target object. The
augmented scenes are shown in Fig. 5.

3.7. Synthesizing Realistic RGB

Utilizing the ParaHome dataset, which provides diverse
and rich 3D motion data, we generate RGB images from
various viewpoints, all aligned with 3D annotations. We em-
ploy a diffusion-based image synthesis model [3] combined
with ControlNet to create 2D RGB images consistent with
the 3D data. Human-object interaction scenes are rendered
from multiple perspectives, including egocentric, high-angle,

Dataset Method PA-MPJPE↓ PA-MPVPE↓ F@5↑ F@15↑
FreiHAND [30] HaMeR [23] 6.0 5.7 0.785 0.990

HO3D [8] Pose2Mesh [23] 12.5 12.7 0.441 0.909
HO3D [8] HaMeR [23] 7.7 7.9 0.635 0.980

ParaHome(Ours) HaMeR [23] 9.47 9.46 0.25 0.85

Table 5. Quantitative comparison of 3D hand pose reconstruction
on FreiHand, HO3D and ParaHome synthetic data. PA-MPVPE
and PA-MPJPE are meausred in mm.

Figure 6. Rendered results of 6d reconstruction model on synthe-
sized data. (Left) Successful cases. (2) Failure cases due to the
occlusion.

Figure 7. Rendered results of the 3D hand reconstruction model on
synthesized data. (Left) Successful cases. (Right) Cases with large
3D keypoints loss due to occlusion.

and front-facing views. Rendered depth maps and Open-
Pose [4] joint information are integrated, along with text
prompts to enhance image quality and alignment with the
original data. The impact of including text information is
shown in Fig. 4, implying improved alignment and realism.
Quantitative results on off-the-shelf 3D estimation models
are presented in Table 4 and Table 5. For object 6D esti-
mation, our synthetic data achieves accuracy comparable to
the ROPE dataset, demonstrating the realism of the gener-
ated images for model to detect. Specifically, occlusions
from hand interactions and complex object articulation in
the ParaHome dataset result in lower accuracy, as shown in
Fig.6, suggesting future potential improvement. For 3D hand
pose estimation, the synthetic data performs competitively
with other datasets quantitatively, though occlusions during
manipulation lead to slightly reduced accuracy compared to
HO3D[8] and FreiHAND [30], as illustrated in Fig. 7.
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Figure 8. Synthesized body motions conditioned by sequences of
object state

Figure 9. Model Architecture estimating human motion based on
object states

4. Sequence Example Visualization
4.1. Sequence Visualization

Sampled data from our collected datasets are shown in
Fig. 11. Corresponding text annotations for actions are pro-
vided under the caption.

5. Experiments
5.1. Synthesizing Body Motion for Desired Object

Manipulation

Train Details: The goal of our model shown in Fig. 9 is to
synthesize a plausible 3D human motion conditioned with
sequences of object state at a range of times. We represent
target object status at each time t as Sto(t) = {φj(t)} using
joints state φj(t) ∈ R2. We represent body pose at time t
as Sp(t) = {Xt,∆p,∆r} using body pose Xt, root’s linear
velocity ∆p and angular velocity ∆r. We test with two
types of body pose representation: the person root-centered
skeleton representation [10], and the SMPL-X [22] body
pose. In training, we use AdamW optimizer and LR=1e− 4
with 1500 epochs and batch size 32.
Additional Results: We train our baseline model for four ob-
jects including a refrigerator, drawer, washing machine, and
sink with window sizes 30, 60, and 90. The quantification
results are shown in Table 6. As shown in the result table, as
the window size decreased, the accuracy increased in most
items and root-centered body skeleton representation results
in better accuracy for pose-dependent attributes (rc-joints,
rc-wrists, glb-joints) but SMPL-X notation results in better
global orientation and root position. Additional examples
of visualization are shown in Fig. 8 and our supplementary

MPE↓(cm)

Object body repr. window rc-joints rc-wrists glb-root glb-joints MOE↓ Foot skating↓

Refrigerator

root centric
30 0.58 1.36 0.68 1.15 0.22 0.98
60 0.76 1.73 2.47 3.22 0.43 1.05
90 0.97 2.09 5.60 6.57 0.75 1.74

SMPL-X
30 1.67 2.69 0.68 2.32 0.12 1.58
60 1.93 2.94 1.83 3.95 0.24 1.50
90 3.49 5.26 5.32 8.87 0.53 2.67

Drawer

root centric
30 1.51 2.10 0.81 1.86 0.13 1.04
60 1.52 1.74 1.02 2.26 0.24 0.80
90 2.61 2.90 3.92 5.88 0.66 1.58

SMPL-X
30 3.43 4.04 0.40 3.87 0.11 1.38
60 3.27 3.83 0.96 4.17 0.12 1.04
90 2.78 3.39 2.73 5.20 0.18 1.10

Washing Machine

root centric
30 0.50 0.89 0.35 0.77 0.15 0.94
60 0.55 1.06 1.44 2.14 0.48 1.35
90 1.29 2.62 9.03 11.46 0.92 2.60

SMPL-X
30 1.94 2.53 0.42 2.24 0.09 1.04
60 3.68 4.29 2.53 6.59 0.44 2.72
90 6.03 7.55 6.01 13.29 0.60 2.68

Sink

root centric
30 0.58 0.98 0.42 0.82 0.16 0.79
60 0.61 0.94 1.02 1.47 0.29 0.81
90 1.21 1.93 3.83 4.84 0.76 1.67

SMPL-X
30 2.27 2.91 0.52 2.64 0.10 0.90
60 2.64 3.12 1.26 3.79 0.18 0.87
90 2.60 3.12 2.16 4.80 0.27 1.01

Table 6. Quantitative results of the ParaHome task.

Figure 10. Hand retargetting results with articulated objects and
performing task

video.

5.2. Manipulation in Physics Engine

We qualitatively compare TRUMANS [13] and our
dataset in IsaacGym by loading the 3D assets and retargeting
hand motions into Allegro hand (via Dex-Retargeting). Our
dataset demonstrates significantly better feasibility, as seen
in Fig. 10 for a “moving cup” example, whereas the similar
action of TRUMANS fails. We further successfully tested
more complicated actions involving articulated objects of
our dataset (e.g opening doors of refrigerator and washing-
machine). Formulating physical interaction using simulator
should be one of the key applications, and tracking accuracy
matters when it comes to retargetting joint motions to other
actors in the environment, which our dataset has superiority
over other datasets.
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Figure 11. Example scenes of ParaHome dataset and aligned text annotation (Column1) Move kettle and cup from desk to the sink.
(Column2) Take laptop from the desk and move to the table. (Column3) Take pan from the gas stove to the table. (Column4) Put laundry in
the washing machine. (Column 5) Throw away STH into trash can.
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