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1. Experimental Prototype
1.1. Hardware Stack

1.1.1 Imaging Setup

Table 1 summarizes the detailed specifications of the sensors used in our experimental prototype. To achieve RGB-NIR

multispectral imaging and 3D geometric reconstruction, we implemented two pixel-aligned RGB-NIR cameras and a LiDAR

system.

Sensor Quantity Product Resolution

RGB-NIR Camera 2 JAI FS-1600D-10GE
180Hz 8bit 1440x1080 BayerRG image

180Hz 8bit 1440x1080 NIR image

LiDAR 1 Ouster OS-1 20Hz 2048x128 point cloud

IMU 1 Ouster OS-1 IMU 100Hz inertial data

Table 1. Sensor specs of our imaging system.

RGB-NIR Stereo Camera Setup The RGB-NIR cameras (JAI FS-1600D-10GE) leverage a dichroic prism to simultane-

ously capture visible (RGB) and near-infrared (NIR) images, offering distinct advantages in robust feature extraction under

varying illumination conditions. This dual-spectrum imaging capability facilitates applications such as material classification,

vegetation analysis, and object detection in low-light environments.

Our system integrates two RGB-NIR cameras connected via RJ-45 interfaces using Ethernet cables. These cameras

support high frame rates and high-resolution image acquisition, with performance primarily determined by the transmission

link speed. The JAI FS-1600D-10GE officially achieves up to 100 fps for RGB-NIR pixel-aligned imaging when operating

on a 10 Gbps Ethernet connection.

NIR Active Illumination To enhance imaging in the NIR spectrum, an active illumination source, Advanced Illumination

AL295-150850IC, emitting at an 850 nm wavelength, was employed. Table 2 shows detail specification of the NIR illumina-

tion. This illumination compensates for ambient lighting variability and improves the quality of the NIR channel, particularly

in controlled or low-light environments.

Specification Parameter
Length 165.6 mm

Weight 68.9 g

Wavelength 850 nm

Photobiological Risk Factor Exempt (850 nm)

Operating Temperature 0 - 60°C

Compliance CE, RoHS, IEC 62471

IP Rating IP50

Lumen Maintenance L70 = 50,000 Hours

Table 2. Specifications of the active illumination source (AL295-150850IC).

3D LiDAR for Depth Ground Truth We use the Ouster OS-1 LiDAR to obtain accurate depth ground truth. This LiDAR

supports up to 2048 samples with 128 channels, providing a depth resolution of 2048 × 128 for a full 360-degree rotation. The

LiDAR can achieve a maximum frame rate of 20 fps at 1024 × 128 resolution and 10 fps at 2048 × 128 resolution. We utilized

the 20 fps configuration for high-frequency datasets and the 10 fps configuration for lower-frequency datasets. The built-in

inertial measurement unit (IMU) measures angular velocity (radians/second) and linear acceleration (G) along the x, y, and z

axes at up to 100 Hz, offering additional data for refining LiDAR point clouds. The LiDAR operates using 865 nm structured

light, which interacts with NIR cameras and may be affected by external NIR illumination. Nevertheless, advanced features,

including multi-sensor crosstalk suppression and programmable settings, mitigate such interference, ensuring high-accuracy

depth measurements under challenging illumination conditions.



1.1.2 Mobile Robot

Our imaging system is mounted on a mobile wheeled robot, the Agile-X Ranger Mini 2.0, which provides stable and efficient

operation for large-scale data collection in both indoor and outdoor environments. The robot is equipped with a 4-wheel drive

(4WD) system and features wheels capable of 180-degree rotation, offering exceptional maneuverability and the capability

to navigate tight and complex spaces.

Table 3 shows specifications of the mobile robot. The Agile-X Ranger Mini 2.0 has a compact design with overall

dimensions of 738mm × 500mm × 338mm and an axle track of 494 mm, enabling smooth traversal across various terrains.

It is powered by four 48 V brushless toothed motors, each delivering a rated power of 600 W and a torque of 22 Nm. The

robot achieves a maximum speed of 2.6m/s and can climb inclines up to 10° while carrying a maximum load of 150kg.

To accommodate different operational needs, the Ranger Mini 2.0 offers two battery configurations: a single battery setup

providing 2–8 hours of operation and a multi-battery configuration supporting extended endurance. The lithium-ion batteries

can be charged in as little as 1 hour, ensuring minimal downtime. The robot’s advanced suspension system and independent

4-wheel steering enable optimal performance on uneven surfaces and during high-precision maneuvers.

Our setup leverages the Ranger Mini 2.0’s versatility to conduct imaging tasks across diverse settings, including roads,

sidewalks, and interior spaces, ensuring comprehensive data collection for research in urban and natural environments. Its

rugged design and IP54 rating make it suitable for challenging outdoor conditions while maintaining high stability and

reliability for precise imaging.

Specification Parameter
Maximum Payload 150 kg

Maximum Speed 2.6 m/s

Control Mode Remote controller / ROS

Steering Type 4-wheel steering

Turning Radius 0 mm (Spin mode) / 810 mm (Ackermann mode)

Battery Life 2–8 hours

Charging Time 1 hour

Table 3. Specifications of Agile-X Ranger Mini 2.0.

1.1.3 Computational Link and Power Supply

To manage the capture pipeline efficiently, we integrated a high-performance laptop (Asus ROG Zephyrus G14) equipped

with an Nvidia RTX 4060 GPU (8GB). This setup provides the necessary computational power for real-time data processing

and management of our imaging and LiDAR systems. Since both the RGB-NIR cameras and the LiDAR connect via RJ-45

interfaces, we utilized an RJ-45 network switch hub to extend connectivity, accommodating up to 10 devices. This ensures

seamless data transfer and system integration, despite the laptop’s limited number of Ethernet ports. Furthermore, to support

the power demands of the entire imaging system, we mounted an external AC power bank onto the robot. This setup allows

our system to operate continuously for over 3 hours without the need for recharging, ensuring sustained data collection in

diverse environments.

1.1.4 Calibration

Stereo Pose Calibration To calibrate a stereo camera system comprising left and right cameras, a standard chessboard

pattern is used as a known reference object. The calibration process begins by capturing a series of images of the chessboard

from both cameras at multiple orientations. Using these images, point correspondences between the observed 2D chess-

board corners in each camera image and the known 3D coordinates of the corners in the chessboard’s coordinate system

are established. The intrinsic parameters Kleft and Kright for the left and right cameras, respectively, are estimated through

this correspondence, capturing the focal length and principal point of each camera. Next, the relative pose between the left

and right cameras is determined. The extrinsic parameters Eright, comprising the rotation and translation that map 3D points

from the left camera coordinate system to the right camera coordinate system, are computed. This calibration is essential

for rectifying stereo image pairs and for accurate 3D reconstruction. By using well-established algorithms [2], the intrinsic

matrices Kleft, Kright, and the extrinsic transformation Eright are accurately estimated.



LiDAR Pose Calibration To calibrate the LiDAR and left camera, a well-structured real 3D scene is designed and captured

to facilitate precise point correspondences between the LiDAR and camera images. Specifically, the left RGB image captured

by the camera and the plane image generated from the LiDAR are analyzed to manually annotated corresponding points

across both modalities. Each LiDAR coordinate, (xLiDAR, yLiDAR, zLiDAR), is mapped into the camera coordinate system as

(xcamera, ycamera, zcamera) using a transformation matrix MLiDAR→camera. The intrinsic camera matrix K then projects these 3D

points onto the 2D image plane, yielding image coordinates (u, v), as expressed by the following equation:

⎡
⎣ û

v̂
zleft

⎤
⎦ = KleftMLiDAR→camera

⎡
⎢⎢⎣
xLiDAR

yLiDAR

zLiDAR

1

⎤
⎥⎥⎦ ,

[
u
v

]
=

[ û
zleft
v̂
zleft

]
(1)

By collecting a sufficient number of (xLiDAR, yLiDAR, zLiDAR) and (u, v) correspondences and leveraging the known intrin-

sic parameters K, the transformation matrix MLiDAR→camera can be estimated. This estimation process can be formulated as a

Perspective-n-Point (PnP) problem, which seeks to determine the camera’s extrinsic parameters (rotation R and translation t)
by minimizing the reprojection error between a set of 3D points and their corresponding 2D image projections. The solution

to the PnP problem, including the estimation of MLiDAR→camera follows the approach described in [31], which employs a

linear formulation to efficiently estimate the transformation while minimizing the reprojection error. Advanced solvers or

iterative methods such as RANSAC can also be applied to enhance robustness in the presence of outliers.

Timing Calibration The JAI MultiSpectral Camera utilized in our system features Precision Timing Protocol (PTP), en-

abling time measurement with nanosecond-level accuracy. Internally, RGB CMOS and NIR CMOS of a camera are synchro-

nized using PTP. As we employed two separate cameras, it was essential to achieve synchronization between them. To this

end, we activated a PTP-based Pulse Generator on each camera, which emits a trigger signal at precisely defined periods.

By adjusting the delay settings of the Pulse Generators, we compared timestamps recorded in the response packets of both

cameras to align them. This approach ensured that the synchronization between the cameras remained within 100 microsec-

onds. Such a low level of time difference is negligible for 3D vision applications, eliminating the need for further temporal

correction in downstream tasks. Additionally, as a precautionary guideline, we discarded any packets that exhibited a timing

difference exceeding 1 millisecond.

1.2. Software Stack

1.2.1 Sensor SDK Implementation

JAI Fusion Camera The JAI Fusion camera utilizes the eBUS SDK, which enables configuration of Ethernet-connected

cameras and the creation of receiver sockets for the camera’s data streams. Specifically, since this camera has two independent

CMOS sensors within a single unit, configuring it as a stereo camera requires handling data from four separate streams.

We integrated the C++ SDK library into our CMake project, setting up four distinct ports to create separate stream receiver

objects. Each of these receiver objects operates on an independent thread, ensuring smooth data acquisition without blocking.

The main thread monitors the timing of the collected image packets from the four streams, grouping them into a single frame

if the timestamp difference is less than 1 ms. Once a complete frame is formed, it is published as a ROS2 topic for use

by other processes. To minimize the time difference between the stereo cameras, we adjust the delay of the internal pulse

generator of the cameras, based on the timing discrepancies measured for each frame.

Ouster OS-1 The Ouster LiDAR sensor is interfaced using its native Python3 SDK library. The LiDAR device is assigned a

unique IP address, and its data packets are combined into a 360-degree scan using the SDK’s packet integration tool. However,

this integration tool does not accumulate IMU packets. To address this, we extended the packet integration functionality of

the SDK, enabling it to integrate accumulated IMU packets into the 360-degree scanning data.

1.2.2 Imaging System Pipeline Architecture

Our imaging system operates on Ubuntu 22.04, utilizing Python 3.12 and ROS2 Humble to provide a robust and efficient

platform for multi-sensor data acquisition and processing. The software integrates SDKs for stereo cameras and LiDAR

sensors, facilitating seamless file I/O operations and an intuitive UX/UI for user interaction. The system is modularized



into four primary components: Capture Trigger, Response Queue, Storage Management, and User Interface/User Experience

(UI/UX).

The Capture Trigger module orchestrates the periodic activation of connected sensors, ensuring synchronized data ac-

quisition from stereo cameras and LiDAR. It maintains precise time synchronization between the stereo cameras, enabling

consistent stereo image capturing essential for depth estimation. The LiDAR module processes incoming LiDAR packets,

aggregating them into a cohesive 360-degree point cloud representation. Data from the sensors are funneled into the Response

Queue, which manages the incoming RGB and LiDAR data streams. This module identifies and pairs sensor data with mini-

mal time discrepancies, adhering to a predefined time difference threshold to maintain data integrity. Once paired, the data is

forwarded to the Storage Management module, which handles the efficient local storage of synchronized multi-sensor infor-

mation. The UI/UX component provides users with a streamlined interface to control the imaging process. A single-button

interface allows users to toggle sequential frame capturing (video recording) effortlessly, enabling them to concentrate on the

robot’s navigation tasks.

The system, deployed on a robot-mounted laptop, supports capturing up to 20 frames per second. When real-time stereo

depth estimation is activated, the system maintains a capture rate of up to 10 depth images per second, balancing performance

and computational demands. This software architecture ensures reliable synchronization, efficient data management, and

user-friendly operation, making it well-suited for real-time robotic applications requiring high-fidelity multi-sensor imaging.

2. Pixel-aligned RGB-NIR Datasets
2.1. Real Dataset

2.1.1 Details on Acquisition

We captured 720×540 resolution BayerRG stereo images using JAI Fusion camera, restoring them to 3-channel RGB images

via Bayer interpolation before saving. Simultaneously, 720×540 mono-channel NIR images were captured using JAI FS-

1600D-10GE and saved alongside the RGB images. Our dataset comprises 28 video sequences captured at 10 Hz and 15

sequences at 5 Hz. Each video ranges from 100 to 6000 frames. Longer videos encompass continuous transitions through

various environments and can be partitioned into shorter clips for specific applications. Data collection occurred across

diverse settings, including both indoor spaces like laboratories and lecture halls, and outdoor areas such as courtyards and

walkways. Videos were recorded at different times of the day—morning, noon, evening, and night—to capture a wide range

of lighting conditions. Some sequences feature transitions between indoor and outdoor environments, while others include

dynamic scenarios like a vehicle entering an indoor parking garage from outside. Weather conditions during recording varied

from sunny to overcast, adding to the dataset’s versatility. Our compact and lightweight camera setup eliminates the need for

bulky beam splitters, allowing for extensive and flexible data collection without compromising the field of view. This design

facilitates large-scale indoor and outdoor recording sessions, making the dataset suitable for applications in machine vision,

autonomous navigation, and robotics.

2.1.2 Samples of Real Dataset

Figure 1 presents samples from our acquired real dataset, which includes RGB stereo images, NIR stereo images, and sparse

LiDAR points. Figure 2 showcases our dataset under challenging lighting conditions, such as nighttime and poorly lit in-

door environments. We collected over 90,000 frames across diverse settings, including indoor and outdoor environments,

bright and dark locations, as well as roads and sidewalks. By capturing data across a wide range of real-world environ-

ments and times of day, our dataset is expected to support not only depth estimation but also 3D geometry reconstruction

techniques, such as structure-from-motion [34], and various photometric volume reconstruction methods, including Gaussian

splatting [20].

2.1.3 Statistics

Figure 3 presents a comprehensive analysis of our dataset. (a) illustrates the proportion of the dataset categorized into 6

distinct lighting conditions: well-lit, dark and complex, which are further detailed as either indoor or outdoor. (b) provides

a histogram that depicts the distribution of video scenes based on the number of frames. (c), (d), and (e) show histograms

of the exposure times for RGB and NIR cameras under well-lit outdoor, dark outdoor, and Indoor settings, respectively.

Notably, due to the independent operation of auto-exposure for the RGB and NIR sensors, the exposure time distributions

differ between the two modalities. Graph (f), (g), and (h) further classify scenes based on additional criteria. (f) evaluates the
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(a) Real data of indoor environment.
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(b) Real data of well-lit outdoor.

Figure 1. Various real dataset samples

presence of high-specular scenes and overexposure conditions, while (g) categorizes scenes as either indoor or outdoor. (h)

details the diverse environments encountered, including road driving, pedestrian pathways, transitions between indoor and

outdoor settings, and underground roads. These scenes are further subdivided into Well-Lit, Dark, and Dynamic Lighting

conditions. Importantly, the bar graphs in (f), (g), and (h) illustrate that a single scene can belong to multiple categories

simultaneously, highlighting the complexity and diversity of our dataset.
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(a) Real data of indoor environment with challenging lighting.
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(b) Real data of dark outdoor.

Figure 2. Various real dataset samples on challenging lighting condition.
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Figure 3. Statistics of our real dataset.

2.2. Synthetic Dataset

2.2.1 Synthetic Dataset Augmentation

Augmentation from Image Formation Equation The image formation of our RGB-NIR pixel aligned camera is denotes

as following:

Ici (p
c) = η1 + gi (η2 + ti (R

c
i (p

c) (Ec
i (p

c) + Lc
i (p

c)))) . (2)

To facilitate training of other vision tasks such as stereo depth estimation, it is essential to have a training dataset with

precise ground-truth information, which can be achieved by creating a synthetic dataset. However, generating a large-scale

synthetic dataset from scratch—including rendering 3D scenes and extending the three-channel color space to four channels

(R, G, B, NIR)—requires substantial resources that may not be readily available. Therefore, we utilized existing large-scale

RGB stereo datasets [29, 33] and developed a synthetic rendering pipeline leveraging an image formation model to generate

realistic RGB images based on provided depth maps and material segmentation maps.

Figure 4 shows image components in augmentation pipeline. The baseline dataset provides RGB images (a), depth (b) and

material index (c). The albedo Rc
i∈{R,G,B}(p

c) (Fig. 4(d)) is accurately simulated by assigning distinct reflectance values to

each material class identified in the segmentation map, thereby ensuring material-specific color representation. NIR albedo

Rc
i∈{NIR}(p

c) (Fig. 4(f)) is pseudo driven from Rc
i∈{R,G,B}(p

c) by [13].

Normal Map Reconstruction To accurately compute the lighting interactions, normal maps (Fig. 4(e)) are derived from

the depth maps (Fig. 4(b)), enabling precise calculation of the incident angles between the light sources and the surface

normals for each pixel. The conversion of a depth map into a normal map involves calculating the gradients in the x and

y directions to determine the surface normals. This process starts by computing the partial derivatives of the depth values,

which are then used to construct the normal vector at each point. Specifically, the normal vector N can be derived as

N =

(
−∂z

∂x
,−∂z

∂y
, z

)
, (3)

where x, y, z consist of point cloud on camera coordinate, driven by projecting depth map into camera coordinate, followed

by normalization to ensure unit length. Detail implementation follows [17].

Ambient Lighting Ambient lighting Ec
i (p) is introduced to emulate diverse environmental illumination conditions by

utilizing multiple ambient light sources. Each ambient light source is characterized by its unique position and brightness,

contributing cumulatively to the overall ambient illumination at each pixel. Specifically, the ambient lighting is modeled as

the sum of contributions from n ambient light sources, as described by the following equation:



(a) Rendered RGB image

(b) Disparity map

(c) Material segmentation

(d) RGB diffuse albedo

(e) Normal map

(f) NIR diffuse albedo

(g) Augmented RGB image

(h) Augmented NIR image

Figure 4. RGB-NIR synthetic data augmentation. Sceneflow dataset [29] provide (a) rendered RGB image, (b) disparity map and (c)

material index. We assumed RGB albedo (d) with (a) & (b), normal map (e) from (b). We simulated NIR albedo (f) from (d) by [13]. We

rendered some light source for RGB (g) and NIR (h).

Ec
i (p) =

n∑
j=1

φj ·max (0,N(p) · Lj(p)) , (4)

where

• φj denotes the brightness of the j-th ambient light source.

• N(p) represents the normal vector at pixel p, derived by 3.

• Lj(p) is the unit vector pointing from the surface point p to the position of the j-th ambient light source.

This formulation allows for realistic simulation of ambient lighting by accounting for the direction and intensity of multiple

light sources, thereby enhancing the visual fidelity of the rendered images.

Active Illumination Active illumination Lc
i (p) is incorporated to provide consistent direct illumination from a single, fixed

light source. Unlike ambient lighting, active illumination affects only the Near-Infrared (NIR) channel, leaving the Red (R),

Green (G), and Blue (B) channels unaffected. This selective illumination is particularly useful for applications requiring

multi-spectral data. The active lighting is modeled without summation, as only one active light source is present, and is

defined as follows:

Lc
i (p) =

{
0, for i ∈ {R,G,B}
φactive ·max (0,N(p) · Lactive(p)) , for i = NIR

(5)

where:

• φactive denotes the brightness of the active light source.

• Lactive(p) is the unit vector pointing from the surface point p to the fixed position of the active light source.

• The term max (0,N(p) · Lactive(p)) ensures that only positive contributions to the illumination are considered, adhering to

the Lambertian reflectance model.



By restricting active illumination to the NIR channel and maintaining a fixed light position and intensity, the model ensures

that direct illumination is consistently applied without altering the RGB channels.

The image formation equation incorporates fixed exposure time ti and gain gi parameters, which are held constant

throughout the simulation to maintain uniform exposure settings. Gaussian noise is systematically added both pre- and

post-processing to emulate realistic sensor noise, thereby enhancing the fidelity of the synthetic images. This comprehensive

approach integrates material properties, complex lighting interactions, and realistic noise modeling, resulting in high-quality

synthetic renderings that are suitable for various applications in computer vision and graphics research.

2.2.2 Samples of Synthetic Dataset

Figure 5 presents samples from our augmented synthetic dataset. We enhanced two distinct environments from the Sceneflow

dataset [29]: a driving scene and an indoor environment featuring randomly flying objects. The augmented dataset includes

both RGB stereo and Near-Infrared (NIR) stereo images, utilizing existing components of the original dataset such as RGB

stereo pairs and disparity maps. This augmented dataset was employed to train a stereo depth estimation network using the

original disparity map labels and an image fusion model with the original RGB images.

RGB RGB (rendered) NIR(rendered) Disparity map RGB RGB (rendered) NIR(rendered) Disparity map

(a) Driving dataset (b) Flying things dataset0 128 0 48

Figure 5. Samples of augmented synthetic dataset. Sceneflow [29] includes both ourdoor environment (a) and indoor environment (b)

dataset. We augmented these datasets relighting RGB stereo images and NIR stereo images.

2.3. Comparison to Other Datasets

We compared our dataset with existing large-scale datasets, including outdoor RGB stereo depth datasets [7, 12], indoor RGB

stereo depth datasets [8, 9], datasets with RGB and NIR [3, 5, 30, 36, 38, 41, 42, 45], and RGB-Thermal datasets [6, 14, 21,

28]. The comparison is presented in Table 4, based on several key criteria which are detailed below.

Pixel-aligned RGB-NIR Multispectral datasets primarily include different spectral image information alongside RGB.

When two spectral images are pixel-aligned, they can be effectively fused without the need for pose correction, which greatly

enhances efficiency. This pixel-level alignment is crucial for applications that leverage multispectral fusion.



Dataset Pixel
-aligned

Multi
-View

RGB
Stereo

NIR
Stereo

GT
Depth

Lidar
Depth Video Spectral

Bands Indoor Outdoor Day Night Base Platform Pixel-align
Implementation

[12] X O O X O O O RGB X O O O Vehicle N/A

[8] X O X X O X O RGB O X O X Hand-carried N/A

[7] X O O X O O O RGB X O O O Vehicle N/A

[41] O X X X X X X RGB, NIR, Thermal X O O O N/A Beam splitter

[28] Thermal O O X O O O RGB, Thermal X O O O Vehicle Beam splitter

[9] X O X X O X O RGB O X O X Hand-carried N/A

[3] O O X X O O O RGB, NIR X O O X Tractor Prism camera

[38] X O X X X X O RGB, NIR, FIR, MIR X O O O Hand-carried N/A

[42] X O O X O X O RGB, NIR X O O X Mobile robot N/A

[45] X O X X X X O RGB, NIR X O O O Vehicle N/A

[5] X O X X X X O RGB, NIR X O O O Vehicle N/A

[6] Thermal O O X O O O RGB, Thermal X O O O Vehicle Beam splitter

[21] X O O X O O O RGB, Thermal O O O O Vehicle N/A

[25] X O O X O O O RGB, LWIR O O O O Mobile robot, drone N/A

[14] Thermal O O Thermal O O O RGB, Thermal X O O O Vehicle Beam splitter

[36] X O O O O O O RGB, NIR, Thermal X O O O Vehicle N/A

[30] O O O X O O O RGB, NIR X O O O Vehicle Prism camera

Ours O O O O O O O RGB, NIR O O O O Mobile robot Prism camera

Table 4. Summary of RGB-NIR and Multispectral Datasets Characteristics

Multi-View Camera Datasets that include a multi-view camera setup can utilize multi-view geometry, enabling tasks such

as depth estimation or optical flow for 3D downstream vision tasks. In this comparison, if a dataset includes more than two

cameras, it is considered multi-view. RGB-Stereo and NIR-Stereo specifically denote cases where multiple RGB or NIR

cameras are included. For instance, the dataset from [36] includes both RGB stereo and NIR stereo, employing an active

stereo camera. On the other hand, datasets such as [5, 28, 30, 38, 42, 45] used only one multispectral camera, limiting their

3D geometry capabilities. Additionally, [8, 9] employed NIR structured light cameras but did not provide the original NIR

stereo images, only the estimated depth, which limits further multispectral analysis.

Ground Truth Depth Ground truth depth is essential for evaluating depth estimation methods. Some datasets, such as [8,

9, 42], used RGB-Depth or structured light cameras to obtain depth measurements. However, they do not include more

accurate 3D depth measurements from LiDAR, which is a significant limitation for precise ground truth depth generation.

Environment The environmental conditions under which data is collected significantly impact dataset usability. Therefore,

we categorize the datasets based on whether they include data from indoor, outdoor, day, or night scenarios. Multispectral

datasets are especially useful in scenarios such as low-light conditions or environments with varying lighting (indoor to

outdoor), as they provide complementary information to enhance RGB data.

Base Platform For large-scale data collection, the imaging system requires an appropriate mobile platform. Smaller sys-

tems can be handheld [8, 9, 38], while larger, heavier systems are typically mounted on vehicles [12, 14, 36], limiting data

collection to areas accessible by vehicle. Research using mobile robots or drones [25, 42] improves both mobility and

stability, allowing data collection in a wider range of environments.

Pixel-align Implementation Implementations of pixel-aligned multispectral imaging can be broadly categorized into beam

splitters and prisms. Beam splitters are used by [6, 14, 28, 41], splitting incoming light into two beams that are then directed to

different cameras, achieving pixel-level alignment. Alternatively, dichroic prism-based cameras, such as those used by [3, 30]

and our dataset, separate the spectral bands through a prism and direct them to different CMOS sensors. This approach offers

a more compact design compared to beam splitters, and provides complete spectral separation, making it preferable for many

applications.

3. Details on RGB-NIR Feature Fusion and Attentional Fusion
3.1. RGB-NIR Image Fusion

3.1.1 Network Architecture

Residual Block We implemented the ResNet [15] architecture and its pretrained weights [27] as feature extractors for

both the image fusion method and the feature fusion depth method. Table 5 presents the details of its PyTorch implementa-



tion. The basic version of this encoder accepts 3-channel inputs and outputs downsampled feature maps with 256 channels.

Additionally, we can adjust the number of input channels, output channels, and the downstream scale factor as needed to

accommodate various requirements.

Layer Layer Name Input Layer Description Output Shape
1 Input - Input data 3×H ×W
2 Conv1 Layer 1 3× 3 kernel, padding=1, stride=s 256×H/s×W/s
3 Norm1 Layer 2 InstanceNorm2d 256×H/s×W/s
4 ReLU1 Layer 3 ReLU 256×H/s×W/s
5 Conv2 Layer 4 3× 3 kernel, padding=1, stride=1 256×H/s×W/s
6 Norm2 Layer 5 InstanceNorm2d 256×H/s×W/s
7 ReLU2 Layer 6 ReLU 256×H/s×W/s

Table 5. Description of ResidualBlock forward sequence.

Attentional Feature Fusion In our framework, RGB and NIR images are first processed through the ResNet blocks,

resulting in two separate 256-channel feature maps, F c
v and F c

n. To integrate these feature maps into a unified representation,

we employ an attentional feature fusion method that leverages spectral information while preserving essential details. The

fusion process comprises two main steps: the self-attention step and the attentional weight summation step.

Self-Attention Step. In this step, channel-level local and global attention mechanisms are applied to the feature maps F c
v

and F c
n. The attention-enhanced features, Ac

v and Ac
n, are computed as follows:

Ac
u =

Ac
v +Ac

n

M(Ac
v) +M(Ac

n)
, (6)

Ac
v = F c

v ◦M(F c
v ), (7)

Ac
n = F c

n ◦M(F c
n), (8)

where M denotes the self-attention module introduced in [10], and ◦ represents element-wise multiplication. The unified

attention map Ac
u is obtained by normalizing the sum of the attention-enhanced features from both modalities.

Attentional Weight Summation Step. Using the unified attention map Ac
u, we compute the fused feature map F c

f by

performing a weighted summation of the attention-enhanced features from RGB and NIR:

F c
f = (Ac

v ◦M(Ac
u)) + (Ac

n ◦ (1−M(Ac
u))) . (9)

In this equation, M(Ac
u) serves as a weighting factor that dynamically balances the contributions of RGB and NIR features

based on the unified attention map. This weighted summation effectively integrates features from both modalities, resulting

in a single, comprehensive fused feature map. Figure 6 illustrates the detailed progress of attentional feature fusion using

RGB and NIR feature maps. To provide a comprehensive and organized overview of the implementation, we have divided

the attentional feature fusion module into four distinct PyTorch implementation tables. Specifically, Table 6 presents the Lo-

calAttention module, Table 7 details the GlobalAttention module, and Table 8 describes the MultiChannelAttention module.

These individual components are then integrated to form the complete Attentional Feature Fusion module, as demonstrated

in Table 9.

Layer Layer Name Input Layer Description Output Shape
1 Input - Input tensor in channels ×H ×W
2 Local Conv1 Layer 1 Conv2d with kernel size 1× 1, stride 1 (in channels/reduction)×H ×W
3 Local BN1 Layer 2 BatchNorm applied to the output of Layer 1 (in channels/reduction)×H ×W
4 Local ReLU Layer 3 ReLU activation function applied to the out-

put of Layer 2

(in channels/reduction)×H ×W

5 Local Conv2 Layer 4 Conv2d with kernel size 1× 1, stride 1 in channels ×H ×W
6 Local BN2 Layer 5 BatchNorm applied to the output of Layer 4 in channels ×H ×W
7 Output Layer 6 Output tensor returned by the module in channels ×H ×W

Table 6. LocalAttentionModule



Layer Layer Name Input Layer Description Output Shape
1 Input - Input tensor in channels ×H ×W
2 Global AvgPool Layer 1 Adaptive Average Pooling to output size 1×

1
in channels × 1× 1

3 Global Conv1 Layer 2 Conv2d with kernel size 1× 1, stride 1 (in channels/reduction)× 1× 1
4 Global BN1 Layer 3 BatchNorm applied to the output of Layer 2 (in channels/reduction)× 1× 1
5 Global ReLU Layer 4 ReLU activation function applied to the out-

put of Layer 3

(in channels/reduction)× 1× 1

6 Global Conv2 Layer 5 Conv2d with kernel size 1× 1, stride 1 in channels × 1× 1
7 Global BN2 Layer 6 BatchNorm applied to the output of Layer 6 in channels × 1× 1
8 Output Layer 7 Output tensor returned by the module in channels × 1× 1

Table 7. GlobalAttentionModule.

Layer Layer Name Input Layer Description Output Shape
1 Input - Input tensor in channels ×H ×W
2a Local Attention Layer 1 LocalAttentionModule in channels ×H ×W
2b Global Attention Layer 1 GlobalAttentionModule in channels × 1× 1
3 Addition Layers 2a / 2b Adds outputs of Layer 2a and Layer 2b in channels ×H ×W
4 Sigmoid Layer 3 Applies Sigmoid activation in channels ×H ×W

Table 8. MultiScaleChannelAttentionModule (MS-CAM).

Layer Layer Name Input Layer Description Output Shape
1a Input RGB - RGB input tensor in channels ×H ×W
1b Input NIR - NIR input tensor in channels ×H ×W
2a Attention RGB Layer 1a MS-CAM in channels ×H ×W
2b Attention NIR Layer 1b MS-CAM in channels ×H ×W
3 Addition Layers 2a/ 2b Adds Attention RGB and Attention NIR in channels ×H ×W
4a RGB Scaled Layers 1a/ 3 Multiplies RGB input by (Layer 2a / Layer

3)

in channels ×H ×W

4b NIR Scaled Layers 1b/ 3 Multiplies NIR input by (Layer 2b / Layer 3) in channels ×H ×W
5 Addition Layers 4a/ 4b Adds RGB Scaled and NIR Scaled in channels ×H ×W
6 Attention Fusion Layer 5 MS-CAM in channels ×H ×W
7 Feature Fusion Layers 6, 1a, 1b Combines Attention fusion with original

RGB and NIR inputs to produce final out-

put: Output = (Layer 5) × RGB + (1 −
(Layer 5))× NIR

in channels ×H ×W

Table 9. AttentionFeatureFusion.

Image Fusion Model Table 10 presents a detailed implementation of our image fusion network. Feature maps extracted

from a pretrained feature encoder [27] are integrated using an attentional feature fusion mechanism [10]. These fused feature

maps are subsequently processed through residual blocks to generate spatially varying weights, α and β, constrained within

the range [0, 1]. Utilizing these weights, the fused image is computed as follows:

Ifusion = MHSV→RGB[IH , IS , IV̂ ]
ᵀ = MHSV→RGB[IH , IS , αIV + βINIR]

ᵀ (10)

Through this approach, we achieve the fusion of RGB and NIR images based on the derived spatially varying weights

NIR Guided RGB Filtering We employ an NIR-guided RGB filtering technique to enhance input RGB images by lever-

aging a single-channel Near-Infrared (NIR) image as the guiding reference [26]. Our method is grounded in the guided filter

framework, where the NIR image INIR serves as the guide, and the fused image Ifusion is the input to be filtered. For each

color channel i of Ifusion, we first compute the local means μNIR and μfusion,i, as well as the covariance cov(INIR, Ifusion,i) and

the variance var(INIR) within a window of radius r. The linear coefficients ai and bi are then determined using the equations

ai =
cov(INIR, Ifusion,i)

var(INIR) + ε
, bi = μfusion,i − aiμNIR, (11)
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Figure 6. Attention-enhanced feature fusion. (a) The structure of attention based feature fusion module, proposed by [10]. MS-CAM is

a attention enhancer module. The fusion operation is served by weight sum of attention-enhanced features with w. (b,c) Examples of input

RGB and NIR images. (d,e,f,g) Visualizations of FRGB (d), FNIR (e), Ffusion (f) and w (g).

where ε is a regularization parameter that ensures numerical stability. Subsequently, we calculate the mean values of ac and

bc within the same window and reconstruct the output RGB image q for each channel using

Ifiltered,i = mean(ai)INIR + mean(bi), (12)

ensuring that the resulting pixel values are clamped within the valid range [0, 255]. This NIR-guided filtering approach

effectively utilizes the structural information from the NIR guide to enhance color fidelity and suppress noise in the images

which is generated during fusion process, demonstrating improved performance in various image processing applications.

Layer Layer Name Input Layer Description Output Shape
1a Input RGB - Receives RGB input tensor 3×H ×W
1b Input NIR - Receives NIR input tensor 1×H ×W
2 RGB to HSV Layer 1a Converts RGB tensor to HSV color space 3×H′ ×W ′

3a Encoder RGB Layer 1a (RGB) Passes normalized RGB through BasicEncoder [27] 256× H′
2

× W ′
2

3b Encoder NIR Layer 1b (NIR) Passes normalized NIR (repeated across channels)

through BasicEncoder

256× H′
4

× W ′
4

4 Attentional Feature Fusion Layers 3a and 3b Combines HSV and NIR feature maps 256× H′
4

× W ′
4

5 Residual Block Layer 4 Reduces channel dimensions using ResidualBlocks,

followed by Sigmoid activation

2× H′
4

× W ′
4

6 Upsample Weights Layer 5 Upsamples weights by a factor of 4 using bilinear in-

terpolation

2×H′ ×W ′

7 Combine HSV and NIR Layers 1b, 2, 6 [IH , IS , IV̂ ] = [IH , IS , αIV + βINIR] 3×H′ ×W ′
8 Convert to RGB Layer 7 Converts combined HSV features back to RGB color

space

3×H′ ×W ′

Table 10. Forward Pass of our Image Fusion Model



3.1.2 Loss Function

Photometric Loss The synthetic dataset includes original RGB images prior to augmentation. To ensure that the fused

output of augmented RGB and NIR images closely matches the original RGB images, we design a photometric loss function

defined as

Lphotometric = γL1‖Ifusion − Ioriginal‖1 + γssim SSIM(Ifusion, Ioriginal). (13)

In this formulation, the L1 loss and Structural Similarity Index Measure (SSIM) loss are weighted by coefficients γL1 and

γssim, respectively, set to 0.85 and 0.15. This combination ensures that the fused image maintains both pixel-wise accuracy

and structural similarity to the original RGB image, facilitating effective training of the fusion model.

Ground-truth Disparity Loss To guide our network towards accurate operation, we trained it using a combination of an

augmented synthetic dataset and our real dataset, utilizing the L1 loss function. tarting from a pretrained model based on

[27], we loaded pretrained weights, excluding the modified structures. Then we fine-tuned our model by freezing weights

excluding the modified ones. For the predicted disparity map dpred, we compute L1 loss by

Lgt =
∑

u,v∈Ωgt

|dgt(u, v)− dpred(u, v)| (14)

where Ωgt is a binary mask indicating valid regions in the labeled disparity map and dgt is ground-truth disparity map from

dataset.

3.1.3 Training Details

We utilized our augmented RGB-NIR synthetic dataset, comprising approximately 50,000 original images. For each training

batch, different augmentations were dynamically applied to the data to enhance diversity. The fusion model architecture

consists of a pretrained feature encoder and a fusion module. During training, the feature encoder was frozen, and only

the fusion module was updated to focus on learning effective fusion strategies. To improve the fidelity of the image fusion

restoration process, we employed a photometric loss function. Specifically, the fused images were passed through Raft-Stereo

to obtain disparity maps, which were then compared to the ground truth disparity maps. Although Raft-Stereo was configured

to compute gradients, it was frozen and excluded from the optimizer to ensure that only our fusion network was trained.

For optimization, we used the Adam optimizer in conjunction with gradient scaling, initializing the gradient scaler with

a value of 1024. To accelerate training and optimize memory usage, mixed precision training was enabled. The training

process was conducted with a batch size of 4 per GPU, utilizing four RTX 3090 GPUs (24 GB each) in a distributed parallel

setup, resulting in an effective batch size of 16. The model was trained for approximately 20 epochs using this hardware

configuration.

3.2. RGB-NIR Feature Fusion

3.2.1 Network Architecture

We begin by processing the RGB and NIR stereo images through a shared ResNet-based feature extractor fenc. For each

input image Ics , where s ∈ {RGB,NIR} and c ∈ {left, right}, the encoder transforms it into feature maps:

F c
s = fenc(I

c
s), for s ∈ {RGB,NIR}, c ∈ {left, right}. (15)

Next, we apply the attention-based fusion method [10] from Section 3.1.1 to combine the RGB and NIR features:

F c
fusion = ffusion(F

c
RGB, F

c
NIR). (16)

The core of our method lies in constructing correlation volumes that capture the relationships between the left and right

feature maps. We compute correlation volumes for both the fused features and the NIR features:

Vs(x, y, k) = F left
s (x, y) · F right

s (x+ k, y), s ∈ {fusion,NIR}, (17)

where (x, y) denotes the pixel location, k is the disparity index, and · represents the inner product.

We employ an iterative approach using the GRU structure of the RAFT-Stereo network to refine disparity estimates. The

process begins with an initial disparity d0 = 0 and progressively updates this estimate. At each iteration n, the update model

takes the following inputs:



• The previous disparity estimate, dn.

• The context feature map from the fused left image, F left
fusion.

• The sampled correlation volume Vsampled, which alternates between Vfusion and VNIR.

The update model predicts a disparity increment Δd, which is added to the previous disparity to obtain the next estimate:

Hn+1 = ConvGRU(Hn, dn, [Vsampled, F
left
fusion]), (18)

where Hn is the hidden state of the ConvGRU layer, initialized with F left
fusion.

Then the increment of disparity is computed by a single convolutional layer and it updates the disparity estimate:

dn+1 = dn + Conv(Hn+1). (19)

By alternating between the fused and NIR correlation volumes at each iteration, our method effectively leverages spectral

information from both RGB and NIR images. This approach places more emphasis on NIR features that are robust to

environmental lighting, resulting in more accurate depth estimation as demonstrated in Table 16.

We also test our method on other stereo depth modules [4, 43] to highlight strength of feature fusion. We first fine-tune

these models on the synthetic training dataset using the disparity reconstruction loss and then further adapt them to the real

dataset with the LiDAR loss.

3.2.2 Loss Function

Ground-truth LiDAR Depth Loss We implemented pretrained weight provided by original author, which is trained with

RGB stereo dataset, and fine-tuned this using a combination of an augmented synthetic dataset and our real dataset, utilizing

the L1 loss function. For a series of disparity estimations {d1, d2, d3 . . . dn} we compute L1 loss by

Lgt =

N∑
i

wn−i
∑

u,v∈Ωgt

|dgt(u, v)− di(u, v)| (20)

where w is weight factor for normalized summation of series of d and Ωgt is a binary mask indicating valid regions in the

labeled disparity map. We also use LiDAR points (ui, vi, zgt,i) ∈ R
3
Il , which is projected into image I l coordinate, as ground

truth for depth estimation on real-world data:

LLiDAR =
N∑
i

∑
(x,y)∈N (r)

|zpred(ui + x, vi + y)− zgt,i| (21)

where N (r) is a set of point offset, making local neighborhood box and r is radius of it, presently r = 5, zpred = fx·B
dn

and

fx and B is focal length of camera and baseline distance, which is constant of our system.

3.2.3 Training Detail

Feature Extraction of RGB and NIR Images We employed the same encoder structure and weights for feature extraction

from both RGB and NIR images. This pretrained encoder, originally trained on RGB images, is effectively applicable to NIR

data. By replicating the single-channel NIR image into three channels, we achieved stereo depth estimation using RAFT-

Stereo [27] and CREStereo [23]. Similarly, replicating a single-channel image derived from converting RGB to grayscale or

from a monocular visible-light camera into three channels did not present issues within the encoder, regardless of the channel

count or target color space. This is because stereo depth estimation primarily involves analyzing the spatial correlation

between pixels in the two images, and the correlation definition remains unaffected by changes in the spectral domain. To

leverage the advantages of fine-tuning pretrained weights, we used the same encoder for both RGB and NIR images and kept

the encoder frozen during training.

Supervised Training We conducted supervised training using our augmented synthetic dataset, which includes RGB-NIR

stereo images and highly detailed, pixel-wise disparity maps. This allowed for supervised learning by directly comparing the

predicted disparity maps generated by the model with the ground truth disparity maps. To mitigate the domain gap between

real and synthetic data, we initially trained for one epoch solely on synthetic data and then incorporated real data into the

training dataset. The real data includes LiDAR-derived depth information and pseudo disparity maps, along with occlusion

maps obtained through sparse LiDAR reconstruction. Using these components, we were able to perform supervised learning

with the previously defined loss function.



Self-supervised Training Once the disparity map dleft is obtained, it can be used to warp stereo images. The warped image

I left|right that left image I left is warped into right image coordinate, is computed by:

x′ = x− dleft(x, y) (22)

I left|right(x, y) = I left(x− dleft(x, y), y) (23)

, where x, y ∈ Ω and Ω is image plain coordinate.

The photometric consistency between the warped and original images can be leveraged for self-supervised learning:

Lphotometric =
∣∣∣I left|right − I right

∣∣∣+ SSIM
(
I left|right, I right

)
(24)

However, this approach presents challenges when there are brightness differences between the left and right images,

making it difficult for the loss to converge. Furthermore, when scene disparities are not pronounced, the warping loss may

not effectively differentiate between accurate and erroneous disparity values, even if the disparity estimates are correct or

grossly inaccurate. To ensure comprehensive data collection across both indoor and outdoor environments, we set the stereo

baseline to 133mm. This setup results in a relatively narrow disparity range in outdoor scenes. Consequently, we utilized

self-supervised learning only as an auxiliary method to support supervised learning on our real dataset.

Finetuning We fine-tuned the pretrained weights of RAFT-Stereo [27] to adapt and extend its capabilities. The correlation

sampler, which computes the correlation volume V , is not a neural network structure and was therefore excluded from the

learning process. To leverage the performance of the pretrained feature encoder, its parameters were frozen during training.

Similarly, the iterative convolutional GRU updater was also frozen to retain its pretrained functionality.

In our design, an attentional feature fusion module [10] was incorporated to generate a fused feature map F c
fusion with

F c
RGB, F

c
NIR. As such, the attentional feature fusion module was set to trainable mode to enable learning during fine-tuning.

RAFT-Stereo originally implements the context encoder with a structure identical to the feature encoder, differing only

in the number of channels to accommodate separate weights. The context encoder serves as an input to update the hidden

state of the GRU updater. To optimize the design and reduce the frequency of attentional fusion operations, we removed

the context encoder. Instead, the features obtained from the feature encoder were directly forwarded to the inputs originally

designated for context features. Consequently, this modification required additional learning in the process of forwarding the

feature map to the GRU.

To ensure robust performance across different scenarios, batch normalization layers were frozen throughout the fine-

tuning process. This approach preserved the stability of normalization statistics while allowing for effective adaptation of the

model’s new components.

Implement feature fusion on different models MoCha-Stereo [4] and IGEV++[43] are based on an architecture similar

to RAFT-Stereo[27], which comprises a feature encoder, a correlation volume, and recursive disparity refinement. This

similarity allows for the straightforward adaptation of our feature-fusion modification across these models. In our approach,

we insert an attentional feature fusion module after the feature encoder to generate an additional fusion feature alongside the

standard RGB and NIR features. We then construct two separate correlation volumes—one from the NIR features and one

from the fusion features—and alternate between them during the depth estimation process.

4. Additional Result
4.1. Implementation of RGB-NIR Image Fusion Methods for Comparative Analysis

Figure 7 and 8 illustrate different image fusion methods applied to our real RGB-NIR dataset. We conducted comparative

studies on downstream vision applications using our image fusion model alongside other color fusion techniques.

Bayesian Fusion [44] This method employs Bayesian estimation to fuse two different mono-channel images. We imple-

mented per-channel fusion for the R, G, and B channels with NIR using the Bayesian Fusion algorithm. The fusion process

involves an iterative optimization procedure that incorporates total variation (TV) regularization to preserve edge details and

reduce noise. Specifically, the fusion is achieved by solving the following optimization problem:

min
C

‖k1 ∗ C −D1‖2 + ‖k2 ∗ C −D2‖2 + ‖X − C‖2 + λTV(C) (25)
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Figure 7. Image fusion visualization of ours and comparison methods. (a,b) Pixel-aligned RGB and NIR images. (c) Image driven

by simple channel sum. (d) YCrCb channel fusion [16]. (e) Bayesian estimation based fusion [44]. (f) Gradient adaptive fusion [1]. (g)

DarkVisionNet [18]. (h) VGG based fusion [22]. (i) HSV chanenl fusion (our baseline) [11], (j) Our fusion method.
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Figure 8. Image fusion visualization of ours and comparison methods, indoor sample. (a,b) Pixel-aligned RGB and NIR images. (c)

Image driven by simple channel sum. (d) YCrCb channel fusion [16]. (e) Bayesian estimation based fusion [44]. (f) Gradient adaptive

fusion [1]. (g) DarkVisionNet [18]. (h) VGG based fusion [22]. (i) HSV chanenl fusion (our baseline) [11], (j) Our fusion method.

where C is the fused image channel, D1 and D2 are the degraded observations from the RGB and NIR channels respec-

tively, k1 and k2 are convolution kernels, X is the current estimate of the fused image, and λ is a regularization parameter

controlling the strength of the TV term. The optimization is performed using proximal gradient methods, where the TV

regularization is handled by the proximal operator:

C(t+1) = proxλ TV

(
2CY + ρH

2C + 2D + ρ

)
, (26)

where Y represents the difference between the NIR and RGB images, ρ is a scaling factor, and H is updated through

the proximal TV operation. The iterative process continues for a predefined number of iterations to obtain the final fused

channel. The fused RGB image is then constructed by stacking the individually fused R, G, and B channels. We prepared

the comparison using the source code provided by the authors, ensuring an accurate implementation of the Bayesian Fusion

method for our dataset.



DarkVision [18] DarkVision employs a Multi-Layer Perceptron (MLP) network to enhance and denoise dark RGB images

with guidance from high-quality NIR images. We utilized the pretrained version of this network for our comparisons, focusing

on its ability to improve image quality without incorporating explicit mathematical formulations.

Infrared-VGG Fusion [22] This method is based on the VGG architecture and fuses infrared and visible images using a

pretrained VGG module as the encoder. We followed the installation instructions provided by the authors and utilized their

publicly available code to set up the comparison environment, enabling a direct evaluation of the fusion performance without

delving into the underlying equations.

YCbCr Channel Fusion [16] The YCbCr Channel Fusion method leverages the superior detail preservation of NIR images

under various environmental conditions by fusing the luminance (Y) channel in the YCbCr color space. The fusion process

is carried out as follows: First, the RGB image is converted to the YCbCr color space, and its grayscale version is obtained.⎡
⎣lRGB

C1

C2

⎤
⎦ = MRGB→YCbCrIRGB

⎡
⎣IRIG
IB

⎤
⎦ . (27)

The fusion weight is computed by normalizing the difference between the NIR and grayscale images:

lV =
INIR − lRGB

Imax

, (28)

where INIR is the intensity of the NIR image and IGray is the intensity of the grayscale RGB image. Imax is the maximum

intensity value for normalization scaling the difference to the range [0, 1]. The fused luminance channel is then calculated

as:

lfused = lRGB · lV + INIR · (1− lV), (29)

where lRGB represents the luminance component of the YCbCr image. To enhance the chromatic channels, a scaling factor

m is determined by:

m =
lRGB − lfused

lRGB

, where m = 0 if lRGB = 0. (30)

This ensures numerical stability by avoiding division by zero. The chromatic channels are then adjusted using the scaling

factor and then the fused YCbCr image is reconstructed by stacking the fused luminance and adjusted chromatic channels:

C1,fused = C1 · (1 +m), C2,fused = C2 · (1 +m) (31)

Ifused = MYCbCr→RGB[lfused, C1,fused, C2,fused]
ᵀ. (32)

This fused YCbCr image is then converted back to the RGB color space to obtain the final fused image. We prepared the

comparison based on the equations described in the paper, implementing the fusion process as outlined in the authors’ source

code.

HSV Channel Fusion [11] This method transforms the images into the HSV color space and fuses the V channel by

addition:

Vfused = 0.5VRGB + 0.5INIR. (33)

The resulting HSV image is then converted back to RGB. We prepared the comparison by blending the V channel and NIR

image at a 0.5:0.5 ratio.

Adaptive RGB-NIR Fusion [1] The Adaptive RGB-NIR Fusion method enhances the edges of the RGB image by lever-

aging the pixel gradients from the NIR image. The fusion process consists of several key steps: local contrast computation,

fusion map generation, high-pass filtering, and image enhancement.

The first step is a local contrast computation. The method computes the local contrast for both the luminance component

of the YCbCr-transformed RGB image and the NIR image. The YCbCr transformation is defined as:⎡
⎣lRGB

C1

C2

⎤
⎦ = MRGB→YCbCrIRGB

⎡
⎣IRIG
IB

⎤
⎦ , (34)



where lRGB is the luminance (Y channel), and C1, C2 represent the chrominance channels (Cb and Cr, respectively). For an

intensity image I (either luminance lRGB or NIR intensity INIR), the local contrast LocalContrastI is defined as a combination

of intensity variation and amplitude variation within a local window:

LocalContrastI = α · (Imax − Imin) + (1− α) · MaxAmplitude(I), (35)

where:

• Imax and Imin are the maximum and minimum intensity values within the local window.

• MaxAmplitude(I) is the maximum amplitude obtained from the gradient magnitude computed using Sobel filters:

MaxAmplitude(I) = max

⎛
⎝
√(

∂I

∂x

)2

+

(
∂I

∂y

)2
⎞
⎠ (36)

• α is a weighting factor (set to 0.5 in our implementation).

The next step is generating the fusion map. Using the local contrasts LocalContrastlRGB
and LocalContrastNIR, the fusion

map FusionMap is generated to determine the regions where the NIR image can provide enhanced details:

FusionMap =
max(0,LocalContrastNIR − LocalContrastlRGB

)

max(LocalContrastNIR, ε)
, (37)

where ε is a small constant (e.g., 1 × 10−6) to prevent division by zero. This fusion map emphasizes areas where the NIR

image has higher local contrast compared to the RGB image.

A high-pass filter is then applied to the NIR image to extract high-frequency details:

HPF(INIR) = INIR − GaussianBlur(INIR, σ), (38)

where GaussianBlur applies a Gaussian filter with a specified kernel size (e.g., 19 × 19) to smooth the NIR image, and σ is

the standard deviation of the Gaussian kernel.

The final enhancement is performed by adding the product of the fusion map and the high-pass filtered NIR image to each

channel of the YCbCr-converted RGB image. The fused YCbCr image is then converted back to the RGB color space. The

final fused RGB image Ifused is computed as:

IHDF = FusionMap · HPF(INIR) (39)

Ifused = MYCbCr→RGB

⎡
⎣lRGB + IHDF

C1 + IHDF

C2 + IHDF

⎤
⎦ . (40)

Finally, the fused RGB image Ifused is clipped to the valid intensity range [0, 255] to ensure proper image representation.

4.2. RGB-NIR Image Fusion for Object Detection

We evaluated the performance of our color fusion approach on object detection tasks [32].

4.2.1 Evaluation

To evaluate the performance of our object detection model, we employed standard metrics commonly used in single-class

multi-object detection tasks. Specifically, we utilized precision, recall, F1-score, mean Average Precision (mAP), and average

Intersection over Union (IoU) as our primary evaluation metrics. Given that the synthetic dataset was generated with precise

object index information, we were able to construct accurate ground-truth annotations for object detection. For the real

dataset, we prepared the data by directly creating pseudo labels to serve as ground-truth annotations.

4.2.2 Additional Results

Table 11 presents a comprehensive evaluation of various image fusion methods using YOLO [32] for object detection across

multiple performance metrics. Notably, our proposed RGB-NIR fusion technique achieves the highest Detection mAP

(0.828), surpassing the second-best Bayesian fusion method (0.773) by a significant margin. This superior performance



is consistently reflected across all evaluated metrics, including Average IOU (0.509), F1 score (0.688), Precision (0.734),

and Recall (0.687), indicating a robust enhancement in both localization and classification capabilities. In comparison, tradi-

tional methods such as HSV baseline [11] and YCrCb [16] demonstrate lower performance, with Detection mAP values of

0.744 and 0.745, respectively. Furthermore, specialized approaches like DarkVision [18] exhibit considerably lower metrics,

highlighting the effectiveness of our fusion strategy. The consistent outperformance across diverse metrics underscores the

efficacy of our RGB-NIR fusion method in enhancing object detection accuracy, precision, and recall, thereby establishing it

as a superior choice for image fusion in object detection tasks.

Methods Detection mAP ↑ Average IOU ↑ F1 score ↑ Precision ↑ Recall ↑
RGB 0.756 0.494 0.623 0.642 0.631

NIR 0.703 0.445 0.558 0.617 0.551

YCrCb [16] 0.745 0.479 0.596 0.651 0.590

Bayesian[44] 0.773 0.485 0.641 0.661 0.647

DarkVision[18] 0.571 0.351 0.465 0.504 0.466

Adaptive[1] 0.762 0.473 0.630 0.665 0.632

VGG-NIR[22] 0.726 0.449 0.573 0.588 0.590

HSV(our baseline) [11] 0.744 0.464 0.612 0.649 0.608

Ours 0.828 0.509 0.688 0.734 0.687

Table 11. Comparison of image fusion methods for YOLO [32]. Our RGB-NIR image fusion method outperforms other image-fusion

methods for object detection.

4.3. RGB-NIR Image Fusion for Structure-from-Motion

Experiments In this study, we evaluated the results of our image fusion approach within the COLMAP framework, a robust

Structure-from-Motion (SfM) pipeline, to reconstruct 3D geometry from RGB, Near-Infrared (NIR), and fused images. SfM

is a crucial process that estimates both intrinsic and extrinsic camera parameters from multiple images with unknown camera

settings, ultimately generating a coherent 3D model of the scene. This reconstruction process begins by selecting a subset

of frames to define a world coordinate system, followed by aligning subsequent frames through feature matching, ensuring

precise alignment across all images. Effective feature extraction is essential for successful SfM, especially under challenging

lighting conditions where regions may suffer from underexposure or overexposure, resulting in unreliable features. Single-

channel images, such as those in the NIR spectrum, often lack sufficient color variation, complicating feature extraction.

To overcome these limitations, we propose a fusion approach that integrates RGB images, which offer rich color details,

with NIR images, which improve feature detection in low-contrast areas. This fusion is designed to enhance feature quality,

enabling more accurate and robust 3D reconstructions within the COLMAP environment.

For our experiments, we used a well-illuminated nighttime video dataset, extracting 200 consecutive frames. Each frame

contained stereo RGB and stereo NIR images, yielding a total of 400 RGB images, 400 NIR images, and 400 fused images

produced using our image fusion method. To ensure consistency across different reconstruction scenarios, we uniformly

applied the Simple Radial model for feature extraction across all image sets. Prior to feature extraction, all images underwent

stereo calibration to determine intrinsic parameters, which were subsequently used to undistort the images. This preprocess-

ing step mitigated lens distortion and ensured geometric consistency, with the intrinsic parameters provided as presets for the

Simple Radial model.

Feature matching was performed using exhaustive matching with a block size of 50, enabling comprehensive correspon-

dence across image pairs. We conducted three reconstruction experiments, each evaluating one of the image modalities:

RGB, NIR, and fused images. By comparing the outcomes, we assessed the impact of image fusion on feature detection and

overall reconstruction accuracy under challenging lighting conditions.

Result Figure 9 presents a qualitative comparison of COLMAP feature extraction applied to RGB, NIR, and fusion images.

Red dots represent the extracted features, while pink dots indicate matched keypoints used for feature correspondence. (c)

demonstrates that the fusion images effectively integrate features from both RGB (a) and NIR (b), compensating for dark

regions in one spectral domain with information from the other. This highlights the capability of the fusion method to leverage

complementary spectral information for robust feature extraction and matching.



(c) COLMAP reconstruction  with our RGB-NIR fusion images

(b) COLMAP reconstruction with NIR images

(a) COLMAP reconstruction with RGB images

Figure 9. COLMAP reconstruction examples for RGB, NIR and our fused images. (a) RGB images. (b) NIR images. (c) Our fused

images.

4.4. Sparse Depth Reconstruction

Sparse depth reconstruction aims to transform a sparse depth map into a full-resolution dense depth map using an RGB image

as guidance [19, 39]. Many depth estimation methods, such as LiDAR and RGB-D cameras, provide depth information at

resolutions that are significantly lower than those of the accompanying RGB images. High-end LiDAR sensors typically

have a maximum resolution of 2048×128, and stereo depth estimation methods are often considered to have limitations in

reliability. Excluding low-confidence regions from these methods’ results leads to further sparsity and significant reductions

in depth data. Furthermore, when stereo depth maps are computed and warped onto different camera image planes, the

detailed pixel-level depth information is often lost. To address these challenges, methods such as CostDCNet [19] and BPNet

[39] use RGB images as guidance to reconstruct dense depth maps from sparse data. However, certain regions of the RGB

image may lack sufficient detail for depth estimation, and significant lighting variations can further degrade the reconstruction

quality. Our proposed RGB-NIR data and RGB-NIR image fusion methodology generates images with excellent photometric

consistency even under challenging lighting conditions. As a result, this approach enhances the performance of sparse depth

reconstruction by enabling more reliable guidance images and improving depth estimation accuracy.

4.5. RGB-NIR Fusion for Depth Estimation

4.5.1 Implementation of RGB-NIR Stereo Depth Estimations for Comparative Analysis

This study evaluates our proposed feature-fusion method against several state-of-the-art approaches for stereo depth estima-

tion. The methods compared include single-spectral stereo disparity estimation (RGB and NIR) using RAFT-Stereo [27],

RAFT-Stereo integrated with our image fusion technique, and other image fusion approaches [1, 11, 16, 18, 22, 24, 44].

Additionally, comparisons were made with fine-tuned versions of cross-spectral stereo depth estimation models [14, 40].

For comparisons using RAFT-Stereo, we tested various input images while maintaining consistent weights in the RAFT-

Stereo model to ensure fair pairwise comparisons. For multi-spectral models, we fine-tuned each method using our augmented

synthetic dataset and real-world dataset to achieve optimal performance.

These four images are then used for depth estimation. Instead of relying on synthetic images generated via conversion,

our approach directly utilizes RGB-NIR stereo pairs as inputs and fine-tunes the depth network accordingly.

The CSPD model [14], originally designed for stereo depth estimation with RGB and thermal stereo pairs, was adapted

for this study. We replaced thermal stereo images with NIR stereo pairs and retrained the model using our dataset to facilitate



direct comparison.

Lastly, the DPSNet model [40], which extends RAFT-Stereo by incorporating polarimetry stereo images alongside RGB

stereo inputs, was adapted for NIR stereo. We replaced polarimetry stereo images with NIR stereo pairs and conducted

supervised training to fine-tune the model for our application.

4.5.2 Evaluation Metrics

We evaluated our stereo depth estimation approach using labeled ground-truth depth data, employing a comprehensive set of

metrics to assess performance across both synthetic and real-world datasets.

For the synthetic dataset, ground truth disparity maps were provided. To evaluate the accuracy of the predicted disparity

maps, we utilized two primary error metrics: the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE).

We computed the absolute error (Mean Absolute Error, MAE) and the root mean square error (RMSE) between the predicted

disparity map and the ground truth disparity map as primary evaluation metrics. Additionally, we calculated the proportion of

pixels with Euclidean distance errors below thresholds of 1, 3, and 5 pixels to assess the spatial precision of the predictions.

These evaluations resulted in five distinct metrics: MAE, RMSE, and the percentage of pixels with errors under 1, 3, and 5

pixels (e < 1px, e < 3px, e < 5px).

For the real-world dataset, which included sparse LiDAR depth labels, we evaluated the predicted depth values by com-

paring them to ground truth depth measurements at LiDAR-indicated points. The primary metrics applied in this evaluation

were the MAE and RMSE of the depth values, expressed in meters, providing a robust measurement of accuracy in real-world

scenarios. Furthermore, we computed the ratio

ratio = max

(
zpred(u, v)

zgt(u, v)
,
zgt(u, v)

zpred(u, v)

)
(41)

for all pixels (u, v) and defined three thresholds: δ1 (ratio ≤ 1.25), δ2 (ratio ≤ 1.252), and δ3 (ratio ≤ 1.253). These

thresholds provided additional evaluation metrics, resulting in a total of five metrics: MAE based on depth, RMSE, δ1, δ2,

and δ3.

4.5.3 Additional Quantitative Results

We present the stereo depth estimation results for both our RGB-NIR real dataset and the augmented synthetic dataset.

Building upon the summary results presented in the main paper, we have conducted a more comprehensive analysis by

categorizing the data based on different environmental conditions and expanding the evaluation metrics to include Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE), and threshold-based accuracy metrics (δ1, δ2, δ3). This detailed

approach facilitates a deeper understanding of the algorithm’s performance across diverse scenarios.

Table 12 demonstrates that our fusion method consistently outperforms single modality depth estimation across a range of

challenging environments, including well-lit outdoor, dark outdoor, cloudy, well-lit indoor, dark indoor, and complex indoor

settings. Moreover, Table 13 illustrates that our fusion strategy not only enhances performance when applied to RAFT stereo

but also provides significant improvements with other stereo depth estimation methods [4, 27, 43], highlighting its versatility

as a robust baseline approach.

4.5.4 Additional Qualitative Samples

Figure 10 presents a qualitative comparison of our proposed stereo depth estimation network with RAFT-Stereo [27], evalu-

ated on RGB images (a), NIR images (b) and our image fusion method (c). Our method demonstrates superior performance,

particularly in regions with overexposure and high specular reflectance. Additionally, Figure 11 showcases qualitative results

under challenging lighting conditions. For low-light regions, our feature fusion approach effectively compensates for missing

information by leveraging complementary spectral data, resulting in more accurate and consistent depth estimation.

4.6. Additional Ablation Study

4.6.1 Pretrained Feature Encoder Weights

Table 14 and Figure 12 show an ablation study of the pretrained feature encoder. We quantitatively and qualitatively compared

the performance of our feature fusion depth estimation using three encoder weights provided by [27], trained on Eth3D [35],

SceneFlow [29], and Middlebury [33]. The encoder based on Eth3D was found to be the most suitable among the three.



Depth MAE [m]↓ Well-lit Outdoor Dark Outdoor Cloudy Outdoor Well-lit Indoor Dark Indoor Complex Indoor

RGB 5.710 7.491 3.101 3.292 3.201 4.698

NIR 4.576 5.563 3.139 3.062 2.333 4.271

YCbCr [16] 6.759 5.602 3.126 3.025 2.231 6.429

Adaptive [1] 6.857 6.408 3.094 3.227 2.375 6.675

Bayesian [44] 6.225 10.367 7.717 6.187 5.372 7.996

HSV (our baseline) [11] 4.468 5.417 3.121 3.091 2.293 4.293

SIRLUT [24] 4.485 7.725 3.351 5.134 4.498 5.768

VGG-NIR [37] 6.75 6.303 3.021 3.055 2.138 6.682

CSPD [14] 6.965 11.403 8.86 12.132 10.661 13.954

DPS-NET [40] 7.555 6.593 2.75 2.849 2.326 5.144

Image Fusion 4.356 5.156 2.816 2.99 2.431 4.181

Feature fusion 3.651 4.771 2.838 3.1 2.335 4.182

Table 12. Metrics for Stereo Depth Estimation. Evaluation conducted on a real-world dataset captured in a nighttime environment.

Results are grouped as follows: (1) the first group represents metrics computed using our RGB-NIR dataset with 3-channel stereo input

processed by the RAFT-Stereo [27] model, IGEV++ [43] and MoChaStereo [4]; (2) the second group includes results from other multi-

spectral stereo depth estimation approaches, fine-tuned on our dataset; and (3) the final group showcases methods from Sections 4.1 and

4.2 of our main paper.

depth MAE [m]↓ Day outdoor Night outdoor Cloudy outdoor Well-lit indoor Dark indoor Complex indoor

RAFT-Stereo (RGB) [27] 5.710 7.491 3.101 3.292 3.201 4.698

RAFT-Stereo (NIR) [27] 4.576 5.563 3.139 3.062 2.333 4.271

RAFT-Stereo (HSV) [27] 4.468 5.417 3.121 3.091 2.293 4.293

Mocha-Stereo (RGB) [4] 6.037 16.930 3.915 7.083 8.772 10.841

Mocha-Stereo (NIR) [4] 5.353 8.949 5.203 5.891 3.725 6.338

Mocha-Stereo (HSV) [4] 5.141 10.496 5.167 6.121 4.154 7.634

IGEV++ (RGB) [43] 6.176 9.277 4.261 3.194 3.643 5.958

IGEV++ (NIR) [43] 6.457 5.630 4.189 3.312 2.573 4.692

IGEV++ (HSV) [43] 6.096 5.762 4.130 3.052 2.501 4.915

Our image fusion [27] 4.356 5.156 2.816 2.990 2.431 4.181

Our image fusion [4] 5.191 8.125 3.731 4.144 2.882 5.788

Our image fusion [43] 5.968 7.314 3.737 3.532 2.882 4.848

Our feature fusion [27] 3.651 4.771 2.838 2.695 2.059 3.920

Our feature fusion [4] 4.415 6.063 3.147 4.890 4.282 6.688

Our feature fusion [43] 2.231 3.012 2.368 2.159 1.794 3.091

Table 13. RGB-NIR feature-based depth estimation. Our feature-based image fusion method for depth estimation methods [4, 27, 43]

outperforms using the single-modality RGB/NIR inputs, hand-craft fusion [11] and our image fusion method (Section 3.1.1).

Pretrained MAE (m) RMSE (m) δ1 δ2 δ3
SceneFlow [29] 2.6191 6.7860 0.6473 0.8768 0.9545

Middlebury [33] 5.0356 8.8270 0.2838 0.4143 0.4594

Eth3d [35] 2.5886 6.7470 0.6526 0.8775 0.9556

Table 14. Ablation study on different pretrained feature encoder

4.6.2 Ablation on Feature Fusion Implementation

Table 15 and Figure 13 show an ablation study of different feature fusion methods. We explored five methods: simple

feature addition, concatenation with a convolution layer to down-sample concatenated feature channels, pointwise feature

multiplication, weighted sum with RGB features at 0.25 and NIR features at 0.75, and our implementation of the attentional

feature fusion method inspired by [10]. Although feature multiplication showed the best quantitative results when evaluated

using sampled sparse LiDAR information, it performed poorly in qualitative analysis. The attentional feature fusion method

demonstrated the best adaptation to spatially varying lighting conditions.
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Figure 10. Depth estimation samples of our feature fusion model. (a) RGB images and outputs of [27] with them. (b) NIR images

and outputs with them. (c) Fused images by our image fusion method and outputs with them. (d) Stereo depth estimation with our feature

fusion based method. (e) Ground-truth sparse LiDAR.

(a) RGB (b) NIR (c) Image fusion (d) Feature fusion (e) LiDAR GT 0

48

Figure 11. Depth estimation samples on challenging lighting conditions of our feature fusion model. (a) RGB images and outputs of

[27] with them. (b) NIR images and outputs with them. (c) Fused images by our image fusion method and outputs with them. (d) Stereo

depth estimation with our feature fusion based method. (e) Ground-truth sparse LiDAR.

Table 16 and Figure 14 show an ablation study on different correlation volume alternating methods. We compared using

only the Fusion volume, alternating between RGB and NIR volumes, alternating among Fusion, RGB, and NIR volumes,
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Figure 12. Ablation study on pretrained encoder. (a) Pretrained with [35]. (b) Pretrained with [29]. (c) Pretrained with [33].

and alternating between Fusion and NIR volumes. In a quantitative evaluation using sparse LiDAR ground truth, the Fusion-

RGB-NIR alternating method achieved the best performance. However, the most reliable qualitative results were obtained

with the Fusion-NIR alternating method.

Pretrained MAE (m) RMSE (m) δ1 δ2 δ3
Feature addition 2.611 6.5365 0.6526 0.8772 0.9552

Concatenation 2.5719 6.004 0.6455 0.8782 0.954

Multiplication 2.4524 5.8743 0.6634 0.8768 0.9517

Weight sum 2.6251 6.9073 0.6491 0.8686 0.9535

Attentional feature fusion 2.5886 6.7470 0.6422 0.8775 0.9556

Table 15. Ablation study on different implementations of feature fusion.

Correlation volumes for disparity estimation MAE (m) RMSE (m) δ1 δ2 δ3
Fusion correlation volumes only 3.3979 7.4405 0.5073 0.7409 0.8073

Alternating RGB-NIR correlation volumes 2.6508 8.5712 0.6575 0.8841 0.9555

Alternating Fusion-RGB-NIR correlation volumes 2.5238 7.4262 0.6336 0.8763 0.9550

Alternating Fusion-NIR correlation volumes 2.5886 6.7470 0.6422 0.8775 0.9556

Table 16. Ablation study on different implementations of correlation volume alternations.
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