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1. Experimental Prototype
1.1. Hardware Stack
1.1.1 Imaging Setup

Table 1 summarizes the detailed specifications of the sensors used in our experimental prototype. To achieve RGB-NIR
multispectral imaging and 3D geometric reconstruction, we implemented two pixel-aligned RGB-NIR cameras and a LiDAR
system.

Sensor Quantity | Product Resolution

180Hz 8bit 1440x1080 BayerRG image
RGB-NIR Camera 2 JAI FS-1600D-10GE 180Hz 8bit 1440x1080 NIR image
LiDAR 1 Ouster OS-1 20Hz 2048x128 point cloud
IMU 1 Ouster OS-1 IMU 100Hz inertial data

Table 1. Sensor specs of our imaging system.

RGB-NIR Stereo Camera Setup The RGB-NIR cameras (JAI FS-1600D-10GE) leverage a dichroic prism to simultane-
ously capture visible (RGB) and near-infrared (NIR) images, offering distinct advantages in robust feature extraction under
varying illumination conditions. This dual-spectrum imaging capability facilitates applications such as material classification,
vegetation analysis, and object detection in low-light environments.

Our system integrates two RGB-NIR cameras connected via RJ-45 interfaces using Ethernet cables. These cameras
support high frame rates and high-resolution image acquisition, with performance primarily determined by the transmission
link speed. The JAI FS-1600D-10GE officially achieves up to 100 fps for RGB-NIR pixel-aligned imaging when operating
on a 10 Gbps Ethernet connection.

NIR Active Illumination To enhance imaging in the NIR spectrum, an active illumination source, Advanced Illumination
AL295-150850IC, emitting at an 850 nm wavelength, was employed. Table 2 shows detail specification of the NIR illumina-
tion. This illumination compensates for ambient lighting variability and improves the quality of the NIR channel, particularly
in controlled or low-light environments.

Specification Parameter

Length 165.6 mm

Weight 689 ¢

Wavelength 850 nm
Photobiological Risk Factor Exempt (850 nm)
Operating Temperature 0-60°C

Compliance CE, RoHS, IEC 62471
IP Rating 1P50

Lumen Maintenance L70 = 50,000 Hours

Table 2. Specifications of the active illumination source (AL295-150850IC).

3D LiDAR for Depth Ground Truth We use the Ouster OS-1 LiDAR to obtain accurate depth ground truth. This LiDAR
supports up to 2048 samples with 128 channels, providing a depth resolution of 2048 x 128 for a full 360-degree rotation. The
LiDAR can achieve a maximum frame rate of 20 fps at 1024 x 128 resolution and 10 fps at 2048 x 128 resolution. We utilized
the 20 fps configuration for high-frequency datasets and the 10 fps configuration for lower-frequency datasets. The built-in
inertial measurement unit (IMU) measures angular velocity (radians/second) and linear acceleration (G) along the x, y, and z
axes at up to 100 Hz, offering additional data for refining LiDAR point clouds. The LiDAR operates using 865 nm structured
light, which interacts with NIR cameras and may be affected by external NIR illumination. Nevertheless, advanced features,
including multi-sensor crosstalk suppression and programmable settings, mitigate such interference, ensuring high-accuracy
depth measurements under challenging illumination conditions.



1.1.2 Mobile Robot

Our imaging system is mounted on a mobile wheeled robot, the Agile-X Ranger Mini 2.0, which provides stable and efficient
operation for large-scale data collection in both indoor and outdoor environments. The robot is equipped with a 4-wheel drive
(4WD) system and features wheels capable of 180-degree rotation, offering exceptional maneuverability and the capability
to navigate tight and complex spaces.

Table 3 shows specifications of the mobile robot. The Agile-X Ranger Mini 2.0 has a compact design with overall
dimensions of 738mm x 500mm x 338mm and an axle track of 494 mm, enabling smooth traversal across various terrains.
It is powered by four 48 V' brushless toothed motors, each delivering a rated power of 600 W and a torque of 22 Nm. The
robot achieves a maximum speed of 2.6m/s and can climb inclines up to 10° while carrying a maximum load of 150kg.
To accommodate different operational needs, the Ranger Mini 2.0 offers two battery configurations: a single battery setup
providing 2—8 hours of operation and a multi-battery configuration supporting extended endurance. The lithium-ion batteries
can be charged in as little as 1 hour, ensuring minimal downtime. The robot’s advanced suspension system and independent
4-wheel steering enable optimal performance on uneven surfaces and during high-precision maneuvers.

Our setup leverages the Ranger Mini 2.0’s versatility to conduct imaging tasks across diverse settings, including roads,
sidewalks, and interior spaces, ensuring comprehensive data collection for research in urban and natural environments. Its
rugged design and IP54 rating make it suitable for challenging outdoor conditions while maintaining high stability and
reliability for precise imaging.

Specification Parameter
Maximum Payload 150 kg
Maximum Speed 2.6 m/s
Control Mode Remote controller / ROS
Steering Type 4-wheel steering
Turning Radius 0 mm (Spin mode) / 810 mm (Ackermann mode)
Battery Life 2-8 hours
Charging Time 1 hour

Table 3. Specifications of Agile-X Ranger Mini 2.0.

1.1.3 Computational Link and Power Supply

To manage the capture pipeline efficiently, we integrated a high-performance laptop (Asus ROG Zephyrus G14) equipped
with an Nvidia RTX 4060 GPU (8GB). This setup provides the necessary computational power for real-time data processing
and management of our imaging and LiDAR systems. Since both the RGB-NIR cameras and the LiDAR connect via RJ-45
interfaces, we utilized an RJ-45 network switch hub to extend connectivity, accommodating up to 10 devices. This ensures
seamless data transfer and system integration, despite the laptop’s limited number of Ethernet ports. Furthermore, to support
the power demands of the entire imaging system, we mounted an external AC power bank onto the robot. This setup allows
our system to operate continuously for over 3 hours without the need for recharging, ensuring sustained data collection in
diverse environments.

1.1.4 Calibration

Stereo Pose Calibration To calibrate a stereo camera system comprising left and right cameras, a standard chessboard
pattern is used as a known reference object. The calibration process begins by capturing a series of images of the chessboard
from both cameras at multiple orientations. Using these images, point correspondences between the observed 2D chess-
board corners in each camera image and the known 3D coordinates of the corners in the chessboard’s coordinate system
are established. The intrinsic parameters Kje and K, for the left and right cameras, respectively, are estimated through
this correspondence, capturing the focal length and principal point of each camera. Next, the relative pose between the left
and right cameras is determined. The extrinsic parameters Eyop, comprising the rotation and translation that map 3D points
from the left camera coordinate system to the right camera coordinate system, are computed. This calibration is essential
for rectifying stereo image pairs and for accurate 3D reconstruction. By using well-established algorithms [2], the intrinsic
matrices Kief, Kiigni» and the extrinsic transformation Ej,p are accurately estimated.



LiDAR Pose Calibration To calibrate the LIDAR and left camera, a well-structured real 3D scene is designed and captured
to facilitate precise point correspondences between the LIDAR and camera images. Specifically, the left RGB image captured
by the camera and the plane image generated from the LiDAR are analyzed to manually annotated corresponding points
across both modalities. Each LiDAR coordinate, (Z1LipaR, YLiDAR, ZLiDAR )> iS mapped into the camera coordinate system as
(Zcameras Yeameras Zcamera) Using a transformation matrix M ipaR —scamera- The intrinsic camera matrix K then projects these 3D
points onto the 2D image plane, yielding image coordinates (u, v), as expressed by the following equation:

N TLiDAR
U y U 4
N LiDAR "
v = Kieit MLiDAR—>camera 5 = 215“ (1
ZLiDAR v Z
Zleft 1 left

By collecting a sufficient number of (Zipar, YLipAR, 2LipAR) and (u, v) correspondences and leveraging the known intrin-
sic parameters K, the transformation matrix M| ipar—scamera €an be estimated. This estimation process can be formulated as a
Perspective-n-Point (PnP) problem, which seeks to determine the camera’s extrinsic parameters (rotation 12 and translation t)
by minimizing the reprojection error between a set of 3D points and their corresponding 2D image projections. The solution
to the PnP problem, including the estimation of My ipAR—camera fOllows the approach described in [31], which employs a
linear formulation to efficiently estimate the transformation while minimizing the reprojection error. Advanced solvers or
iterative methods such as RANSAC can also be applied to enhance robustness in the presence of outliers.

Timing Calibration The JAI MultiSpectral Camera utilized in our system features Precision Timing Protocol (PTP), en-
abling time measurement with nanosecond-level accuracy. Internally, RGB CMOS and NIR CMOS of a camera are synchro-
nized using PTP. As we employed two separate cameras, it was essential to achieve synchronization between them. To this
end, we activated a PTP-based Pulse Generator on each camera, which emits a trigger signal at precisely defined periods.
By adjusting the delay settings of the Pulse Generators, we compared timestamps recorded in the response packets of both
cameras to align them. This approach ensured that the synchronization between the cameras remained within 100 microsec-
onds. Such a low level of time difference is negligible for 3D vision applications, eliminating the need for further temporal
correction in downstream tasks. Additionally, as a precautionary guideline, we discarded any packets that exhibited a timing
difference exceeding 1 millisecond.

1.2. Software Stack
1.2.1 Sensor SDK Implementation

JAI Fusion Camera The JAI Fusion camera utilizes the eBUS SDK, which enables configuration of Ethernet-connected
cameras and the creation of receiver sockets for the camera’s data streams. Specifically, since this camera has two independent
CMOS sensors within a single unit, configuring it as a stereo camera requires handling data from four separate streams.
We integrated the C++ SDK library into our CMake project, setting up four distinct ports to create separate stream receiver
objects. Each of these receiver objects operates on an independent thread, ensuring smooth data acquisition without blocking.
The main thread monitors the timing of the collected image packets from the four streams, grouping them into a single frame
if the timestamp difference is less than 1 ms. Once a complete frame is formed, it is published as a ROS2 topic for use
by other processes. To minimize the time difference between the stereo cameras, we adjust the delay of the internal pulse
generator of the cameras, based on the timing discrepancies measured for each frame.

QOuster OS-1 The Ouster LiDAR sensor is interfaced using its native Python3 SDK library. The LiDAR device is assigned a
unique IP address, and its data packets are combined into a 360-degree scan using the SDK’s packet integration tool. However,
this integration tool does not accumulate IMU packets. To address this, we extended the packet integration functionality of
the SDK, enabling it to integrate accumulated IMU packets into the 360-degree scanning data.

1.2.2 Imaging System Pipeline Architecture

Our imaging system operates on Ubuntu 22.04, utilizing Python 3.12 and ROS2 Humble to provide a robust and efficient
platform for multi-sensor data acquisition and processing. The software integrates SDKs for stereo cameras and LiDAR
sensors, facilitating seamless file I/O operations and an intuitive UX/UI for user interaction. The system is modularized



into four primary components: Capture Trigger, Response Queue, Storage Management, and User Interface/User Experience
(UI/UX).

The Capture Trigger module orchestrates the periodic activation of connected sensors, ensuring synchronized data ac-
quisition from stereo cameras and LiDAR. It maintains precise time synchronization between the stereo cameras, enabling
consistent stereo image capturing essential for depth estimation. The LiDAR module processes incoming LiDAR packets,
aggregating them into a cohesive 360-degree point cloud representation. Data from the sensors are funneled into the Response
Queue, which manages the incoming RGB and LiDAR data streams. This module identifies and pairs sensor data with mini-
mal time discrepancies, adhering to a predefined time difference threshold to maintain data integrity. Once paired, the data is
forwarded to the Storage Management module, which handles the efficient local storage of synchronized multi-sensor infor-
mation. The UI/UX component provides users with a streamlined interface to control the imaging process. A single-button
interface allows users to toggle sequential frame capturing (video recording) effortlessly, enabling them to concentrate on the
robot’s navigation tasks.

The system, deployed on a robot-mounted laptop, supports capturing up to 20 frames per second. When real-time stereo
depth estimation is activated, the system maintains a capture rate of up to 10 depth images per second, balancing performance
and computational demands. This software architecture ensures reliable synchronization, efficient data management, and
user-friendly operation, making it well-suited for real-time robotic applications requiring high-fidelity multi-sensor imaging.

2. Pixel-aligned RGB-NIR Datasets
2.1. Real Dataset
2.1.1 Details on Acquisition

We captured 720x540 resolution BayerRG stereo images using JAI Fusion camera, restoring them to 3-channel RGB images
via Bayer interpolation before saving. Simultaneously, 720x540 mono-channel NIR images were captured using JAI FS-
1600D-10GE and saved alongside the RGB images. Our dataset comprises 28 video sequences captured at 10 Hz and 15
sequences at 5 Hz. Each video ranges from 100 to 6000 frames. Longer videos encompass continuous transitions through
various environments and can be partitioned into shorter clips for specific applications. Data collection occurred across
diverse settings, including both indoor spaces like laboratories and lecture halls, and outdoor areas such as courtyards and
walkways. Videos were recorded at different times of the day—morning, noon, evening, and night—to capture a wide range
of lighting conditions. Some sequences feature transitions between indoor and outdoor environments, while others include
dynamic scenarios like a vehicle entering an indoor parking garage from outside. Weather conditions during recording varied
from sunny to overcast, adding to the dataset’s versatility. Our compact and lightweight camera setup eliminates the need for
bulky beam splitters, allowing for extensive and flexible data collection without compromising the field of view. This design
facilitates large-scale indoor and outdoor recording sessions, making the dataset suitable for applications in machine vision,
autonomous navigation, and robotics.

2.1.2 Samples of Real Dataset

Figure 1 presents samples from our acquired real dataset, which includes RGB stereo images, NIR stereo images, and sparse
LiDAR points. Figure 2 showcases our dataset under challenging lighting conditions, such as nighttime and poorly lit in-
door environments. We collected over 90,000 frames across diverse settings, including indoor and outdoor environments,
bright and dark locations, as well as roads and sidewalks. By capturing data across a wide range of real-world environ-
ments and times of day, our dataset is expected to support not only depth estimation but also 3D geometry reconstruction
techniques, such as structure-from-motion [34], and various photometric volume reconstruction methods, including Gaussian
splatting [20].

2.1.3 Statistics

Figure 3 presents a comprehensive analysis of our dataset. (a) illustrates the proportion of the dataset categorized into 6
distinct lighting conditions: well-lit, dark and complex, which are further detailed as either indoor or outdoor. (b) provides
a histogram that depicts the distribution of video scenes based on the number of frames. (c), (d), and (e) show histograms
of the exposure times for RGB and NIR cameras under well-lit outdoor, dark outdoor, and Indoor settings, respectively.
Notably, due to the independent operation of auto-exposure for the RGB and NIR sensors, the exposure time distributions
differ between the two modalities. Graph (f), (g), and (h) further classify scenes based on additional criteria. (f) evaluates the
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(b) Real data of well-lit outdoor.

Figure 1. Various real dataset samples

presence of high-specular scenes and overexposure conditions, while (g) categorizes scenes as either indoor or outdoor. (h)
details the diverse environments encountered, including road driving, pedestrian pathways, transitions between indoor and
outdoor settings, and underground roads. These scenes are further subdivided into Well-Lit, Dark, and Dynamic Lighting
conditions. Importantly, the bar graphs in (f), (g), and (h) illustrate that a single scene can belong to multiple categories
simultaneously, highlighting the complexity and diversity of our dataset.
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Figure 2. Various real dataset samples on challenging lighting condition.
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Figure 3. Statistics of our real dataset.

2.2. Synthetic Dataset
2.2.1 Synthetic Dataset Augmentation

Augmentation from Image Formation Equation The image formation of our RGB-NIR pixel aligned camera is denotes
as following:

(%) = m + gi (n2 + t: (R (p°) (E7 (p°) + Li(p9)))) - @)

To facilitate training of other vision tasks such as stereo depth estimation, it is essential to have a training dataset with
precise ground-truth information, which can be achieved by creating a synthetic dataset. However, generating a large-scale
synthetic dataset from scratch—including rendering 3D scenes and extending the three-channel color space to four channels
(R, G, B, NIR)—requires substantial resources that may not be readily available. Therefore, we utilized existing large-scale
RGB stereo datasets [29, 33] and developed a synthetic rendering pipeline leveraging an image formation model to generate
realistic RGB images based on provided depth maps and material segmentation maps.

Figure 4 shows image components in augmentation pipeline. The baseline dataset provides RGB images (a), depth (b) and
material index (c). The albedo Rfe {R,G’B}(pc) (Fig. 4(d)) is accurately simulated by assigning distinct reflectance values to
each material class identified in the segmentation map, thereby ensuring material-specific color representation. NIR albedo
Rfe{NlR} (p©) (Fig. 4(f)) is pseudo driven from Rfe{R’G’B} (p©) by [13].

Normal Map Reconstruction To accurately compute the lighting interactions, normal maps (Fig. 4(e)) are derived from
the depth maps (Fig. 4(b)), enabling precise calculation of the incident angles between the light sources and the surface
normals for each pixel. The conversion of a depth map into a normal map involves calculating the gradients in the = and
y directions to determine the surface normals. This process starts by computing the partial derivatives of the depth values,
which are then used to construct the normal vector at each point. Specifically, the normal vector N can be derived as

dz 0Oz
N=(-2, -2
( Oz Gy’z>’ 3)

where z, y, z consist of point cloud on camera coordinate, driven by projecting depth map into camera coordinate, followed
by normalization to ensure unit length. Detail implementation follows [17].

Ambient Lighting Ambient lighting E{(p) is introduced to emulate diverse environmental illumination conditions by
utilizing multiple ambient light sources. Each ambient light source is characterized by its unique position and brightness,
contributing cumulatively to the overall ambient illumination at each pixel. Specifically, the ambient lighting is modeled as
the sum of contributions from n ambient light sources, as described by the following equation:



(a)‘ Rendered RGB imag;]e (d) RGB diffuse albedo

(g) Augmented RGB image

(b) Disparity map (e) Normal map

(h) Augmented NIR image

(c) Material segmentation

(f) NIR diffuse albedo

Figure 4. RGB-NIR synthetic data augmentation. Sceneflow dataset [29] provide (a) rendered RGB image, (b) disparity map and (c)
material index. We assumed RGB albedo (d) with (a) & (b), normal map (e) from (b). We simulated NIR albedo (f) from (d) by [13]. We
rendered some light source for RGB (g) and NIR (h).

Ef(p) = _ ¢;-max (0,N(p) - L;(p)), )

Jj=1

where
* ¢; denotes the brightness of the j-th ambient light source.
* N(p) represents the normal vector at pixel p, derived by 3.
* L,(p) is the unit vector pointing from the surface point p to the position of the j-th ambient light source.
This formulation allows for realistic simulation of ambient lighting by accounting for the direction and intensity of multiple
light sources, thereby enhancing the visual fidelity of the rendered images.

Active Illumination Active illumination L§(p) is incorporated to provide consistent direct illumination from a single, fixed
light source. Unlike ambient lighting, active illumination affects only the Near-Infrared (NIR) channel, leaving the Red (R),
Green (G), and Blue (B) channels unaffected. This selective illumination is particularly useful for applications requiring
multi-spectral data. The active lighting is modeled without summation, as only one active light source is present, and is
defined as follows:
Lo(p) = 0, forz. € {R,G, B} 5)
Gactive - Max (0, N(p) - Laive(p)), fori = NIR

where:
* Pactive denotes the brightness of the active light source.
* Lycive(p) is the unit vector pointing from the surface point p to the fixed position of the active light source.
¢ The term max (0, N(p) - Lacive (p)) ensures that only positive contributions to the illumination are considered, adhering to
the Lambertian reflectance model.



By restricting active illumination to the NIR channel and maintaining a fixed light position and intensity, the model ensures
that direct illumination is consistently applied without altering the RGB channels.

The image formation equation incorporates fixed exposure time ¢; and gain g; parameters, which are held constant
throughout the simulation to maintain uniform exposure settings. Gaussian noise is systematically added both pre- and
post-processing to emulate realistic sensor noise, thereby enhancing the fidelity of the synthetic images. This comprehensive
approach integrates material properties, complex lighting interactions, and realistic noise modeling, resulting in high-quality
synthetic renderings that are suitable for various applications in computer vision and graphics research.

2.2.2 Samples of Synthetic Dataset

Figure 5 presents samples from our augmented synthetic dataset. We enhanced two distinct environments from the Sceneflow
dataset [29]: a driving scene and an indoor environment featuring randomly flying objects. The augmented dataset includes
both RGB stereo and Near-Infrared (NIR) stereo images, utilizing existing components of the original dataset such as RGB
stereo pairs and disparity maps. This augmented dataset was employed to train a stereo depth estimation network using the
original disparity map labels and an image fusion model with the original RGB images.

R/
L

Disparity map
|

= -

f e\
NIR(rendered)

RGB (rendered) NIR(rendered)  Disparity map RGB (rendered)
|

(a) Driving dataset 0 128 (b) Flying things dataset 0 48

Figure 5. Samples of augmented synthetic dataset. Sceneflow [29] includes both ourdoor environment (a) and indoor environment (b)
dataset. We augmented these datasets relighting RGB stereo images and NIR stereo images.

2.3. Comparison to Other Datasets

We compared our dataset with existing large-scale datasets, including outdoor RGB stereo depth datasets [7, 12], indoor RGB
stereo depth datasets [8, 9], datasets with RGB and NIR [3, 5, 30, 36, 38, 41, 42, 45], and RGB-Thermal datasets [6, 14, 21,
28]. The comparison is presented in Table 4, based on several key criteria which are detailed below.

Pixel-aligned RGB-NIR Multispectral datasets primarily include different spectral image information alongside RGB.
When two spectral images are pixel-aligned, they can be effectively fused without the need for pose correction, which greatly
enhances efficiency. This pixel-level alignment is crucial for applications that leverage multispectral fusion.



Pixel | Multi | RGB NIR GT | Lidar Spectral Pixel-align

Dataset -aligned | -View | Stereo | Stereo | Depth | Depth Video Bands Indoor | Outdoor | Day | Night | Base Platform Impl ation

[12] X o o X o [e) [€) RGB X [€) [€) O | Vehicle N/A
[8] X [@) X X [@) X [@) RGB [¢) X [@) X Hand-carried N/A
[71 X [€) €] X [€) @) [€) RGB X [€) [@) O | Vehicle N/A
[41] [6) X X X X X X RGB, NIR, Thermal X [€) [€) [€) N/A Beam splitter
[28] | Thermal (0] (0] X (0] (0] O RGB, Thermal X (0] (0] (@] Vehicle Beam splitter
[9] X [€) X X (0] X [¢] RGB [0) X (0] X | Hand-carried N/A
[2] (6] (0] X X (0] (6] O RGB, NIR X (0] (0] X Tractor Prism camera
[38] X [@) X X X X O | RGB, NIR, FIR, MIR X [e) [6) O | Hand-carried N/A
[42] X [€) [e) X [@) X [@) RGB, NIR X [@) [6) X | Mobile robot N/A
[45] X [@) X X X X [€) RGB, NIR X [@) [@) O | Vehicle N/A
[5] X [€) X X X X [€) RGB, NIR X [€) [€) O | Vehicle N/A
[6] Thermal [@) [e) X [@) [0) [@) RGB, Thermal X [@) [@) [€) Vehicle Beam splitter
[21] X [€) [6) X [@) [6) [@) RGB, Thermal [6) [@) [€) @) Vehicle N/A
[25] X [€) [€) X [@) [€) [€) RGB, LWIR [¢) [€) [€) [€) Mobile robot, drone | N/A
[14] | Thermal (0] (0] Thermal O (0] O RGB, Thermal X O O (0] Vehicle Beam splitter
[36] X (0] [0) [0) (6] [0) [¢] RGB, NIR, Thermal X (0] (0] O | Vehicle N/A
[30] (€] O (€] X O (0] (0] RGB, NIR X O (@] (@] Vehicle Prism camera

Ours (6] (6] (0] (6] (0] (0] (0] RGB, NIR (0] (0] (0] (0] Mobile robot Prism camera

Table 4. Summary of RGB-NIR and Multispectral Datasets Characteristics

Multi-View Camera Datasets that include a multi-view camera setup can utilize multi-view geometry, enabling tasks such
as depth estimation or optical flow for 3D downstream vision tasks. In this comparison, if a dataset includes more than two
cameras, it is considered multi-view. RGB-Stereo and NIR-Stereo specifically denote cases where multiple RGB or NIR
cameras are included. For instance, the dataset from [36] includes both RGB stereo and NIR stereo, employing an active
stereo camera. On the other hand, datasets such as [5, 28, 30, 38, 42, 45] used only one multispectral camera, limiting their
3D geometry capabilities. Additionally, [8, 9] employed NIR structured light cameras but did not provide the original NIR
stereo images, only the estimated depth, which limits further multispectral analysis.

Ground Truth Depth Ground truth depth is essential for evaluating depth estimation methods. Some datasets, such as [8,
9, 42], used RGB-Depth or structured light cameras to obtain depth measurements. However, they do not include more
accurate 3D depth measurements from LiDAR, which is a significant limitation for precise ground truth depth generation.

Environment The environmental conditions under which data is collected significantly impact dataset usability. Therefore,
we categorize the datasets based on whether they include data from indoor, outdoor, day, or night scenarios. Multispectral
datasets are especially useful in scenarios such as low-light conditions or environments with varying lighting (indoor to
outdoor), as they provide complementary information to enhance RGB data.

Base Platform For large-scale data collection, the imaging system requires an appropriate mobile platform. Smaller sys-
tems can be handheld [8, 9, 38], while larger, heavier systems are typically mounted on vehicles [12, 14, 36], limiting data
collection to areas accessible by vehicle. Research using mobile robots or drones [25, 42] improves both mobility and
stability, allowing data collection in a wider range of environments.

Pixel-align Implementation Implementations of pixel-aligned multispectral imaging can be broadly categorized into beam
splitters and prisms. Beam splitters are used by [0, 14, 28, 41], splitting incoming light into two beams that are then directed to
different cameras, achieving pixel-level alignment. Alternatively, dichroic prism-based cameras, such as those used by [3, 30]
and our dataset, separate the spectral bands through a prism and direct them to different CMOS sensors. This approach offers
a more compact design compared to beam splitters, and provides complete spectral separation, making it preferable for many
applications.

3. Details on RGB-NIR Feature Fusion and Attentional Fusion
3.1. RGB-NIR Image Fusion
3.1.1 Network Architecture

Residual Block We implemented the ResNet [15] architecture and its pretrained weights [27] as feature extractors for
both the image fusion method and the feature fusion depth method. Table 5 presents the details of its PyTorch implementa-



tion. The basic version of this encoder accepts 3-channel inputs and outputs downsampled feature maps with 256 channels.
Additionally, we can adjust the number of input channels, output channels, and the downstream scale factor as needed to
accommodate various requirements.

Layer | Layer Name | Input Layer | Description Output Shape

1 Input - Input data 3xHxW

2 Convl Layer 1 3 x 3 kernel, padding=1, stride=s 256 X H/s x W/s
3 Norml Layer 2 InstanceNorm2d 256 X H/s x W/s
4 ReLUl Layer 3 ReLU 256 X H/s x W/s
5 Conv2 Layer 4 3 x 3 kernel, padding=1, stride=1 256 X H/s x W/s
6 Norm?2 Layer 5 InstanceNorm2d 256 X H/s x W/s
7 ReLU2 Layer 6 ReLU 256 X H/s x W/s

Table 5. Description of ResidualBlock forward sequence.

Attentional Feature Fusion In our framework, RGB and NIR images are first processed through the ResNet blocks,
resulting in two separate 256-channel feature maps, F and F5. To integrate these feature maps into a unified representation,
we employ an attentional feature fusion method that leverages spectral information while preserving essential details. The
fusion process comprises two main steps: the self-attention step and the attentional weight summation step.

Self-Attention Step. In this step, channel-level local and global attention mechanisms are applied to the feature maps F;
and F¢. The attention-enhanced features, A§ and AS, are computed as follows:

AS + AC
AC — v n , 6
= M(Ag) + M(AT) ©
AS = FS o M(FY), @
Ay = F5oM(FY), (8)

where M denotes the self-attention module introduced in [10], and o represents element-wise multiplication. The unified
attention map A is obtained by normalizing the sum of the attention-enhanced features from both modalities.

Attentional Weight Summation Step. Using the unified attention map AS, we compute the fused feature map F§ by
performing a weighted summation of the attention-enhanced features from RGB and NIR:

Ff = (A o M(A7)) + (A7 0 (1 = M(A7))) - ©)

In this equation, M (A¢) serves as a weighting factor that dynamically balances the contributions of RGB and NIR features
based on the unified attention map. This weighted summation effectively integrates features from both modalities, resulting
in a single, comprehensive fused feature map. Figure 6 illustrates the detailed progress of attentional feature fusion using
RGB and NIR feature maps. To provide a comprehensive and organized overview of the implementation, we have divided
the attentional feature fusion module into four distinct PyTorch implementation tables. Specifically, Table 6 presents the Lo-
calAttention module, Table 7 details the GlobalAttention module, and Table 8 describes the MultiChannel Attention module.
These individual components are then integrated to form the complete Attentional Feature Fusion module, as demonstrated
in Table 9.

Layer | Layer Name | Input Layer | Description Output Shape
1 Input - Input tensor in_channels x H x W
2 Local_Conv1 Layer 1 Conv2d with kernel size 1 X 1, stride 1 (in_channels/reduction) x H x W
3 Local_BN1 Layer 2 BatchNorm applied to the output of Layer 1 (in_channels/reduction) x H x W
4 Local_ReLU Layer 3 ReLU activation function applied to the out- | (in_channels/reduction) x H x W
put of Layer 2
5 Local_Conv2 Layer 4 Conv2d with kernel size 1 x 1, stride 1 in_channels x H x W
6 Local_ BN2 Layer 5 BatchNorm applied to the output of Layer 4 in_channels x H x W
7 Output Layer 6 Output tensor returned by the module in_channels x H x W

Table 6. LocalAttentionModule



Layer Layer Name Input Layer | Description Output Shape
1 Input - Input tensor in_channels x H x W
2 Global_AvgPool Layer 1 Adaptive Average Pooling to output size 1 X in_channels x 1 x 1
1
3 Global_Conv1 Layer 2 Conv2d with kernel size 1 X 1, stride 1 (in_channels/reduction) x 1 x 1
4 Global BN1 Layer 3 BatchNorm applied to the output of Layer 2 (in_channels/reduction) x 1 x 1
5 Global_ReLU Layer 4 ReLU activation function applied to the out- | (in_channels/reduction) x 1 x 1
put of Layer 3
6 Global _Conv2 Layer 5 Conv2d with kernel size 1 x 1, stride 1 in_channels x 1 x 1
7 Global _BN2 Layer 6 BatchNorm applied to the output of Layer 6 in_channels x 1 x 1
8 Output Layer 7 Output tensor returned by the module in_channels x 1 x 1
Table 7. GlobalAttentionModule.
Layer Layer Name Input Layer Description Output Shape
1 Input - Input tensor in_channels x H x W
2a Local_Attention Layer 1 LocalAttentionModule in_channels x H x W
2b Global_Attention Layer 1 GlobalAttentionModule in_channels x 1 x 1
3 Addition Layers 2a/2b | Adds outputs of Layer 2a and Layer 2b in_channels x H x W
4 Sigmoid Layer 3 Applies Sigmoid activation in_channels x H x W
Table 8. MultiScaleChannelAttentionModule (MS-CAM).
Layer Layer Name Input Layer Description Output Shape
la Input_ RGB - RGB input tensor in_channels x H x W
1b Input_NIR - NIR input tensor in_channels x H x W
2a Attention_ RGB Layer la MS-CAM in_channels x H x W
2b Attention NIR Layer 1b MS-CAM in_channels x H x W
3 Addition Layers 2a/ 2b Adds Attention RGB and Attention_NIR in_channels x H x W
4a RGB_Scaled Layers 1a/3 Multiplies RGB input by (Layer 2a / Layer | in_channels x H x W
3)
4b NIR _Scaled Layers 1b/ 3 Multiplies NIR input by (Layer 2b/Layer 3) | in_channels x H x W
5 Addition Layers 4a/ 4b Adds RGB_Scaled and NIR _Scaled in_channels x H x W
6 Attention_Fusion Layer 5 MS-CAM in_channels x H x W
7 Feature_Fusion Layers 6, la, Ib | Combines Attention fusion with original | in_channels x H x W
RGB and NIR inputs to produce final out-
put: Output = (Layer5) x RGB + (1 —
(Layer 5)) x NIR

Table 9. AttentionFeatureFusion.

Image Fusion Model Table 10 presents a detailed implementation of our image fusion network. Feature maps extracted
from a pretrained feature encoder [27] are integrated using an attentional feature fusion mechanism [10]. These fused feature
maps are subsequently processed through residual blocks to generate spatially varying weights, o and 3, constrained within
the range [0, 1]. Utilizing these weights, the fused image is computed as follows:

Itusion = Musv—ras[lm, Is, Iy|T = Musv—ra[lm, Is, aly + BINg]T (10)

Through this approach, we achieve the fusion of RGB and NIR images based on the derived spatially varying weights

NIR Guided RGB Filtering We employ an NIR-guided RGB filtering technique to enhance input RGB images by lever-
aging a single-channel Near-Infrared (NIR) image as the guiding reference [26]. Our method is grounded in the guided filter
framework, where the NIR image Injr serves as the guide, and the fused image Isysion 1S the input to be filtered. For each
color channel ¢ of Ifysion, We first compute the local means pinir and fifusion,i» as well as the covariance cov(INir, Lfusion,i) and
the variance var(Iyr) within a window of radius r. The linear coefficients a; and b; are then determined using the equations

Var(INIR) + € (] 1)

, bi = [usioni — GiINIR,



(c) NIR image (e) Visualization of Fyr (g) Visualization of w
Figure 6. Attention-enhanced feature fusion. (a) The structure of attention based feature fusion module, proposed by [10]. MS-CAM is
a attention enhancer module. The fusion operation is served by weight sum of attention-enhanced features with w. (b,c) Examples of input
RGB and NIR images. (d,e,f,g) Visualizations of Frgg (d), FNir (€), Fiusion (f) and w (g).

where € is a regularization parameter that ensures numerical stability. Subsequently, we calculate the mean values of a® and
b¢ within the same window and reconstruct the output RGB image q for each channel using

Tfiered,i = mean(a;) Inir + mean(b;), (12)
ensuring that the resulting pixel values are clamped within the valid range [0, 255]. This NIR-guided filtering approach
effectively utilizes the structural information from the NIR guide to enhance color fidelity and suppress noise in the images
which is generated during fusion process, demonstrating improved performance in various image processing applications.

Layer Layer Name Input Layer Description Output Shape
la Input_RGB - Receives RGB input tensor 3x HxW
1b Input_NIR - Receives NIR input tensor 1xHxW
2 RGB_to_HSV Layer la Converts RGB tensor to HSV color space 3x H x W’
3a Encoder RGB Layer 1a (RGB) Passes normalized RGB through BasicEncoder [27] 256 X HTI X WT,
3b Encoder_NIR Layer 1b (NIR) Passes normalized NIR (repeated across channels) | 256 x HTI X WT,
through BasicEncoder

4 Attentional_Feature_Fusion | Layers 3a and 3b | Combines HSV and NIR feature maps 256 x HTI X WT,

5 Residual_Block Layer 4 Reduces channel dimensions using ResidualBlocks, 2% HT, X WT,
followed by Sigmoid activation

6 Upsample_Weights Layer 5 Upsamples weights by a factor of 4 using bilinear in- 2x H x W'
terpolation

7 Combine_HSV_and_NIR Layers 1b, 2, 6 Un,Is, Iy] = [Iu,Is, aly + BINg] 3x H x W'

8 Convert_to_.RGB Layer 7 Converts combined HSV features back to RGB color 3x H x W’
space

Table 10. Forward Pass of our Image Fusion Model




3.1.2 Loss Function

Photometric Loss The synthetic dataset includes original RGB images prior to augmentation. To ensure that the fused
output of augmented RGB and NIR images closely matches the original RGB images, we design a photometric loss function
defined as

‘Cphotometric = L1 ”Ifusion — doriginal || 1 + Yssim SSIM(Ifusiona Ioriginal) . (13)

In this formulation, the L1 loss and Structural Similarity Index Measure (SSIM) loss are weighted by coefficients v, and
Yssim» respectively, set to 0.85 and 0.15. This combination ensures that the fused image maintains both pixel-wise accuracy
and structural similarity to the original RGB image, facilitating effective training of the fusion model.

Ground-truth Disparity Loss To guide our network towards accurate operation, we trained it using a combination of an
augmented synthetic dataset and our real dataset, utilizing the L1 loss function. tarting from a pretrained model based on
[27], we loaded pretrained weights, excluding the modified structures. Then we fine-tuned our model by freezing weights
excluding the modified ones. For the predicted disparity map dp.q, we compute L1 loss by

Lo = Z |dgt(u, v) — dprea(u; v)] (1

u,vENg

where 2y is a binary mask indicating valid regions in the labeled disparity map and dy is ground-truth disparity map from
dataset.

3.1.3 Training Details

We utilized our augmented RGB-NIR synthetic dataset, comprising approximately 50,000 original images. For each training
batch, different augmentations were dynamically applied to the data to enhance diversity. The fusion model architecture
consists of a pretrained feature encoder and a fusion module. During training, the feature encoder was frozen, and only
the fusion module was updated to focus on learning effective fusion strategies. To improve the fidelity of the image fusion
restoration process, we employed a photometric loss function. Specifically, the fused images were passed through Raft-Stereo
to obtain disparity maps, which were then compared to the ground truth disparity maps. Although Raft-Stereo was configured
to compute gradients, it was frozen and excluded from the optimizer to ensure that only our fusion network was trained.

For optimization, we used the Adam optimizer in conjunction with gradient scaling, initializing the gradient scaler with
a value of 1024. To accelerate training and optimize memory usage, mixed precision training was enabled. The training
process was conducted with a batch size of 4 per GPU, utilizing four RTX 3090 GPUs (24 GB each) in a distributed parallel
setup, resulting in an effective batch size of 16. The model was trained for approximately 20 epochs using this hardware
configuration.

3.2. RGB-NIR Feature Fusion
3.2.1 Network Architecture

We begin by processing the RGB and NIR stereo images through a shared ResNet-based feature extractor fe,.. For each
input image ¢, where s € {RGB, NIR} and ¢ € {left, right}, the encoder transforms it into feature maps:

F¢ = fanc(I$), fors € {RGB,NIR}, ¢ € {left, right}. (15)
Next, we apply the attention-based fusion method [10] from Section 3.1.1 to combine the RGB and NIR features:
Fision = frusion(Frgps FNIR)- (16)

The core of our method lies in constructing correlation volumes that capture the relationships between the left and right
feature maps. We compute correlation volumes for both the fused features and the NIR features:

Vi(z,y, k) = F"(2,y) - Fi® (2 + k,y), s € {fusion, NIR}, (17)

where (z,y) denotes the pixel location, k is the disparity index, and - represents the inner product.

We employ an iterative approach using the GRU structure of the RAFT-Stereo network to refine disparity estimates. The
process begins with an initial disparity dg = 0 and progressively updates this estimate. At each iteration n, the update model
takes the following inputs:



* The previous disparity estimate, d,, .
« The context feature map from the fused left image, F{ft .
* The sampled correlation volume Viyppied, Which alternates between Viygion and Vir.

The update model predicts a disparity increment Ad, which is added to the previous disparity to obtain the next estimate:

Hy1 = ConVGRU(Hyy, dy, [Viampleds Frigion)): (18)
where H, is the hidden state of the ConvGRU layer, initialized with FJ .
Then the increment of disparity is computed by a single convolutional layer and it updates the disparity estimate:
dp+1 =d, + Conv(Hy41). (19)

By alternating between the fused and NIR correlation volumes at each iteration, our method effectively leverages spectral
information from both RGB and NIR images. This approach places more emphasis on NIR features that are robust to
environmental lighting, resulting in more accurate depth estimation as demonstrated in Table 16.

We also test our method on other stereo depth modules [4, 43] to highlight strength of feature fusion. We first fine-tune
these models on the synthetic training dataset using the disparity reconstruction loss and then further adapt them to the real
dataset with the LiDAR loss.

3.2.2 Loss Function

Ground-truth LiDAR Depth Loss We implemented pretrained weight provided by original author, which is trained with
RGB stereo dataset, and fine-tuned this using a combination of an augmented synthetic dataset and our real dataset, utilizing
the L1 loss function. For a series of disparity estimations {d1, d2,ds . ..d, } we compute L1 loss by

N
L= 30 Y ldy(o,0) — difo,0) 0)

u,veﬂg[

where w is weight factor for normalized summation of series of d and {2 is a binary mask indicating valid regions in the
labeled disparity map. We also use LiDAR points (u;, v;, Zg(,i) € Ri}l , which is projected into image I' coordinate, as ground
truth for depth estimation on real-world data:

N
Liipar = Z Z |Zpred (Ui + 2,0 + ) — Zgi
i (2y)eN(r)

2

where NV (r) is a set of point offset, making local neighborhood box and r is radius of it, presently © = 5, Zpred = f:l—'B and
f» and B is focal length of camera and baseline distance, which is constant of our system.

3.2.3 Training Detail

Feature Extraction of RGB and NIR Images We employed the same encoder structure and weights for feature extraction
from both RGB and NIR images. This pretrained encoder, originally trained on RGB images, is effectively applicable to NIR
data. By replicating the single-channel NIR image into three channels, we achieved stereo depth estimation using RAFT-
Stereo [27] and CREStereo [23]. Similarly, replicating a single-channel image derived from converting RGB to grayscale or
from a monocular visible-light camera into three channels did not present issues within the encoder, regardless of the channel
count or target color space. This is because stereo depth estimation primarily involves analyzing the spatial correlation
between pixels in the two images, and the correlation definition remains unaffected by changes in the spectral domain. To
leverage the advantages of fine-tuning pretrained weights, we used the same encoder for both RGB and NIR images and kept
the encoder frozen during training.

Supervised Training We conducted supervised training using our augmented synthetic dataset, which includes RGB-NIR
stereo images and highly detailed, pixel-wise disparity maps. This allowed for supervised learning by directly comparing the
predicted disparity maps generated by the model with the ground truth disparity maps. To mitigate the domain gap between
real and synthetic data, we initially trained for one epoch solely on synthetic data and then incorporated real data into the
training dataset. The real data includes LiDAR-derived depth information and pseudo disparity maps, along with occlusion
maps obtained through sparse LiDAR reconstruction. Using these components, we were able to perform supervised learning
with the previously defined loss function.



Self-supervised Training Once the disparity map d'°" is obtained, it can be used to warp stereo images. The warped image
Jleftiright that left image ' is warped into right image coordinate, is computed by:

x/ —r— dleﬁ(x, ’l/) (22)
‘Z—left\right(x7 y) _ Ileft(l‘ _ dleﬂ(l‘, y)’ y) (23)

, where x, y € Q) and 2 is image plain coordinate.
The photometric consistency between the warped and original images can be leveraged for self-supervised learning:

Jleft [right Jright

Lohotometric = -+ SSIM (e, prie ) (24)

However, this approach presents challenges when there are brightness differences between the left and right images,
making it difficult for the loss to converge. Furthermore, when scene disparities are not pronounced, the warping loss may
not effectively differentiate between accurate and erroneous disparity values, even if the disparity estimates are correct or
grossly inaccurate. To ensure comprehensive data collection across both indoor and outdoor environments, we set the stereo
baseline to 133mm. This setup results in a relatively narrow disparity range in outdoor scenes. Consequently, we utilized
self-supervised learning only as an auxiliary method to support supervised learning on our real dataset.

Finetuning We fine-tuned the pretrained weights of RAFT-Stereo [27] to adapt and extend its capabilities. The correlation
sampler, which computes the correlation volume V/, is not a neural network structure and was therefore excluded from the
learning process. To leverage the performance of the pretrained feature encoder, its parameters were frozen during training.
Similarly, the iterative convolutional GRU updater was also frozen to retain its pretrained functionality.

In our design, an attentional feature fusion module [10] was incorporated to generate a fused feature map Fg ., with
Féops FNir- As such, the attentional feature fusion module was set to trainable mode to enable learning during fine-tuning.

RAFT-Stereo originally implements the context encoder with a structure identical to the feature encoder, differing only
in the number of channels to accommodate separate weights. The context encoder serves as an input to update the hidden
state of the GRU updater. To optimize the design and reduce the frequency of attentional fusion operations, we removed
the context encoder. Instead, the features obtained from the feature encoder were directly forwarded to the inputs originally
designated for context features. Consequently, this modification required additional learning in the process of forwarding the
feature map to the GRU.

To ensure robust performance across different scenarios, batch normalization layers were frozen throughout the fine-
tuning process. This approach preserved the stability of normalization statistics while allowing for effective adaptation of the
model’s new components.

Implement feature fusion on different models MoCha-Stereo [4] and IGEV++[43] are based on an architecture similar
to RAFT-Stereo[27], which comprises a feature encoder, a correlation volume, and recursive disparity refinement. This
similarity allows for the straightforward adaptation of our feature-fusion modification across these models. In our approach,
we insert an attentional feature fusion module after the feature encoder to generate an additional fusion feature alongside the
standard RGB and NIR features. We then construct two separate correlation volumes—one from the NIR features and one
from the fusion features—and alternate between them during the depth estimation process.

4. Additional Result
4.1. Implementation of RGB-NIR Image Fusion Methods for Comparative Analysis

Figure 7 and 8 illustrate different image fusion methods applied to our real RGB-NIR dataset. We conducted comparative
studies on downstream vision applications using our image fusion model alongside other color fusion techniques.

Bayesian Fusion [44] This method employs Bayesian estimation to fuse two different mono-channel images. We imple-
mented per-channel fusion for the R, G, and B channels with NIR using the Bayesian Fusion algorithm. The fusion process
involves an iterative optimization procedure that incorporates total variation (TV) regularization to preserve edge details and
reduce noise. Specifically, the fusion is achieved by solving the following optimization problem:

min k1 # C = Di|* + ks * C = Dol> + | X = C[” + ATV(C) (25)
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Figure 7. Image fusion visualization of ours and comparison methods. (a,b) Pixel-aligned RGB and NIR images. (c) Image driven
by simple channel sum. (d) YCrCb channel fusion [16]. (e) Bayesian estimation based fusion [44]. (f) Gradient adaptive fusion [1]. (g)
DarkVisionNet [18]. (h) VGG based fusion [22]. (i) HSV chanenl fusion (our baseline) [ 1], (j) Our fusion method.

(i) HSV fusion

(b) NIR (d) YCrCb fusion (f) Adaptive fusion ' (h) VGG-NIR (i) Ours

Figure 8. Image fusion visualization of ours and comparison methods, indoor sample. (a,b) Pixel-aligned RGB and NIR images. (c)
Image driven by simple channel sum. (d) YCrCb channel fusion [16]. (e) Bayesian estimation based fusion [44]. (f) Gradient adaptive
fusion [1]. (g) DarkVisionNet [18]. (h) VGG based fusion [22]. (i) HSV chanenl fusion (our baseline) [11], (j) Our fusion method.

where C'is the fused image channel, Dy and D5 are the degraded observations from the RGB and NIR channels respec-
tively, k1 and ko are convolution kernels, X is the current estimate of the fused image, and ) is a regularization parameter
controlling the strength of the TV term. The optimization is performed using proximal gradient methods, where the TV
regularization is handled by the proximal operator:

2CY H
O = prox, vy < tp )

ot T 26
2C +2D +p (20)

where Y represents the difference between the NIR and RGB images, p is a scaling factor, and H is updated through
the proximal TV operation. The iterative process continues for a predefined number of iterations to obtain the final fused
channel. The fused RGB image is then constructed by stacking the individually fused R, G, and B channels. We prepared
the comparison using the source code provided by the authors, ensuring an accurate implementation of the Bayesian Fusion
method for our dataset.



DarkVision [18] DarkVision employs a Multi-Layer Perceptron (MLP) network to enhance and denoise dark RGB images
with guidance from high-quality NIR images. We utilized the pretrained version of this network for our comparisons, focusing
on its ability to improve image quality without incorporating explicit mathematical formulations.

Infrared-VGG Fusion [22] This method is based on the VGG architecture and fuses infrared and visible images using a
pretrained VGG module as the encoder. We followed the installation instructions provided by the authors and utilized their
publicly available code to set up the comparison environment, enabling a direct evaluation of the fusion performance without
delving into the underlying equations.

YCbCr Channel Fusion [16] The YCbCr Channel Fusion method leverages the superior detail preservation of NIR images
under various environmental conditions by fusing the luminance (Y) channel in the YCbCr color space. The fusion process
is carried out as follows: First, the RGB image is converted to the YCbCr color space, and its grayscale version is obtained.

lrcB Ir
C1 | = Mros—voverlras | 1c | - (27)
CQ IB
The fusion weight is computed by normalizing the difference between the NIR and grayscale images:
Ing — 1
Iy = MR RGB’ (28)
Imax

where Iyir is the intensity of the NIR image and Iy is the intensity of the grayscale RGB image. I,y is the maximum
intensity value for normalization scaling the difference to the range [0, 1]. The fused luminance channel is then calculated
as:

ltusea = IrGB * Iv + Inik - (1 — Iv), (29)

where [rgp represents the luminance component of the YCbCr image. To enhance the chromatic channels, a scaling factor
m is determined by:
l —1
m o= RGBT wsed - Ghere m =0 if Irgs = 0. (30)
IrcB
This ensures numerical stability by avoiding division by zero. The chromatic channels are then adjusted using the scaling

factor and then the fused YCbCr image is reconstructed by stacking the fused luminance and adjusted chromatic channels:

C1 fused = C1 - (1 +m), Cofusea = C2 - (L +m) (31)
Ifused = MYCbCr%RGB [lfused7 Cl,fused7 C2,fused]T~ (32)

This fused YCbCr image is then converted back to the RGB color space to obtain the final fused image. We prepared the
comparison based on the equations described in the paper, implementing the fusion process as outlined in the authors’ source
code.

HSV Channel Fusion [11] This method transforms the images into the HSV color space and fuses the V channel by
addition:
Viused = 0.5VrgB + 0.5IN1R- (33)

The resulting HSV image is then converted back to RGB. We prepared the comparison by blending the V channel and NIR
image at a 0.5:0.5 ratio.

Adaptive RGB-NIR Fusion [1] The Adaptive RGB-NIR Fusion method enhances the edges of the RGB image by lever-
aging the pixel gradients from the NIR image. The fusion process consists of several key steps: local contrast computation,
fusion map generation, high-pass filtering, and image enhancement.

The first step is a local contrast computation. The method computes the local contrast for both the luminance component
of the YCbCr-transformed RGB image and the NIR image. The YCbCr transformation is defined as:

lraB Ir
C1 | = Mrge—vyeverlras |1 | s (34)
Cy Ip



where [rgg is the luminance (Y channel), and C, C represent the chrominance channels (Cb and Cr, respectively). For an
intensity image I (either luminance [rgp or NIR intensity Iir), the local contrast LocalContrast; is defined as a combination
of intensity variation and amplitude variation within a local window:

LocalContrast; = & - (Imax — Imin) + (1 — ) - MaxAmplitude(]), (35)

where:
* Imax and I, are the maximum and minimum intensity values within the local window.
* MaxAmplitude(7) is the maximum amplitude obtained from the gradient magnitude computed using Sobel filters:

. ar\*  (or\?
MaxAmplitude(I) = max \/(83:) +<8y) (36)

* « is a weighting factor (set to 0.5 in our implementation).
The next step is generating the fusion map. Using the local contrasts LocalContrast; ,,,, and LocalContrastyr, the fusion
map FusionMap is generated to determine the regions where the NIR image can provide enhanced details:

max (0, LocalContrastyir — LocalContrast;,, )

FusionMap =
P max(LocalContrastyr, €)

) 37

where € is a small constant (e.g., 1 x 1075) to prevent division by zero. This fusion map emphasizes areas where the NIR
image has higher local contrast compared to the RGB image.
A high-pass filter is then applied to the NIR image to extract high-frequency details:

HPF(INIR) = INIR — GaussianBlur(INIR, O')7 (38)

where GaussianBlur applies a Gaussian filter with a specified kernel size (e.g., 19 x 19) to smooth the NIR image, and o is
the standard deviation of the Gaussian kernel.

The final enhancement is performed by adding the product of the fusion map and the high-pass filtered NIR image to each
channel of the YCbCr-converted RGB image. The fused YCbCr image is then converted back to the RGB color space. The
final fused RGB image [fysq is computed as:

IHDF = FusionMap . HPF(INIR) (39)
lraB + InpF
Itysea = Mycoer—rae | C1 + Iupr | - (40)
Cs + Iupr

Finally, the fused RGB image I.q is clipped to the valid intensity range [0, 255] to ensure proper image representation.

4.2. RGB-NIR Image Fusion for Object Detection

We evaluated the performance of our color fusion approach on object detection tasks [32].

4.2.1 Evaluation

To evaluate the performance of our object detection model, we employed standard metrics commonly used in single-class
multi-object detection tasks. Specifically, we utilized precision, recall, F1-score, mean Average Precision (mAP), and average
Intersection over Union (IoU) as our primary evaluation metrics. Given that the synthetic dataset was generated with precise
object index information, we were able to construct accurate ground-truth annotations for object detection. For the real
dataset, we prepared the data by directly creating pseudo labels to serve as ground-truth annotations.

4.2.2 Additional Results

Table 11 presents a comprehensive evaluation of various image fusion methods using YOLO [32] for object detection across
multiple performance metrics. Notably, our proposed RGB-NIR fusion technique achieves the highest Detection mAP
(0.828), surpassing the second-best Bayesian fusion method (0.773) by a significant margin. This superior performance



is consistently reflected across all evaluated metrics, including Average 10U (0.509), F1 score (0.688), Precision (0.734),
and Recall (0.687), indicating a robust enhancement in both localization and classification capabilities. In comparison, tradi-
tional methods such as HSV baseline [1 1] and YCrCb [16] demonstrate lower performance, with Detection mAP values of
0.744 and 0.745, respectively. Furthermore, specialized approaches like DarkVision [ 8] exhibit considerably lower metrics,
highlighting the effectiveness of our fusion strategy. The consistent outperformance across diverse metrics underscores the
efficacy of our RGB-NIR fusion method in enhancing object detection accuracy, precision, and recall, thereby establishing it
as a superior choice for image fusion in object detection tasks.

Methods Detection mAP 1T | Average IOU 1 | F1score 1 | Precision T | Recall 1
RGB 0.756 0.494 0.623 0.642 0.631
NIR 0.703 0.445 0.558 0.617 0.551
YCrCb [16] 0.745 0.479 0.596 0.651 0.590
Bayesian[44] 0.773 0.485 0.641 0.661 0.647
DarkVision[ 18] 0.571 0.351 0.465 0.504 0.466
Adaptive[1] 0.762 0.473 0.630 0.665 0.632
VGG-NIR[22 0.726 0.449 0.573 0.588 0.590
HSV (our baseline) [11] 0.744 0.464 0.612 0.649 0.608
Ours 0.828 0.509 0.638 0.734 0.687

Table 11. Comparison of image fusion methods for YOLO [32]. Our RGB-NIR image fusion method outperforms other image-fusion
methods for object detection.

4.3. RGB-NIR Image Fusion for Structure-from-Motion

Experiments In this study, we evaluated the results of our image fusion approach within the COLMAP framework, a robust
Structure-from-Motion (SfM) pipeline, to reconstruct 3D geometry from RGB, Near-Infrared (NIR), and fused images. SfM
is a crucial process that estimates both intrinsic and extrinsic camera parameters from multiple images with unknown camera
settings, ultimately generating a coherent 3D model of the scene. This reconstruction process begins by selecting a subset
of frames to define a world coordinate system, followed by aligning subsequent frames through feature matching, ensuring
precise alignment across all images. Effective feature extraction is essential for successful SfM, especially under challenging
lighting conditions where regions may suffer from underexposure or overexposure, resulting in unreliable features. Single-
channel images, such as those in the NIR spectrum, often lack sufficient color variation, complicating feature extraction.
To overcome these limitations, we propose a fusion approach that integrates RGB images, which offer rich color details,
with NIR images, which improve feature detection in low-contrast areas. This fusion is designed to enhance feature quality,
enabling more accurate and robust 3D reconstructions within the COLMAP environment.

For our experiments, we used a well-illuminated nighttime video dataset, extracting 200 consecutive frames. Each frame
contained stereo RGB and stereo NIR images, yielding a total of 400 RGB images, 400 NIR images, and 400 fused images
produced using our image fusion method. To ensure consistency across different reconstruction scenarios, we uniformly
applied the Simple Radial model for feature extraction across all image sets. Prior to feature extraction, all images underwent
stereo calibration to determine intrinsic parameters, which were subsequently used to undistort the images. This preprocess-
ing step mitigated lens distortion and ensured geometric consistency, with the intrinsic parameters provided as presets for the
Simple Radial model.

Feature matching was performed using exhaustive matching with a block size of 50, enabling comprehensive correspon-
dence across image pairs. We conducted three reconstruction experiments, each evaluating one of the image modalities:
RGB, NIR, and fused images. By comparing the outcomes, we assessed the impact of image fusion on feature detection and
overall reconstruction accuracy under challenging lighting conditions.

Result Figure 9 presents a qualitative comparison of COLMAP feature extraction applied to RGB, NIR, and fusion images.
Red dots represent the extracted features, while pink dots indicate matched keypoints used for feature correspondence. (c)
demonstrates that the fusion images effectively integrate features from both RGB (a) and NIR (b), compensating for dark
regions in one spectral domain with information from the other. This highlights the capability of the fusion method to leverage
complementary spectral information for robust feature extraction and matching.



b) COLMAP reconstruction with NIR images

c) COLMAP reconstruction with our RGB-NIR fusion images

Figure 9. COLMAP reconstruction examples for RGB, NIR and our fused images. (a) RGB images. (b) NIR images. (¢) Our fused
images.

4.4. Sparse Depth Reconstruction

Sparse depth reconstruction aims to transform a sparse depth map into a full-resolution dense depth map using an RGB image
as guidance [19, 39]. Many depth estimation methods, such as LiDAR and RGB-D cameras, provide depth information at
resolutions that are significantly lower than those of the accompanying RGB images. High-end LiDAR sensors typically
have a maximum resolution of 2048 x 128, and stereo depth estimation methods are often considered to have limitations in
reliability. Excluding low-confidence regions from these methods’ results leads to further sparsity and significant reductions
in depth data. Furthermore, when stereo depth maps are computed and warped onto different camera image planes, the
detailed pixel-level depth information is often lost. To address these challenges, methods such as CostDCNet [19] and BPNet
[39] use RGB images as guidance to reconstruct dense depth maps from sparse data. However, certain regions of the RGB
image may lack sufficient detail for depth estimation, and significant lighting variations can further degrade the reconstruction
quality. Our proposed RGB-NIR data and RGB-NIR image fusion methodology generates images with excellent photometric
consistency even under challenging lighting conditions. As a result, this approach enhances the performance of sparse depth
reconstruction by enabling more reliable guidance images and improving depth estimation accuracy.

4.5. RGB-NIR Fusion for Depth Estimation
4.5.1 Implementation of RGB-NIR Stereo Depth Estimations for Comparative Analysis

This study evaluates our proposed feature-fusion method against several state-of-the-art approaches for stereo depth estima-
tion. The methods compared include single-spectral stereo disparity estimation (RGB and NIR) using RAFT-Stereo [27],
RAFT-Stereo integrated with our image fusion technique, and other image fusion approaches [1, 11, 16, 18, 22, 24, 44].
Additionally, comparisons were made with fine-tuned versions of cross-spectral stereo depth estimation models [ 14, 40].

For comparisons using RAFT-Stereo, we tested various input images while maintaining consistent weights in the RAFT-
Stereo model to ensure fair pairwise comparisons. For multi-spectral models, we fine-tuned each method using our augmented
synthetic dataset and real-world dataset to achieve optimal performance.

These four images are then used for depth estimation. Instead of relying on synthetic images generated via conversion,
our approach directly utilizes RGB-NIR stereo pairs as inputs and fine-tunes the depth network accordingly.

The CSPD model [14], originally designed for stereo depth estimation with RGB and thermal stereo pairs, was adapted
for this study. We replaced thermal stereo images with NIR stereo pairs and retrained the model using our dataset to facilitate



direct comparison.

Lastly, the DPSNet model [40], which extends RAFT-Stereo by incorporating polarimetry stereo images alongside RGB
stereo inputs, was adapted for NIR stereo. We replaced polarimetry stereo images with NIR stereo pairs and conducted
supervised training to fine-tune the model for our application.

4.5.2 Evaluation Metrics

We evaluated our stereo depth estimation approach using labeled ground-truth depth data, employing a comprehensive set of
metrics to assess performance across both synthetic and real-world datasets.

For the synthetic dataset, ground truth disparity maps were provided. To evaluate the accuracy of the predicted disparity
maps, we utilized two primary error metrics: the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE).
We computed the absolute error (Mean Absolute Error, MAE) and the root mean square error (RMSE) between the predicted
disparity map and the ground truth disparity map as primary evaluation metrics. Additionally, we calculated the proportion of
pixels with Euclidean distance errors below thresholds of 1, 3, and 5 pixels to assess the spatial precision of the predictions.
These evaluations resulted in five distinct metrics: MAE, RMSE, and the percentage of pixels with errors under 1, 3, and 5
pixels (e < 1px, e < 3px, e < 5pX).

For the real-world dataset, which included sparse LiDAR depth labels, we evaluated the predicted depth values by com-
paring them to ground truth depth measurements at LiDAR-indicated points. The primary metrics applied in this evaluation
were the MAE and RMSE of the depth values, expressed in meters, providing a robust measurement of accuracy in real-world
scenarios. Furthermore, we computed the ratio

ratio = max < 41)

Zpred (U, V) Zge(u, V) )
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for all pixels (u,v) and defined three thresholds: &; (ratio < 1.25), d, (ratio < 1.252), and J3 (ratio < 1.253). These
thresholds provided additional evaluation metrics, resulting in a total of five metrics: MAE based on depth, RMSE, 61, 62,
and 3.

4.5.3 Additional Quantitative Results

We present the stereo depth estimation results for both our RGB-NIR real dataset and the augmented synthetic dataset.
Building upon the summary results presented in the main paper, we have conducted a more comprehensive analysis by
categorizing the data based on different environmental conditions and expanding the evaluation metrics to include Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), and threshold-based accuracy metrics (61, d2, d3). This detailed
approach facilitates a deeper understanding of the algorithm’s performance across diverse scenarios.

Table 12 demonstrates that our fusion method consistently outperforms single modality depth estimation across a range of
challenging environments, including well-lit outdoor, dark outdoor, cloudy, well-lit indoor, dark indoor, and complex indoor
settings. Moreover, Table 13 illustrates that our fusion strategy not only enhances performance when applied to RAFT stereo
but also provides significant improvements with other stereo depth estimation methods [4, 27, 43], highlighting its versatility
as a robust baseline approach.

4.5.4 Additional Qualitative Samples

Figure 10 presents a qualitative comparison of our proposed stereo depth estimation network with RAFT-Stereo [27], evalu-
ated on RGB images (a), NIR images (b) and our image fusion method (c). Our method demonstrates superior performance,
particularly in regions with overexposure and high specular reflectance. Additionally, Figure 11 showcases qualitative results
under challenging lighting conditions. For low-light regions, our feature fusion approach effectively compensates for missing
information by leveraging complementary spectral data, resulting in more accurate and consistent depth estimation.

4.6. Additional Ablation Study
4.6.1 Pretrained Feature Encoder Weights

Table 14 and Figure 12 show an ablation study of the pretrained feature encoder. We quantitatively and qualitatively compared
the performance of our feature fusion depth estimation using three encoder weights provided by [27], trained on Eth3D [35],
SceneFlow [29], and Middlebury [33]. The encoder based on Eth3D was found to be the most suitable among the three.



Depth MAE [m]} Well-lit Outdoor | Dark Outdoor | Cloudy Outdoor | Well-lit Indoor | Dark Indoor | Complex Indoor
RGB 5.710 7.491 3.101 3.292 3.201 4.698
NIR 4.576 5.563 3.139 3.062 2.333 4.271
YCbCr [16] 6.759 5.602 3.126 3.025 2.231 6.429
Adaptive [1] 6.857 6.408 3.094 3.227 2.375 6.675
Bayesian [44] 6.225 10.367 7.717 6.187 5.372 7.996
HSV (our baseline) [11] 4.468 5.417 3.121 3.091 2.293 4.293
SIRLUT [24] 4.485 7.725 3.351 5.134 4.498 5.768
VGG-NIR [37] 6.75 6.303 3.021 3.055 2.138 6.682
CSPD [14] 6.965 11.403 8.86 12.132 10.661 13.954
DPS-NET [40] 7.555 6.593 2.75 2.849 2.326 5.144
Image Fusion 4.356 5.156 2.816 2.99 2431 4.181
Feature fusion 3.651 4.771 2.838 3.1 2.335 4.182

Table 12. Metrics for Stereo Depth Estimation. Evaluation conducted on a real-world dataset captured in a nighttime environment.
Results are grouped as follows: (1) the first group represents metrics computed using our RGB-NIR dataset with 3-channel stereo input
processed by the RAFT-Stereo [27] model, IGEV++ [43] and MoChaStereo [4]; (2) the second group includes results from other multi-
spectral stereo depth estimation approaches, fine-tuned on our dataset; and (3) the final group showcases methods from Sections 4.1 and

4.2 of our main paper.

depth MAE [m]| Day outdoor | Night outdoor | Cloudy outdoor | Well-lit indoor | Dark indoor | Complex indoor

RAFT-Stereo (RGB) [27] 5.710 7.491 3.101 3.292 3.201 4.698
RAFT-Stereo (NIR) [27] 4.576 5.563 3.139 3.062 2.333 4.271
RAFT-Stereo (HSV) [27] 4.468 5.417 3.121 3.091 2.293 4.293
Mocha-Stereo (RGB) [4] 6.037 16.930 3915 7.083 8.772 10.841
Mocha-Stereo (NIR) [4] 5.353 8.949 5.203 5.891 3.725 6.338
Mocha-Stereo (HSV) [4] 5.141 10.496 5.167 6.121 4.154 7.634
IGEV++ (RGB) [43] 6.176 9.277 4.261 3.194 3.643 5.958
IGEV++ (NIR) [43] 6.457 5.630 4.189 3.312 2.573 4.692
IGEV++ (HSV) [43] 6.096 5.762 4.130 3.052 2.501 4915
Our image fusion [27] 4.356 5.156 2.816 2.990 2431 4.181
Our image fusion [4] 5.191 8.125 3.731 4.144 2.882 5.788
Our image fusion [43] 5.968 7.314 3.737 3.532 2.882 4.848
Our feature fusion [27] 3.651 4.771 2.838 2.695 2.059 3.920
Our feature fusion [4] 4.415 6.063 3.147 4.890 4.282 6.688
Our feature fusion [43] 2.231 3.012 2.368 2.159 1.794 3.091

Table 13. RGB-NIR feature-based depth estimation. Our feature-based image fusion method for depth estimation methods [4, 27, 43]
outperforms using the single-modality RGB/NIR inputs, hand-craft fusion [11] and our image fusion method (Section 3.1.1).

Pretrained MAE (m) | RMSE (m) 01 0o 03

SceneFlow [29] 2.6191 6.7860 0.6473 | 0.8768 | 0.9545
Middlebury [33] 5.0356 8.8270 0.2838 | 0.4143 | 0.459%4
Eth3d [35] 2.5886 6.7470 0.6526 | 0.8775 | 0.9556

Table 14. Ablation study on different pretrained feature encoder

4.6.2 Ablation on Feature Fusion Implementation

Table 15 and Figure 13 show an ablation study of different feature fusion methods. We explored five methods: simple
feature addition, concatenation with a convolution layer to down-sample concatenated feature channels, pointwise feature
multiplication, weighted sum with RGB features at 0.25 and NIR features at 0.75, and our implementation of the attentional
feature fusion method inspired by [10]. Although feature multiplication showed the best quantitative results when evaluated
using sampled sparse LiDAR information, it performed poorly in qualitative analysis. The attentional feature fusion method
demonstrated the best adaptation to spatially varying lighting conditions.
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Figure 10. Depth estimation samples of our feature fusion model. (a) RGB images and outputs of [27] with them. (b) NIR images
and outputs with them. (c) Fused images by our image fusion method and outputs with them. (d) Stereo depth estimation with our feature
fusion based method. (e) Ground-truth sparse LiDAR.
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Figure 11. Depth estimation samples on challenging lighting conditions of our feature fusion model. (a) RGB images and outputs of
[27] with them. (b) NIR images and outputs with them. (c) Fused images by our image fusion method and outputs with them. (d) Stereo
depth estimation with our feature fusion based method. (e) Ground-truth sparse LiDAR.

Table 16 and Figure 14 show an ablation study on different correlation volume alternating methods. We compared using
only the Fusion volume, alternating between RGB and NIR volumes, alternating among Fusion, RGB, and NIR volumes,
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Figure 12. Ablation study on pretrained encoder. (a) Pretrained with [35]. (b) Pretrained with [29]. (c) Pretrained with [33].

and alternating between Fusion and NIR volumes. In a quantitative evaluation using sparse LiDAR ground truth, the Fusion-
RGB-NIR alternating method achieved the best performance. However, the most reliable qualitative results were obtained
with the Fusion-NIR alternating method.

Pretrained MAE (m) | RMSE (m) 01 0o 03

Feature addition 2.611 6.5365 0.6526 | 0.8772 | 0.9552

Concatenation 2.5719 6.004 0.6455 | 0.8782 | 0.954

Multiplication 2.4524 5.8743 0.6634 | 0.8768 | 0.9517

Weight sum 2.6251 6.9073 0.6491 | 0.8686 | 0.9535

Attentional feature fusion 2.5886 6.7470 0.6422 | 0.8775 | 0.9556

Table 15. Ablation study on different implementations of feature fusion.

Correlation volumes for disparity estimation MAE (m) | RMSE (m) 01 do d3
Fusion correlation volumes only 3.3979 7.4405 0.5073 | 0.7409 | 0.8073
Alternating RGB-NIR correlation volumes 2.6508 8.5712 0.6575 | 0.8841 | 0.9555
Alternating Fusion-RGB-NIR correlation volumes 2.5238 7.4262 0.6336 | 0.8763 | 0.9550
Alternating Fusion-NIR correlation volumes 2.5886 6.7470 0.6422 | 0.8775 | 0.9556
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