Question-Aware Gaussian Experts for Audio-Visual Question Answering

Supplementary Material

A. Experimental Setup

A.1. Datasets

MUSIC-AVQA." We use the MUSIC-AVQA dataset [2]
to train and test our model. This dataset is a comprehen-
sive benchmark specifically designed for audio-visual rea-
soning tasks. It contains 9,288 music performance videos
sourced from YouTube, totaling over 150 hours of content.
The dataset features 22 different instruments and includes
45,869 question-answer pairs. The questions are catego-
rized into audio-only, visual-only, and audio-visual types
based on 33 templates. These templates cover a range of
reasoning categories, such as existence, location, quantity,
comparison, and temporal aspects. MUSIC-AVQA excels
in challenging models with complex spatio-temporal rea-
soning, making it a crucial benchmark for evaluating ad-
vanced audio-visual understanding.

MUSIC-AVQA-R.” We also evaluate our model’s perfor-
mance on MUSIC-AVQA-R [6], an extended version of the
original MUSIC-AVQA dataset designed to test the model’s
robustness. This extension restructures and significantly ex-
pands the test set, with a particular emphasis on rare cases
and out-of-distribution samples. It includes 211,572 re-
structured questions, offering a more comprehensive evalu-
ation across a wider range of question types beyond basic
template-based questions. This makes MUSIC-AVQA-R
a rigorous benchmark for assessing models’ capabilities in
spatial-temporal reasoning and their ability to manage com-
plex multimodal interactions.

MUSIC-AVQA-v2.0.> We assess our model on MUSIC-
AVQA-v2.0 [5], an improved version of the original
MUSIC-AVQA dataset that addresses data bias issues.
This updated dataset offers a more balanced benchmark
for audio-visual question answering, containing 53,573
question-answer pairs with a broader range of musical en-
sembles and more complex audio-visual interactions. To
reduce bias, the authors manually curated 1,230 additional
musical performance videos from YouTube and created
8,100 new QA pairs to supplement the original dataset.
These updates ensure more balanced answers across vari-
ous question templates.

A.2. Implementation Details

Disjoint-Centered Gaussian Experts. To reduce overlaps
in the regions of influence among multiple Gaussian dis-

lhttps://github.com/GoWu—;ab/MUSIC—AVQA
zhttps://githqb.ccm/remifgroup/MUSIC*AVQA*R
3hLLpS://giLth.com/DfagonLLul995/MUSIC7AVQA*V2.O

CLIP
Method Encoder A-QA V-QA AV-QA | Avg
PSTP-Net [3] B/32 7091 7726 7257 | 73.52
TSPM [4] B/32 7691 8192 7257 | 75.81
QA-TIGER B/32 76.66 83.69  72.61 | 76.26
PSTP-Net [3] L/14 73.87 79.19 71.76 | 74.10
TSPM [4] L/14 7691 83.61 73.51 | 76.79
QA-TIGER L/14 78.58 85.14 73.74 | 77.62

Table A. Results for different Encoders (CLIP-B/32 and CLIP-
L/14) used for both visual and textual feature extraction.

tributions, we initialize the center positions Ugyeq Of the
Gaussian experts with a predefined margin between them
(Algorithm 1). While minor overlap may occur due to the
Gaussian widths, the centers remain non-overlapping, re-
ducing redundant temporal influences. To refine tempo-
ral segments, learnable offsets adjust the fixed positions,
keeping centers within constrained margins. This ensures
each expert focuses on distinct temporal ranges, capturing
question-relevant segments more effectively while minimiz-
ing redundancy and maintaining expert specialization.

Patch Merging. To ensure a fair comparison with
TSPM [4], we utilize the patch merging strategy from
ToMe [1], which merges similar visual tokens within each
transformer block. This involves dividing tokens into sub-
sets, calculating similarities, and applying mean fusion to
generate merged token features. By adopting this method,
we align the feature extraction pipeline with TSPM for con-
sistency in the experimental setup. For more detail on patch
merging, please refer to ToMe* and TSPM®.

B. More Experimental Results

Since some prior studies evaluate the model with CLIP-
B/32 encoder, we evaluate our method under the same set-
ting to enable direct comparison. Previous studies, such as
PSTP-Net [3] and TSPM [4], have shown that performance
improves when transitioning from CLIP-B/32 to a more ad-
vanced feature extractor like CLIP-L/14. However, using
CLIP-B/32 remains a relevant benchmark for assessing the
baseline performance of methods. As shown in Table A,
our method consistently outperforms PSTP-Net and TSPM,
even with the smaller CLIP-B/32 encoder. This demon-
strates the robustness of our approach, highlighting that its
effectiveness is not solely reliant on high-capacity encoders.

4https://qithqb.cow/tacebockresear:h/foMe
ShLLps://giLth.coW/GeWquab/TS?N
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Algorithm 1 Gaussian Experts Module

Input: Sentence-level question features: ¢, € RP.
Video/Audio features: vg,a, € RT*P. Visual/Audio-
related patch features : p,, p, € RT*P.

Output: Temporal integrated features: Aggregated
visual-related patch features ©,, € RP, aggregated
audio-related patch features 7,, € RP”. Aggregated au-
dio features a € RP.

Initialization: Initialize the center of £ experts to the
central positions of E/ segments.

margin < ﬁ > Margin between Gaussian centers

Ufixed < {margin—&—i-%fori:OtoE—l

1. Question-Guided Attention:

vy, g+ CA(gs, v, vq), CA(gs,a4,2,)

2. Calculate Experts Probability:
r,, T, < Softmax(Router(vy)), Softmax(Router(ay))

3. Gaussian Weight Generation:
Uoffset|v, 0 < Gaussian Generator(vy)
Uoffset|a, Ta < Gaussian Generator(ay, )
Adjust centers and normalize widths:

— Ufyeq T Tanh(uoffset‘ ,) - margin

Question: How many instruments are sounding in the video? Ground Truth: five
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(b) Temporal visual weights from Gaussian experts
0.5

L4 Upyoq + Tanh(u}

offset|a

) - margin

ol o < Sigmoid(c?), Sigmoid(c?)

v

Generate temporal Gaussian weights:
for i < 1to E do
goli]; 8al] + N(ufw (0;)2)7 N(u;, (02)2)

, , ] oli]
goli], 8ali] « Takte ) maxteaTD

end for

4. Integration of Experts OQutput:
Pv = Vyq + Po
Pa = V¢ + Pa
i S girii(a,)
Up, > Up, Z’LEZI gr, (P, ZlE:1 g.r,E (Pa)
return v, , U, , 0

C. In-Depth Visualization of QA-TIGER

We demonstrate how QA-TIGER dynamically integrates
temporal and multimodal information through Gaussian ex-
perts and question-aware fusion across diverse scenarios.

C.1. Temporal Integration of Gaussian Experts

Gaussian experts adaptively focus on specific temporal re-
gions based on the input and question. Figure A illus-
trates the temporal weights generated by the seven Gaussian
experts employed in the model (see Figures Ab and Ad).
These graphs show how the weights are combined to em-
phasize the model’s focus on distinct temporal segments
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Figure A. Visualization of temporal weights from Gaussian ex-
perts for visual and audio modalities, integrated to focus on
question-relevant frames for accurate predictions.

across visual and audio modalities (Figures Ad and Ae).
Each Gaussian curve demonstrates that the experts special-
ize in specific, minimally overlapping temporal regions, dy-
namically adjusting their focus based on the question and
modality. By integrating these Gaussian weights, the model
selectively attends to different frames according to the as-
signed expert and modality, even when processing the same
question. This frame-level and modality-specific informa-
tion is then utilized in the question-guided reasoning stage.
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C.2. Visualization of Question-Aware Fusion

We visualize the attention of the question-aware fusion
module across nine question types to highlight the effective-
ness of our method. These nine question types are catego-
rized into three main groups: Audio-QA (A-QA), Visual-
QA (V-QA), and Audio-Visual-QA (AV-QA). A-QA fo-
cuses solely on auditory cues, V-QA relies exclusively on
visual information, while AV-QA requires the integration
of both modalities to address multi-modal questions effec-
tively. Note that attention is presented in two parts: visual
modality (top) and audio modality (bottom).

30 m 50
(b) Visual Location
Figure C. Valid attention visualization for visual questions.

C.2.1. Valid Cases

Audio Counting. In the visual modality, attention focuses
on the “bassoon” with two players clearly visible, while
the “clarinet” is partially obscured (Figure Ba). The audio
modality highlights the “clarinet”, ensuring recognition of
both instruments. Interestingly, the word “are” also gains
attention, likely due to its role in framing the question in-
volving counting and the presence of instruments.

Audio Comparative. The attention mechanism dynami-
cally shifts between modalities to adapt to changing con-
texts. Initially, the audio attention focuses on the “piano”
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Figure E. Attention visualization in failure cases.

due to its prominent sound. As the “flute” becomes more
dominant, the visual attention compensates by identifying
that the “piano” continues to be played, even though its au-
dio presence has diminished. This interaction is illustrated
in Figure Bb.

Visual Counting. In the visual modality, attention focuses
on “many” and “saxophone,” leveraging visual cues to es-
timate the number of instruments. Meanwhile, the audio
modality complements this by highlighting the distinct au-
ditory features of saxophone sounds, helping to identify and
differentiate instances throughout the video in Figure Ca.

Visual Location. The fusion module focuses on “kind of”
and “leftest instrument” in the visual modality, using spatial
cues to locate the leftmost instrument. In contrast, the audio
modality emphasizes “kind of” and “instrument” to classify
its type. Together, these modalities effectively balance spa-
tial and categorical aspects as illustrated in Figure Cb.

Audio-Visual Existential. When observing the entire video
from a distance, the visual modality primarily focuses on
the “bagpipe”, determining whether it is consistently visi-
ble throughout the scene. Meanwhile, the audio modality

emphasizes the words “always” and “playing”, assessing
whether the bagpipe consistently produces sound. This in-
terplay between the modalities is illustrated in Figure Da.

Audio-Visual Counting. The fusion module adapts its at-
tention to focus on counting-related cues across modalities.
In the visual modality, attention emphasizes “drum” and
the word “many” through close-up images, enabling accu-
rate counting of the drums. At the same time, it highlights
“sounding” and “drum” in the audio modality to distinguish
individual drum sounds as depicted in Figure Db.

Audio-Visual Location. In this synthetic video, with only
the flute sound present, the model uses spatial and auditory
cues. Visually, it focuses on “left” and “sounding” to locate
the instrument, while auditorily, it emphasizes “instrument”
to classify its type, as shown in Figure Dc.

Audio-Visual Comparative. The module focuses on “in-
strument,” “right,” “left,” and “louder” to identify spatial
locations in visual modality. Meanwhile, it emphasizes
“louder” to analyze sound intensities in audio modality.
This complementary approach enables the model to tackle
the question effectively, as illustrated in Figure Dd.



Audio-Visual Temporal. The attention module balances vi-
sual and auditory cues to identify the specific clarinet that
produces the first sound. In the visual modality, attention
focuses on “clarinet” and “first,” using motion cues to de-
tect active clarinets. To compensate for visually occluded
clarinets, the audio modality emphasizes “which,” “clar-
inet,” and “first,” helping to highlight the source of the ini-
tial sound in Figure De.

C.2.2. Failure Cases

Audio Counting. The attention incorrectly highlights “sax-
ophone” and related auditory features instead of “trumpet,”
as shown in Figure Ea. Given that only trumpet sounds are
present, this misclassification likely stems from the model
confusing the trumpet sound with the similar auditory char-
acteristics of a saxophone. Visually, the model also fails to
correctly identify “trumpet,” possibly due to one being par-
tially obscured and the other blending into the background
because of similar coloring with the performers’ clothing.
This suggests that the model overly relies on auditory cues
when visual distinctions are less prominent, leading to con-
fusion between visually and aurally similar objects.

Visual Location. The failure comes from limitations in
both modalities. Visually, the absence of the “bagpipe”
forces reliance on auditory cues. However, with no “bag-
pipe” sound present, overlapping flute and bassoon sounds
may have been misclassified, as shown in Figure Eb. This
highlights the challenge of distinguishing similar-sounding
instruments in multi-modal reasoning. The issue likely
stems from the model’s difficulty in separating distinct audi-
tory features when instrument sounds overlap, compounded
by the lack of visual confirmation.

Audio-Visual Location. Auditorily, the module captures
sound-related cues effectively. Visually, attention is drawn
to less critical words like “is,” which provide some contex-
tual relevance. However, this focus reduces the emphasis
on essential keywords such as “where” and “first,” which
are crucial for temporal understanding, as shown in Fig-
ure Ec. Such attention patterns suggest that the model may
have overemphasized certain contextual cues while under-
utilizing spatial and temporal keywords, leading to an incor-
rect prediction. This indicates a need for better balancing of
context and question-specific focus.

C.3. Qualitative Comparison of Temporal Gaussian

This section focuses on two main points: (i) For all nine
question types, we demonstrate that the proposed tempo-
ral Gaussian approach outperforms conventional sampling
methods, such as uniform sampling and Top-K frame se-
lection, by efficiently utilizing the entire temporal sequence
and focusing on critical segments in Figure F, G and H. (ii)
In Figure I, we examine cases where the proposed method
underperforms compared to other sampling techniques, of-

fering insights into areas for future improvement. For com-
parison, we use ST-AVQA [2] for the uniform sampling and
TSPM [4] for the Top-K frame selection.

C.3.1. Valid Cases

Audio Counting. For the question “How many musical in-
struments were heard throughout the video?” in Figure Fa,
the Top-K method focuses on selecting frames where musi-
cal instruments are most visually prominent. However, key
is to identify segments where audio signals from all playing
instruments are strongest. QA-TIGER’s audio Gaussian ef-
fectively captures these moments, enabling it to count the
number of instruments played accurately.

Audio Comparative. For a question like “Is the piano play-
ing longer than the violin?” in Figure Fb, the Top-K ap-
proach focuses only on frames that include the piano and
violin. However, since it considers only a limited number of
N frames, it struggles to make accurate comparisons when
the question requires analyzing the entire temporal span,
such as for “longer.” Uniform sampling also fails to con-
sider the entire sequence, making it challenging to derive
accurate answers. In contrast, QA-TIGER applies adaptive
weights across the entire sequence, allowing for more effi-
cient and accurate comparisons.

Visual Counting. QA-TIGER predicts the number of cellos
in a video by analyzing both close-up and full-shot scenes of
cello performances, as illustrated in Figure Fc. In compari-
son, the uniform sampling may occasionally include frames
where all cellos are visible, resulting in a correct predic-
tion. However, if the frame order changes, the prediction
could easily be wrong. Meanwhile, the Top-K method fo-
cuses only on the close-up frames where cellos are most
visible. As a result, it predicts only “three” cellos, even
though “four” are actually being played.

Visual Location. The Top-K approach primarily focuses
on the “violin” itself, selecting frames that are strongly re-
lated to the violin but overlooking its right-hand side (Fig-
ure Ga). While it does select one frame with clues about
the instrument to the right of the violin, a close-up of the pi-
ano shifts the focus away from this information. In contrast,
QA-TIGER effectively concentrates on temporal segments
that emphasize both the violin and its right-hand side. It as-
signs the lowest weight to the piano, ensuring that the most
important details are prioritized.

Audio-Visual Existential. In Figure Gb “Is the flute in the
video always playing?” highlights a limitation of the Top-K
method, which selects only frames where the flute is both
present and actively being played. QA-TIGER takes a more
balanced approach by allowing the audio Gaussian to fo-
cus on moments when the flute is playing, while the visual
Gaussian also considers frames where the flute is not being
played. This demonstrates that our method enables each



modality to independently emphasize different aspects of
the question in a complementary manner.

Audio-Visual Counting. QA-TIGER focuses on the seg-
ments where instruments are being played while broadly
considering the overall context, as shown in Figure Gc. On
the other hand, as observed in other question types, Top-
K approach often misses other critical information since it
selects only a limited number of frames centered around
the specific instrument mentioned in the question. Uniform
sampling exclusively uses frames containing only the two
individuals playing instruments, leading to the limitation of
predicting “two” instead of the correct answer, “four.”

Audio-Visual Location. In Figure Ha, QA-TIGER’s audio
Gaussian assigns relatively higher weights to the early parts
of the sequence, effectively identifying the first instrument
played. Meanwhile, the visual Gaussian focuses on wide
shots where the positions of all instruments are visible, con-
tributing to accurately answering the instruments and their
locations. However, the uniform sampling approach fails
to capture which instrument was played first, and the Top-
K method only considers frames with the most prominent
close-up of an instrument, limiting its ability to determine
the precise location of the instruments.

Audio-Visual Comparative. When comparing audio-
visual content as in Figure Hb, the original video is too
short, so the audio for the remaining frames was generated
by repeating the last 1-second segment of the video. QA-
TIGER accurately focuses only on the relevant segments
of the original video across all modalities, enabling precise
answer predictions. In contrast, the Top-K method incor-
rectly focuses on unrelated frames, resulting in wrong an-
swers when paired with uniform sampling.

Audio-Visual Temporal. For the question about which con-
gas are played first, as in Figure Hc, the Top-K approach
focuses on frames highlighting the congas in the early part
of the sequence. Unfortunately, due to the limited number
of frames, it fails to utilize information about other congas
in the later part, leading to an incorrect answer. In contrast,
our method effectively reflects the intent of the question by
assigning higher weights to the early part through the audio
Gaussian, while the visual Gaussian captures critical infor-
mation such as the total number and locations of congas in
the later part, resulting in the correct answer.

C.3.2. Failure Cases

Visual Counting. While QA-TIGER focuses on frames
with multiple instruments, it could miss finer details, as
shown in Figure Ia. In the case of the given sample, where
“ukulele” and “violin” coexist, QA-TIGER could struggle
to accurately identify each instrument’s appearance or dis-
tinguish between them if the audio of one instrument is
overshadowed or sounds similar to the other.

Audio-Visual Existential. In questions like Figure Ib, “Is
the trumpet in the video always playing?”’, QA-TIGER’s
audio Gaussian effectively focuses on the portions of the
audio signal where the trumpet sound is most prominent.
However, in the final 5 seconds, the loud cheering from the
audience overwhelms the trumpet sound, causing the model
to misidentify it and give an incorrect prediction.

Audio-Visual Counting. In cases like Figure Ic, the visual
Gaussian effectively focuses on the early temporal segment
where the ukulele is played, while the audio Gaussian prior-
itizes the acoustic guitar, which has a stronger audio signal
but a similar sound to the ukulele. Although the weight is
lower, QA-TIGER’s consideration of the entire sequence al-
lows it to include the ukulele sound from the early segment.
This enables the model to correctly answer “two” for the
question, “How many sounding ukuleles are in the video?”

Overall, these cases suggest opportunities to enhance
QA-TIGER, such as implementing adaptive mechanisms to
dynamically adjust the number of experts based on content,
improving its ability to capture varying temporal complexi-
ties. Additionally, addressing external noise can further re-
fine its performance across diverse scenarios.

D. Discussion & Future Work

We provide supplementary material to complement the
main paper by detailing experimental setups, additional re-
sults, and visualizations of QA-TIGER’s mechanisms. QA-
TIGER achieves state-of-the-art performance, leveraging
Gaussian experts for precise temporal integration and ef-
fective alignment of question-specific audio-visual features
with minimal redundancy. Compared to prior methods, it
demonstrates superior accuracy in complex reasoning tasks,
including temporal and comparative queries, while main-
taining computational efficiency. In addition to quantita-
tive improvements, visualizations show how QA-TIGER
dynamically adjusts its attention across audio and visual
modalities, effectively handling diverse question types.

While QA-TIGER shows promising results both quan-
titatively and qualitatively, we aim to further enhance its
adaptability and flexibility. The current Mixture of Ex-
perts (MoE) framework relies on a fixed number of experts,
which may not fully capture the varying temporal complex-
ities present in different audio-visual content. In this re-
gard, it will be promising to develop adaptive mechanisms
that dynamically adjust the number of experts based on the
multimodal content, enabling the model to better represent
and model varying temporal dynamics. Additionally, since
AVQA models are often constrained to predefined answers,
the integration of large language models into QA-TIGER
can be investigated in the future. This integration allows for
more flexible and natural language responses, broadening
its applicability to more complex and diverse scenarios.
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Figure F. Valid qualitative comparison with Uniform sampling and Top-K frame selection.
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Figure G. Valid qualitative comparison with Uniform sampling and Top-K frame selection.
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Figure H. Valid qualitative comparison with Uniform sampling and Top-K frame selection.
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Figure I. Failure qualitative comparison with Uniform sampling and Top-K frame selection.
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