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Supplementary Material

S1. Defining Local Noise Schedules
In this section, we define the local noise schedule bt. The
noise schedule in RAD consists of two phases: one for fill-
ing the masked region and another for filling the area out-
side it. With a total diffusion step of T , the first T1 steps are
allocated to the first phase. To define each phase, we define
two scalar sequences βt (1 ≤ t ≤ T1) and β′

t (1 ≤ t ≤ T2)
with 0 < βt, β

′
t < 1. Let ν (0 < ν < 1) be the target accu-

mulated noise level which is very close to one. Then, both
schedules must satisfy

∏T1

t=1(1 − βt) =
∏T2

t=1(1 − β′
t) =

1−ν. If this is not satisfied, we can easily normalize βt and
β′
t as

βt ← 1− (1− βt)
gt , gt =

log (1− ν)∑T1

s=1 log(1− βs)
,

β′
t ← 1− (1− β′

t)
g′
t , g′t =

log (1− ν)∑T2

s=1 log(1− β′
s)
.

Given a mask m, bt is defined based on the above pixel-wise
schedules:

bt =

{
βtm if 1 ≤ t ≤ T1,

β′
t−T1

(1−m) otherwise,
(1)

which satisfies b̄T1 = νm and b̄T = ν1.
If one wishes to use a non-binary mask, i.e., one that

contains ambiguous regions (0 < mi < 1), the following
equation can be used instead:

bt,i =

1− (1− νmi)
γt if 1 ≤ t ≤ T1,

1−
[

(1−ν)
(1−νmi)

]γ′
t−T1 otherwise,

where γt = log(1−βt)
log(1−ν) and γ′

t =
log(1−β′

t)
log(1−ν) . This equation

reduces to (1) if m is binary.

S2. Handling Singularities in Training Loss
The learning objective of RAD (and DDPM) is given as

L = Eq

[∑
t>1

DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))

− log pθ(x0|x1)

]
.

(2)

This trains pθ(xt−1|xt) to match the target q(xt−1|xt, x0),
except for t = 1 where the negative log-likelihood of
pθ(x0|x1) is directly optimized. A troubling fact is that this

loss function is potentially ill-conditioned if either of q and
pθ is singular (e.g., a degenerate distribution), inducing an
infinite loss.

For DDPM, this does not happen for t > 1 in theory
because q(xt−1|xt, x0) has a non-zero variance rt by def-
inition, and the same holds for pθ(xt−1|xt) of which the
variance st is set identical to either bt or rt. However, it
gets trickier for t = 1. In this case, r1 becomes zero be-
cause q(x0|x1, x0) is degenerate (i.e., evaluating the proba-
bility of x0 when itself is given as a condition). Even though
q(x0|x1, x0) does not appear directly in the above loss func-
tion, it can affect pθ(x0|x1) if we set s1 to r1.1

In [6], the above loss function is replaced with the fol-
lowing simplified loss, eliminating the above problem:

L =
∑
t

Eq

[
∥ϵt − ϵθ(xt, t)∥2

]
. (3)

In more advanced models, such as iDDPM [13] and ADM
[5], however, (2) is revived and is used in conjunction with
(3) to enhance generation quality, by learning st based on it.
In this case, st is defined as a linear combination of bt and
rt, potentially bringing back the above problem for t = 1.
This is usually fixed by some heuristics in implementations,
e.g., clipping the minimum variance or replacing the vari-
ance with that in a nearby step.

If we formulate RAD based on DDPM, then the above
problem does not matter because we can also use (3). How-
ever, we also extend RAD to the above advanced models,
as explained in the paper. Hence, resolving this issue is also
important for RAD. In RAD, this problem gets a little more
complicated because the diffusion process is now divided
into two phases. This can be viewed in the following way:
The forward process finishes early (at timestep T1) for the
pixels in the mask region, while that is delayed to the sec-
ond phase for the pixels outside the mask. Accordingly, the
above problem appears at different timesteps for different
pixels.

Specifically, rt,i can be derived as rt,i = bt,ib̄t−1,i/b̄t,i
based on the Bayes rule [6]. Here, when b̄t,i is zero, one
can follow an alternate derivation to have rt,i = 0, avoiding
the explicit division. Including this case, rt,i becomes zero
when either of bt,i, b̄t−1,i, and b̄t,i is zero. These correspond
to the following three cases:
1. Only bt,i is zero: There is already some accumulated

noise in the i-th pixel, but it stopped to add more at t.

1Here, we ignored some details, i.e., a discretized Gaussian model is
separately proposed for pθ(x0|x1) in [6]. However, the problem still per-
sists.



2. Only b̄t−1,i is zero: There has been no noise so far, and
now it has started to add one since t.

3. All three terms are zero: There has been no noise so far,
and it still does at t.

Note that there are no other cases because 1 − b̄t,i = (1 −
bt,i)(1 − b̄t−1,i) holds. Among these, the first and third
cases are trivial cases. In both cases, the pixel stays the
same in the forward process for the current step t. It is also a
good idea to make the corresponding reverse process leave
the pixel unchanged. This means that there is no need to
learn st,i for the pixel, which is surely zero. Hence, the
corresponding losses can be excluded from (2).

On the other hand, a problem arises when the second
case happens. In this case, an appropriate value of st,i
is non-zero because the pixel changes in the forward pro-
cess even though rt,i is zero. (This is another consequence
of q(xt−1|xt, x0) being quite different from q(xt|xt−1).)
This case actually corresponds to the first step of DDPM,
which was explained previously. Accordingly, we find all
instances where this happens and apply similar heuristics
as in [5, 13]. In reality, this happens on two occasions: (i)
pixels in the mask region at t = 1, or (ii) pixels outside
the mask at t = T1 + 1. The latter case happens because
the diffusion process is delayed until the second phase for
those pixels, as mentioned earlier. This also means that ap-
plying the negative log-likelihood rather than the KL diver-
gence in (2) makes more sense for their individual losses,
i.e., pθ(xT1

|xT1+1) must be treated similarly to pθ(x0|x1)
in (2).

The above analysis has proven important in our empirical
experience, in which the aforementioned problem rendered
the training unstable when extending RAD to [5, 13].

S3. Settings for Baseline Methods
We compared our method with various state-of-the-art
(SoTA) inpainting techniques. For FFHQ, we referenced
results on LaMa, Score-SDE, DDRM, RePaint, and MCG
reported in the MCG paper, while for LSUN Bedroom, we
evaluated their performance separately on the same valida-
tion set for consistency. The hyperparameters of the base-
line methods were set according to their respective papers
or codebases, as follows:
• Score-SDE [14]: The sampling steps were set to 1000.
• DDRM [8]: We set σy = 0 to address the noiseless in-

verse problem. Additionally, we configured η = 0.85 and
ηb = 1. The number of sampling steps was fixed at 20,
utilizing the DDRM sampling procedure.

• RePaint [12]: We used pretrained ADM models on
FFHQ and LSUN Bedroom. The total diffusion steps
were set to 200 and the number of iterations of denois-
ing steps to 10 as the default configurations in [12].

• MCG [4]: The sampling steps were set to 1000 as the
default configuration in [4].

Figure S1. Unconstrained generation results on FFHQ.

• DDNM [15]: We set η = 0.85 and the sampling steps to
100 as in [15].

• DeqIR [3]: The sampling steps were set to 25.

S4. Unconstrained Generation

Here, we provide unconstrained generation results of RAD,
i.e., using RAD for full sample generation instead of in-
painting. Figure S1 shows the results on the FFHQ dataset.
The first and second rows were generated with all-one
masks (so all the pixels were generated synchronously in
one phase) and random Perlin masks in two phases, respec-
tively. In this figure, we can confirm that RAD is capable of
unconstrained generation. Performance-wise, the FID of a
pretrained ADM is 28.0, whereas those of one- or two-phase
unconstrained generations of RAD are 36.2 and 36.8, re-
spectively. Since the task of RAD is considerably more dif-
ficult (handling various inpainting scenarios), it may show
lower performance than plain diffusion models in an uncon-
strained generation. However, RAD still produces plausible
results, and it provides state-of-the-art results in its primary
goal, i.e., inpainting tasks.

S5. Addtional Results

We provide additional comparison results on CelebA-HQ
with more recent works in Table S1. We used the evalua-
tion settings of [10], and the values of other methods were
quoted from [10]. Compared with most recent methods,
RAD still achieves state-of-the-art performance. In partic-
ular, RAD performs significantly better in tasks involving
large missing regions, such as “Half,” “Completion,” and
“Expand,” while maintaining comparable performance in
other cases where performance is already good. In partic-
ular, compared to the DDIM+CS [10] that directly learns
the target mask, RAD shows an improvement of up to 14 in
terms of FID. This demonstrates that the Perlin noise used
in RAD training is effective not only in various inpainting
scenarios but also in more challenging situations.

To verify the effectiveness of adopting LoRA in RAD,
we compared RAD trained with full fine-tuning and LoRA
in Figure S2. The solid and dotted lines represent LoRA



Table S1. Quantitative comparison of different methods on CelebA-HQ-256. Lower LPIPS and FID indicate better performance.

Method Half Completion Expand Thick Line Medium Line
LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID

CoModGAN [16] 0.445 37.72 0.406 43.77 0.671 93.48 0.091 5.82 0.105 5.86
LaMa [2] 0.342 33.82 0.315 25.72 0.538 86.21 0.080 5.47 0.077 5.18
CDE [1] 0.344 29.33 0.302 19.07 0.508 71.99 0.079 4.77 0.070 4.33
RePaint [12] 0.435 41.28 0.387 37.96 0.665 92.03 0.059 5.08 0.028 4.97
MAT [9] 0.331 32.55 0.280 20.63 0.479 82.37 0.080 5.16 0.077 4.95
GLaMa [11] 0.327 30.76 0.289 18.61 0.481 84.01 0.081 5.83 0.080 5.10
FcF [7] 0.305 27.95 0.378 31.14 0.502 73.24 0.086 4.63 0.071 4.42
DDIM+CS [10] 0.272 20.37 0.259 15.33 0.372 39.05 0.079 4.21 0.064 3.58
RAD (ours) 0.169 10.38 0.190 11.35 0.315 25.38 0.076 5.37 0.049 4.76
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Figure S2. Comparison of fine-tuning methods on FFHQ (batch size 16).

Table S2. RAD with various noise schedules on FFHQ.

Mask Box Extreme Wide
FID LPIPS FID LPIPS FID LPIPS

Random 125.3 0.232 234.2 0.576 96.0 0.227
Box 21.9 0.071 206.4 0.859 37.7 0.131

Extreme 170.4 0.409 27.8 0.311 153.9 0.362
Wide 22.3 0.076 35.2 0.389 21.4 0.072

Perlin 22.1 0.074 33.4 0.317 21.5 0.078

Table S3. RAD with various noise schedules on CelebA-HQ.

Mask Half Completion Expand Thick Line Medium Line
FID LPIPS FID LPIPS FID LPIPS FID LPIPS FID LPIPS

Wide 26.5 0.177 28.3 0.200 40.2 0.337 25.0 0.103 23.0 0.063
Perlin 23.2 0.167 24.2 0.190 38.0 0.311 20.2 0.123 20.1 0.057

and full fine-tuning, respectively. Here, LoRA converges
significantly faster than full fine-tuning across all inpaint-
ing scenarios. As shown in the figure, we did not find any
performance degradation in LoRA.

In addition, we tested alternative mask types for train-

ing RAD, instead of Perlin masks, which are shown in Ta-
ble S2. The random mask is generated by randomly setting
each pixel to zero or one, while the box, extreme, and wide
masks are the same as those used in the original RAD eval-
uation. As expected, the random mask shows poor perfor-
mance across all cases, as it is far from the actual inpainting
scenarios. On the other hand, the box and extreme masks
achieve the best performance in their respective evaluation
settings, but do not generalize well to other masks. Inter-
estingly, the wide mask also performs well in the box and
extreme cases, which we attribute to the fact that the wide
mask explicitly includes box-shaped regions, so it some-
what includes the box and extreme masks.

To verify how wide and Perlin masks perform in more
general inpainting scenarios, we evaluated them on the
CelebA-HQ dataset under the evaluation settings of [10]. In
Table S3, we can confirm that the model trained with Perlin
noise achieves better performance than the one trained with
wide masks for all scenarios.

We provide additional qualitative comparison results of
RAD for various datasets and mask types. For FFHQ,



Table S4. Ablation study of RAD on LSUN Bedroom (Cfg. 1:
pretrained ADM with RAD reverse steps, Cfg. 2: without spatial
noise embedding).

Method Box Extreme Wide
FID LPIPS FID LPIPS FID LPIPS

Cfg. 1 41.9 0.193 102.4 0.478 40.9 0.175
Cfg. 2 22.2 0.154 25.2 0.405 23.2 0.130

RAD (ours) 19.2 0.131 21.6 0.399 20.8 0.107

the results for box, extreme, and wide masks are demon-
strated in Figures S3 to S5, respectively. In general, RePaint
tends to produce discontinuous inpainting results, failing
to maintain coherence across the boundaries. MCG gen-
erally shows good performance; however, it occasionally
produces awkward samples such as the blurry hair in the
last row of Figure S3, the strange teeth, chin, and cap in
the third row of Figure S5, and the asymmetric beard in the
fifth rows of Figure S5. For the LSUN Bedroom dataset,
similar comparisons are provided in Figures S6 to S8. In
Figure S6, the second and fifth rows show that both RePaint
and MCG fail to accurately fill in the patterns on the covers
and the upper parts of the curtains, respectively, resulting
in inconsistencies and a lack of detail in the reconstructed
regions. In the first row of Figure S7, RePaint fails to gen-
erate the wall region, leaving it incomplete, while MCG
produces unrealistic results above the sofa. In the remain-
ing rows, MCG tends to duplicate patterns from the given
image, compromising the overall plausibility. Figures S9
to S11 show the corresponding results for ImageNet. In Fig-
ure S9, the second, fifth, and last rows reveal that both Re-
Paint and MCG fail to generate the body and head of the an-
imals. Additionally, the first, third, and fourth rows demon-
strate that both methods produce discontinuous or unreal-
istic results. Again, RePaint fails to maintain coherence
across the boundaries, while MCG tends to copy patterns
from the given image, leading to repetitive and unrealistic
outputs.

Additionally, we produced diverse samples to verify the
generative capabilities of RAD. For FFHQ, the results for
box, extreme, and wide masks are shown in Figures S12
to S14, respectively. Likewise, those for LSUN Bedroom
and ImageNet are shown in Figures S15 to S17 and Fig-
ures S18 to S20, respectively. All the results demonstrate
that RAD can generate diverse outcomes from the same in-
put image and mask.

The ablation study presented in the paper was also per-
formed on the LSUN Bedroom dataset. The results are
shown in Table S4, further highlighting the significance of
the proposed techniques (i.e., training with spatially vari-
ant noise and using spatial noise embedding) in inpainting
tasks.
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Input RePaint MCG RAD

Figure S3. Qualitative comparisons against state-of-the-art inpainting methods on FFHQ for box masks (1st column: Input, 2nd column:
RePaint, 3rd column: MCG, 4th column: RAD (ours)).



Input RePaint MCG RAD

Figure S4. Qualitative comparisons against state-of-the-art inpainting methods on FFHQ for extreme masks (1st column: Input, 2nd
column: RePaint, 3rd column: MCG, 4th column: RAD (ours)).



Input RePaint MCG RAD

Figure S5. Qualitative comparisons against state-of-the-art inpainting methods on FFHQ for wide masks (1st column: Input, 2nd column:
RePaint, 3rd column: MCG, 4th column: RAD (ours)).



Input RePaint MCG RAD

Figure S6. Qualitative comparisons against state-of-the-art inpainting methods on LSUN Bedroom for box masks (1st column: Input, 2nd
column: RePaint, 3rd column: MCG, 4th column: RAD (ours)).



Input RePaint MCG RAD

Figure S7. Qualitative comparisons against state-of-the-art inpainting methods on LSUN Bedroom for extreme masks (1st column: Input,
2nd column: RePaint, 3rd column: MCG, 4th column: RAD (ours)).



Input RePaint MCG RAD

Figure S8. Qualitative comparisons against state-of-the-art inpainting methods on LSUN Bedroom for wide masks (1st column: Input, 2nd
column: RePaint, 3rd column: MCG, 4th column: RAD (ours)).



Input RePaint MCG RAD

Figure S9. Qualitative comparisons against state-of-the-art inpainting methods on ImageNet for box masks (1st column: Input, 2nd column:
RePaint, 3rd column: MCG, 4th column: RAD (ours)).



Input RePaint MCG RAD

Figure S10. Qualitative comparisons against state-of-the-art inpainting methods on ImageNet for extreme masks (1st column: Input, 2nd
column: RePaint, 3rd column: MCG, 4th column: RAD (ours)).



Input RePaint MCG RAD

Figure S11. Qualitative comparisons against state-of-the-art inpainting methods on ImageNet for wide mask (1st column: Input, 2nd
column: RePaint, 3rd column: MCG, 4th column: RAD (ours)).



Input Sample 1 Sample 2 Sample 3 Sample 4

Figure S12. Example results of RAD on FFHQ for box masks (1st column: Input, 2nd/3rd/4th/5th columns: inpainting results).



Input Sample 1 Sample 2 Sample 3 Sample 4

Figure S13. Example results of RAD on FFHQ for extreme masks (1st column: Input, 2nd/3rd/4th/5th columns: inpainting results).



Input Sample 1 Sample 2 Sample 3 Sample 4

Figure S14. Example results of RAD on FFHQ for wide masks (1st column: Input, 2nd/3rd/4th/5th columns: inpainting results).



Input Sample 1 Sample 2 Sample 3 Sample 4

Figure S15. Example results of RAD on LSUN Bedroom for box masks (1st column: Input, 2nd/3rd/4th/5th columns: inpainting results).



Input Sample 1 Sample 2 Sample 3 Sample 4

Figure S16. Example results of RAD on LSUN Bedroom for extreme masks (1st column: Input, 2nd/3rd/4th/5th columns: inpainting
results).



Input Sample 1 Sample 2 Sample 3 Sample 4

Figure S17. Example results of RAD on LSUN Bedroom for wide masks (1st column: Input, 2nd/3rd/4th/5th columns: inpainting results).



Input Sample 1 Sample 2 Sample 3 Sample 4

Figure S18. Example results of RAD on LSUN Bedroom for box masks (1st column: Input, 2nd/3rd/4th/5th columns: inpainting results).



Input Sample 1 Sample 2 Sample 3 Sample 4

Figure S19. Example results of RAD on LSUN Bedroom for extreme masks (1st column: Input, 2nd/3rd/4th/5th columns: inpainting
results).



Input Sample 1 Sample 2 Sample 3 Sample 4

Figure S20. Example results of RAD on LSUN Bedroom for wide masks (1st column: Input, 2nd/3rd/4th/5th columns: inpainting results).
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