Random Conditioning with Distillation for Data-Efficient
Diffusion Model Compression

Supplementary Material

A. Data-Efficient Distillation

In our experiments in Tab. 3, we highlight our method’s ef-
fectiveness under a fully data-free scenario. To address this
challenging setup, we develop a systematic workflow for
generating a large-scale caption dataset, relying entirely on
LLM-generated captions for both image synthesis and ran-
dom conditioning.

The general workflow consists of two main stages. The
first stage involves identifying a comprehensive set of con-
ceptually meaningful visual nouns from a structured lin-
guistic database. To exclude nouns that are not visual for
text-to-image tasks (e.g., abstract concepts such as “justice”
or “freedom”), LLM-based filtering step is applied, ensur-
ing only clearly visualizable concepts are selected. In the
second stage, diverse and extensive textual prompts are sys-
tematically generated for each selected noun through LLM
inference, resulting in a rich synthetic caption dataset suit-
able for image synthesis under fully data-free conditions.

Specifically, in our experimental setup, we first extract
nouns from WordNet [41], restricting the selection to those
with a hierarchical depth of 14 to avoid overly specific
nouns (e.g., detailed species or subspecies). Subsequently,
we prompt GPT-3.5-turbo [45] to filter only visual nouns,
ultimately selecting approximately 17K nouns. For each
selected noun, GPT-3.5-turbo is prompted to generate 128
unique textual prompts, resulting in approximately 2.2M
synthetic captions. From this pool, we randomly sam-
ple 212K prompts, ensuring a balanced distribution across
nouns, and utilize a teacher model to generate correspond-
ing image data. Below are the specific GPT prompts used
for noun filtering and prompt generation.

Noun Filtering Prompt
e System Prompt

[ You are a helpful assistant. ]

e User Prompt

Can a text-to-image model clearly visualize {'noun’}?
It must be a noun. Answer 'ves' or 'no' and give a brief
explanation.

Input: {'noun'}

Prompt Generation
e System Prompt

[ You are a helpful assistant. ]

e User Prompt

Generate 128 visually rich prompts focused on the noun

{'noun'}, ensuring each prompt is strictly distinct and cannot
overlap in style, setting, or composition. Please return only

the prompts on separate lines with numbering.

Input: {'noun'}

Models #Params MACs FID| ISt CLIPT
Teacher 860M(+00.0%) 339G(+00.0%) 13.05 36.76 0.2958
B-Base 580M(-32.6%) 224G(-33.9%) 14.47 36.50 0.2932
B-Small 483M(-43.9%) 218G(-35.7%) 16.22 35.99 0.2804
B-Tiny  324M(-62.4%) 205G(-39.5%) 16.71 35.46 0.2782
C-Base 554M(-35.8%) 217G(-36.0%) 14.45 34.92 0.2904
C-Small 426M(-50.5%) 166G(-51.0%) 14.43 34.58 0.2888
C-Tiny 315M(-63.5%) 122G(-64.0%) 13.90 33.18 0.2860
C-Micro 220M(-74.4%) 85G(-74.9%) 13.42 32.64 0.2813

Table A. Comparison of Model Size and MACs. We measure
UNet parameter count and the MACs for a single step in the UNet.
for the teacher model and our models. THOP [91] is used to mea-
sure the MACs, following the approach of BK-SDM [24].

B. Model Compression

We evaluate the efficiency of our block- and channel-
compressed models in terms of UNet parameter counts,
multiply-accumulate operations (MACs), and metric scores,
as summarized in Tab. A. The results highlight the effi-
ciency gains of our compressed models with random con-
ditioning over the teacher model while maintaining perfor-
mances. Notably, channel-compressed models show lower
MAC:s than block-compressed models with similar param-
eter counts; C-Micro requiring only 25% of the MACs
compared to the teacher model. Despite being trained
from scratch, these channel-compressed models demon-
strate competitive performance, even outperforming their
block-compressed counterparts in several metrics. This is
due to random conditioning, which expands the exploration
of the condition space during distillation, offsetting the lack
of teacher weight initialization.



# Rand Cond Additional Text FID| ISt  CLIPT
1 X - 1831 26.83 0.2579
2 4 0 16.70  26.53 0.2613
3 v M 16.13  28.89 0.2677
4 v 10M 15.67 28.90 0.2674
5 4 20M 15.22 28.89 0.2680

Table B. Impact of Random Conditioning by Additional Text
Size. We evaluated models trained with additional text sizes of
0, 1M, 10M, and 20M, using the C-Micro architecture for 125K
training iterations.

C. Impact of Additional Text Data Size

Tab. B presents the performance results based on the
amount of additional text dataset used for random condi-
tioning. Row 1 shows the results of a naive distillation ap-
proach without random conditioning, exhibiting lower per-
formance compared to Rows 3, 4, and 5, which incorpo-
rate additional text datasets through random conditioning.
Notably, Row 2, which applies random conditioning us-
ing only the training image-text pairs (212K) without any
additional text data (0 additional text), achieves compara-
ble or higher performance compared to Row 1. This indi-
cates that random conditioning effectively utilizes unpaired
text-image data during distillation without any performance
degradation and can even enhance training. When compar-
ing Rows 3, 4, and 5, which use additional text datasets of
1M, 10M, and 20M respectively, FID shows a slight im-
provement as the amount of text data increases, while IS
and CLIP scores remain similar. This demonstrates that in-
creasing the amount of text data can enhance training, but
even a limited amount, such as 1M, is sufficient to signifi-
cantly improve model performance. Furthermore, 1M text
data requires substantially less memory compared to image
datasets and is easier to obtain, highlighting the practical ef-
fectiveness of random conditioning in real-world scenarios.

D. Random Conditioning Probability

Tab. C shows the scores for different random conditioning
probabilities in two different setups: student models with
random and teacher initialization. The different p(¢) func-
tions are plotted in Fig. A. Row 2 corresponds to the expo-
nential function used in the main experiments. Row 3 mod-
ifies this by symmetrically mirroring the function around
t = T'/2. Row 4 represents a linear function that increases
fromOatt = Otolatt = 7. Row 5 uses a sigmoid
function, shifted horizontally to ensure p(t) approaches 1
for large time steps. Rows 6 and 7 employ constant func-
tions, with probabilities fixed at 0.5 and 1, respectively, for
all t. When the student is randomly initialized, all p(t) func-
tions except for p(t) = 1 outperform the baseline without
random conditioning (Row 1). In particular, the sigmoid
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Figure A. Plots of Different p(t) used for Random Condition-
ing. Each plot corresponds to a row in Tab. C.

function (Row 5) yields the strongest performance. When
the model is initialized with the teacher weights, the im-
provements are less pronounced compared to Random Init,
but most p(t) functions still lead to better performance than
the baseline, with the exponential function (Row 2) showing
the best results.

Based on these observations, the final models reported
in Tab. 4 and Tab. A use the sigmoid function (Row 5) for C-
compressed models (Random Initialization) and the expo-
nential function (Row 2) for B-compressed models (Teacher
Initialization), as these p(t) choices led to strong CLIP and
IS scores in each setting. For all other experiments, we use
the exponential function (Row 2) as the default p(¢). While
this choice may not be optimal, it demonstrates a significant
performance improvement over the baseline, validating its
effectiveness.

E. Discussions on Other Image-Free Methods.

There exist several image-free distillation approaches for
building one-step diffusion models [10, 42, 89, 90], which
do not require learning from intermediate noisy samples
X since one-step models directly generate outputs with-
out denoising steps. These methods receive signals from
a pretrained teacher model during training, making them
independent of explicit dataset requirements. However, in
our case, the objective is to compress the teacher model
into a smaller model while preserving its characteristics,
which necessitates training on intermediate noisy samples
x¢. Similarly, DKDM [79] applies Dynamic Iterative Distil-
lation for efficient compression, and although it also gener-
ates x; through sampling from the teacher model, it specifi-
cally targets unconditional models. As a result, these meth-
ods are not directly applicable to our target task—distilling
a conditional diffusion model with a large conditioning
space using only a limited number of generated images.



Random Initialization

Teacher Initialization

# () FID, ISt CLIPf FID| ISt CLIP}

1 - 19.69 2875 02618 1538 3459 0.2905

2 p(t) = e (%) 1619 31.81 02727 1447 3650 0.2932
e =F)fg > T

3 pt) = ) 1539 3122 02730 1453 3652 02917
e NT otherwise

4 p(t) = % 1530 31.82 02728 1406 3635 0.2898

5 p(t) = L 1587 3334 02751 1546 3585 02916

1+672U(T—U.7)
6 p(t) = 0.5 1468 3070 02692 14.56 3586 0.2901
7 p(t) = 1.0 1443 2855 02586 12.63 3596  0.2909

Table C. Effect of p(t) in Random Conditioning. We evaluate the models trained with varying random conditioning probabilities, p(t).
The first row represents the baseline without random conditioning. “Random Initialization” and “Teacher Initialization” refer to student
models trained from scratch and from teacher-initialized weights, respectively. All models with random initialization are trained for 125K
iterations, while those with teacher-initialized are trained for 75K iterations using the B-Base architecture.

Attribute Binding Object Relationship
ComplexT Average?

# Rand Cond Realimage FID| IST CLIP{ Colort ShapeT Texturel Spatialf Non-Spatialf

(Teacher) 13.05 36.76 0.2958 0.3599 0.3542  0.4004 0.1055 0.3095 0.3095 0.3065
1 X X 18.15 33.81 0.2864 0.3474 0.3448  0.3786 0.0966 0.3092 03118 0.2985
2 X v 15.76 3379 0.2878 0.3585 0.3397  0.3838 0.0981 0.3080 0.3124 0.3001
3 4 X 1576 36.03 0.2896 0.3593 0.3551  0.4053 0.0889 0.3086 0.3148 0.3053
4 4 v 15.00 36.14 0.2933 0.3789 0.3576  0.4207 0.1112 0.3075 0.3196 0.3159

Table D. Results on T2I-CompBench [21] with Additional Metrics. The row with a gray background shows the performance of the
teacher model [55] for reference. “Rand Cond” indicates whether random conditioning is applied, and “Real image” specifies the use of
real images during training. All models are based on the B-Base architecture.

# Rand Conditioning Feature loss FID] ISt  CLIPT
1 X X 1596 33.30 0.2786
2 X v 18.15 33.81 0.2864
3 v X 13.71 34.10 0.2847
4 v v 15.76  36.03 0.2896

Table E. Impact of Feature Loss. We evaluate the effect of ran-
dom conditioning with and without feature loss. All models are
based on the B-Base architecture.

F. Inconsistent Trends on FID

Although random conditioning generally improves perfor-
mance across FID, IS, and CLIP scores, the trend is not al-
ways consistent for FID. As noted in [21], FID is known to
exhibit substantial fluctuations, making it less reliable for
fine-grained comparison. To better validate our findings,
we additionally evaluate models on T2I-CompBench [21].
The results, presented in Tab. D, show improvements across
most reported metrics, aligning well with IS and CLIP
scores. These findings support our hypothesis that random
conditioning helps the student model better explore the con-

dition space, leading to performance improvements.

G. Significance of Feature Losses

In Table E, we report additional experiments comparing the
performance of our method with and without feature losses.
By comparing Row 1 and Row 3, we observe that even in
the absence of feature losses, random conditioning remains
effective. Moreover, the comparisons between Row 1 and
Row 2 as well as between row3 and Row 4 indicate that
incorporating feature losses leads to improvements in both
the IS and CLIP scores. These results are consistent with the
findings in [24]. Note that our feature loss implementation
follows those in [24], and we also observed a tendency for
lower FID scores when feature losses are omitted.

H. SDXL Compression with Koala

We apply random conditioning while compressing SDXL
using the KOALA-700M [27] architecture as the student
model, distilling from the SDXL-Base model [51]. Due
to resource constraints, the number of training iterations is



# Random Conditioning #Params FID] ISt  CLIP{

(Teacher) 2.56B 13.04 35.83 0.3257
1 X 0.78B 2328 2793 0.2855
2 4 0.78B  21.45 28.53 0.2905

Table F. Effect of Random Conditioning in SDXL. The row
with a gray background corresponds to the Teacher model (SDXL-
Base [51]), while Rows 1 and 2 represent student models trained
using the KOALA-700M architecture.

Method  Random Conditioning FID| ISt  CLIPT
SLIM X 27.79 16.76  0.2063
SLIM v 2397 1883 0.2174

"BK-SDM ) x 15776 3379 02878
BK-SDM v 15.00 36.14 0.2933

Table G. Effect of Random Conditioning in SLIM. We evaluate
the impact of random conditioning within SLIM’s loss function
and architecture. The “Method” column indicates the model con-
figuration. All models are based on the B-Base architecture.

lower than what is reported for KOALA, resulting in rela-
tively lower scores. The results are presented in Tab. F. Fol-
lowing the main experiments, we use 212K training images
generated by the teacher model (SDXL-Base) using cap-
tions from LAION-Aesthetics V2 (L-Aes) 6.5+. We also
incorporate an additional 20M text dataset through random
conditioning.

I. SLIM-Based Distillation

We also apply random conditioning in a distillation setup
following SLIM’s [82] loss function and architecture.
Specifically, we use the authors’ code to compress Stable
Diffusion 1.4 on the B-Base architecture, incorporating the
Dynamic Wavelet Gating module and using frequency loss.
Across all tested configurations, models trained with Ran-
dom Conditioning consistently achieve higher performance.
However, in the SLIM setting, factors such as the smaller
dataset size (212K vs. 400M in the original paper), fewer
feature losses, and SLIM’s unique model structure make it
less competitive in our configuration. The results are shown
in Tab. G. We adopt the same dataset setup as the main ex-
periments.

J. Details of Animal-Related Data Filtering

Training set To exclude animal images from training, we
apply a filtering process to the original 212K LAION [65]
dataset. First, each caption is checked for animal-related
terms using a curated list, expanded from the 10 MS-COCO
animal category names via GPT-4o0 [46] prompting and
manual review. Next, the remaining captions are assessed
by GPT-3.5-turbo [45], prompted to determine whether they
are in any way related to animals. Finally, to catch cases
where original captions miss animal presence, we generate

new captions using BLIP [29] and apply the same filtering
process.

Evaluation set For the analysis presented in Tab. 2, we
use the MS-COCO validation split, which consists of 41K
(40,504) image-text pairs. To compare performance across
different dataset compositions, we construct two subsets:
one containing 8K (8,265) samples categorized under the
“animal” supercategory and the other comprising the re-
maining 33K (32,239) samples.

¢ System Prompt

You are an assistant that identifies if each sentence in
the provided JSON contains references to animals.
Do not consider plants, objects, places, or any word
that could be confused for an animal.

If you find a reference to an animal, provide the exact
word that led you to identify it.

e User Prompt

-
Read each of the following sentences and determine if it

contains a reference to an animal. The sentences are given
in JSON format. Provide an answer with ‘yes’or ‘no’for

each sentence. If the answer is ‘yes’, provide the specific
animal name that led you to this conclusion. Provide the
answers in JSON format as a list of dictionaries, where each
dictionary contains 'contains_animals’ with either ‘yes’or
‘no’, and ‘reason’, which is the animal name if ‘yes’, or an
empty string if ‘no’.

\Input: {JSON}

K. Further Implementation Details

During inference, including caching xq images for training,
evaluation, and generating qualitative results, we consis-
tently employ the DDIM sampler [70] with a total of T'=25
sampling steps, and the classifier-free guidance [16] is set
to its default value of 7.5. In our experiments, we evaluate
the models every 25K iterations. Unless specified other-
wise, we report the best scores achieved within 125K itera-
tions for experiments initialized with the teacher model and
within 400K iterations for those with random initialization;
notably, Tab. 2 presents scores at S00K iterations. For eval-
uation, we generate images at a resolution of 512x512 and
resize them to 256x256, following [24]. In Tab. 4, we eval-
uate [51], [3], and [72] using the default settings from the
Diffusers library [75]. Images for these models are gener-
ated at 1024x1024 resolution and then resized to 256x256
to adhere to our evaluation protocol.



L. Prompts Used for Qualitative Samples

The first two prompts correspond to (a), while the last three
prompts correspond to (b) in Fig. 1. Notably, the prompts
in (b) are related to animals. We use the following prompts
for Fig. 1 from left to right:

My favorite landscape I’ve visited Mount Assinboine
Provincial Park Canada.

Storm Over The Black Sea Poster by Ivan Aivazovsky.
Dogs on Girder Poster.

David Shepherd, Stag, oil on canvas.

Fotorolgordijn Schildpad Beautiful Green sea turtle
swimming in tropical island reef in hawaii, split over/un-
derwater picture.

We use the following prompts for Fig. 6 from top to bottom:

Anthropomorphic jackal wearing steampunk armor,
beautiful natural rim light, intricate, fantasy, anubis, el-
egant, hyper realistic, photo realistic, ultra detailed, con-
cept art, octane render, beautirul natural soft rim light,
silver details, elegant, ultra detaied, dustin panzino, giger,
mucha.

Medium shot side profile portrait photo of a warrior chief,
sharp facial features, with tribal panther makeup in blue
on red, looking away, werious but clear eyes, 50mm por-
trait, photography, hard rim lighting photography.

M. Additional Qualitative Results

To further illustrate our experiments, we present additional
qualitative results generated using the text dataset from Dif-
fusionDB [78]. Fig. B provides additional results for the
animal-related images shown in Fig. 1, while Fig. C is cor-
responding to Fig. 6.



Student Student Teacher Student Student
w/o Rand cond w/ Rand cond w/o Rand cond w/ Rand cond

Teacher

Photorealistic Elephant in outer space, Hyperdetailed, 108 Megapixels, A cute yorkshire terrier wearing a suit, 30mm, trending on pixiv, deviantart,
Artstation concept art, incredible depth high detail, stylized portrait

AT

a photo of a confused cavoodle dog in calculus class, frontal view, paws on Panda with a pearl earring by johannes vermeer, with cyberpunk virtual
head, blackboard in background, bokeh, detailed, golden hour sunlight reality goggles, masterpiece, black background, oil painting.

a highly detailed beautiful kitten wearing sunglasses with smooth and a ultradetailed painting of a white tiger made of intricate ice crystals,
streamlined skin, doing an elegant pose on the beach, artstation, deviantart, surrounded with blue flames, volumetric lighting, crystalline, snowflakes,

professional, octane render ornate, Greg rutkowski, Karol Bak.

Golden Retriever dressed as a Cowboy wearing sunglasses, highly detailed, red panda as warhammer character, digital illustration portrait design, by
digital painting, artstation, concept art, smooth, sharp focus, illustration, art android jones and greg rutkowski, retrowave color scheme, detailed,

by artgerm and greg rutkowski and alphonse mucha

cinematic lighting, wide angle action dynamic portrait

a film still from zootopia main character portrait anthro anthropomorphic fox digital horse, pretty horse, retrowave palette, highly detailed, anatomically
head animal person fursona nick wilde pixar and disney animation, sharp, correct equine, synth feel, smooth face, ear floof, flowing mane, no reins,
rendered in unreal engine 5, anime key art by greg rutkowski, bloom, super realism, accurate animal imagery, 4 k, digital art

dramatic lighting

Figure B. Additional Qualitative Results on DiffusionDB [78] datasets of Baseline and Our Method Trained Without Animal Image.
All samples are generated conditioned on captions related to animals, with animal-related terms highlighted in red for each image’s caption



Teacher BK-SDM-Base BK-SDM-Tiny B-Base(Ours) C-Micro(Ours)
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mechwarrior 5: mercenaries mech megaman transformer robot boss tank engine game octane render, 4k, hd 2 0 2 2 3 d cgi rtx hdr style chrome reflexion glow
fanart jesper ejsing, by rhads, makoto shinkai borderlands and by feng zhu rossdraws artstation by digital cinematic pixar and disney unreal zbrush central hardmesh

Figure C. Additional Qualitative Results on DiffusionDB [78] datasets of Our Models and Baseline Models.



