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2. Extended Related Works

2.1. Robust Learning on Noisy Dataset

Noisy correspondence learning focuses on research related
to mismatched pairs in multimodal data. Its goal is to
train models robustly in noisy correspondences, generally
by measuring the degree of alignment between modalities
and reflecting it in the training process. In early research
(NCR [8]), the clean/noisy data is classified using a GMM-
based method by utilizing the loss difference between clean
and noisy data, which stems from co-training and memo-
rization effects. NPC [31] measures the correspondence
based on the performance difference between the current
data and clean data trained on a similar sample.

This approach has recently been extended to video-text
datasets, where temporal misalignment is considered. In
such cases, frame-text alignment is measured using Opti-
mal Transport (NorTon [11]) or mutual agreement-based
methods (TempCLR [28]), which are then reflected in the
learning process. Noisy correspondence learning gener-
ally involve storing the entire dataset and conducting sev-
eral iterations/epochs to train a generalizable model from
the noisy dataset, incurring significant storage and compu-
tational costs.

2.2. Online Learning

Online learning has largely been explored in the context of
continual learning, which studies the problem of learning
sequential tasks while alleviating catastrophic forgetting on
the past tasks [1, 5, 15, 24]. OCL-NDS [24] proposes adap-
tive learning rate scheduling and replay buffer size adapta-
tion algorithm for online continual learning with natural dis-
tribution shift. CVT [5] proposes an attention-based mech-
anism to mitigate the catastrophic forgetting for online con-
tinual contrastive learning.

Online learning has also been used to improve the train-
ing efficiency by specializing a model on specific target
tasks [3, 7, 17]. For instance, OMD [17] trains a small
network on a long video stream using online model dis-
tillation from high capacity teacher model, obtaining spe-
cialized model that performs on par with the much larger
teacher on the target video stream.

3. Experiment Details
3.1. Dataset Details

The input data stream we consider consists of two web-
scale noisy video-text datasets. First, VideoCC3M [18] is a
large-scale, web-curated dataset containing approximately
2.5 million video-text pairs. It is constructed by mining
videos that are similar to seed images from CC3M [22]
and transferring the images’ captions to the videos. Since
both the construction of CC3M and the video mining of
VideoCC3M are done automatically, the videos and texts
in VideoCC3M are considered weakly paired and contains
various types and degrees of noise.

Another noisy source dataset we use is WebVid2M [2],
consisting of approximately 2.5 million clips and cor-
responding captions scraped from the stock footage
sites. While WebVid2M is considered more clean than
VideoCC3M since the captions are human-generated, it still
contains noisy correspondences between video and text,
such as text containing the metadata of the video rather than
its description.

3.2. Baseline Details

Cosine similarity thresholding. When constructing a
large-scale multimodal datasets, it has become a common
practice to compute CLIP [19] cosine similarity of image
and text embeddings and drop samples below a certain
threshold to filter out unsuitable image-text pairs. For in-
stance, the threshold of 0.3 is used in LAION-400M [20]



and the thresholds of 0.28 and 0.26 are used in LAION-
5B [21] depending on the language of the text. Simi-
lar approach is also used to filter video-text datasets, as
Koala [23] computes the frame-wise CLIP cosine simi-
larity and only use samples whose max frame-wise co-
sine similarity is greater than or equal to 0.26 as training
data. Thus as baselines, we compute frame-wise image-
text CLIP cosine similarity and apply threshold values of
0.3, 0.28, 0.26, 0.24, 0.22, and 0.2 on the cosine similari-
ties. We use three variants of CLIP Threshold, each us-
ing the average, max, and middle-frame cosine similarity.
Similarly, we also compute video-text cosine similarity be-
tween text and video using LanguageBind [32] and apply
the threshold values on. Note that these baselines only con-
sider the multimodal alignment and do not account for the
downstream task relevance and specificity.
Online downstream task-aware filtering. We adapt pre-
vious online downstream task-aware filtering approaches
CiT [26] and CoLoR-Filter [4] to our setting.

While CiT [26] is originally designed for training a
single joint filtering and training network, we adapt it to
our setting by using separate filtering (LanguageBind) and
training (BT-Adapter) networks for fair comparison. CiT
uses cosine similarity between text of incoming data and
texts from downstream task data as a measure of relevance
and selects sample whose cosine similarity to downstream
task data is larger than a certain threshold. The selected
samples are also used for the training of the filtering net-
work. For computational efficiency, we only update the pa-
rameters of the projection layers. Following the original
work, we use AdamW [13] optimizer with learning rate of
5e-4 and weight decay of 1.0, and batch size of 1,536 (CiT
single GPU setting) for the filtering network parameter up-
date. We use the text cosine similarity threshold of 0.55.
Section 5.3 provide ablation on the text cosine similarity
threshold.

CoLoR-Filter [4] is originally designed to select down-
stream relevant data for language models by finetuning the
prior language model on downstream dataset and using the
difference of language modeling loss (negative log proba-
bility) of the data computed using the finetuned model and
the prior model as the criterion. We extend it to online
sample-wise video-text data filtering by using Language-
Bind as the prior model and finetuning it on downstream
datasets via contrastive loss. For copmutational efficiency,
we finetune the projection layers of LanguageBind using
the downstream datasets for ten epochs using AdamW op-
timizer with learning rate of 1e-3 and weight decay of 0.2,
and batch size of 4096.

While the original CoLoR-Filter ranks samples within a
mini-batch and select certain proportion of the data based
on the ranking, we modify it to work in online, sample-
wise setting. We use the difference of the video-text cosine
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Figure 1. Performance comparison on HowTo10M. We com-
pare our approach to the top performing baselines based on the
average performance and the ratio of filtered data size to full data
size (HowTo10M here). The average performance is the average
of Recall at 1, 5 and 10 across five downstream tasks.

similarity of the data between the finetuned and the prior
model as the criterion, and only sample when the cosine
similarity measured using the finetuned model is larger. We
also provide the result of using the original ranking-based
selection using mini-batch of data in Section 5.3.

Since these two approaches do not consider the multi-
modal alignment between video and text (i.e., cleanness),
we use LanguageBind video-text cosine similarity thresh-
olding before applying them for fair comparison. We report
the best result across the aforementioned video-text cosine
similarity threshold values.

3.3. Training Details

For ReSpec and other baselines, we use the filtered data for
the online training of BT-Adapter [12]. We use BT-Adapter
with OpenAI CLIP-L/14 backbone, and follow the imple-
mentation details of the original work [12] for the masking
ratio, temperature scale, and the number of adapted layers.
We use AdamW [13] optimizer with learning rate 2e-6 and
weight decay 0.05 as in the original implementaion, with
batch size of 52 for WebVid2M and 100 for VideoCC3M.

4. Extended Results

4.1. Additional Dataset Results

We conduct additional experiments on the HowTo10M
dataset, a subset of HowTo100M [16] comprising approxi-
mately 10% of the original data. Unlike the previously used
datasets, HowTo10M is a web-crawled video-text dataset
relying on Automatic Speech Recognition (ASR) for video-
text alignment. This experiment additionally investigates
whether our model maintains its performance on an ASR-
based video-text dataset.



Model Clip ratio (%) MSR-VTT DiDeMo ActivityNet YouCook2 LSMDC Avg. Perf.

R1 R5 R10 R1 R5 R10 R1 R5 R10 R1 R5 R10 R1 R5 R10

Full data 100.00% 39.70 64.70 72.80 34.52 60.02 69.64 38.45 68.52 80.42 11.07 26.29 36.22 20.70 39.30 46.10 47.23
CLIP Avg Threshold 94.51% 41.50 64.60 73.80 35.62 59.42 70.24 38.89 68.01 80.17 10.70 27.26 37.19 22.88 40.36 46.25 47.79
CLIP Mid Threshold 86.11% 40.60 64.50 73.00 35.42 61.31 70.44 39.23 68.79 80.49 10.70 26.70 36.43 23.20 40.40 46.60 47.85
CLIP Max Threshold 98.11% 41.30 63.70 72.50 35.42 60.71 69.94 38.67 68.50 80.35 10.79 27.50 36.72 22.00 41.50 47.40 47.80
LB Threshold 86.32% 40.20 64.80 73.30 36.08 61.15 70.76 40.17 69.52 81.25 10.88 27.25 37.03 22.50 40.50 47.10 48.17
CiT [26] 42.53% 42.00 66.00 75.60 35.84 61.78 70.79 40.57 70.15 82.09 10.76 27.96 37.38 24.00 41.20 48.70 48.99
CoLoR-Filter [4] 56.36% 41.70 65.50 73.30 34.82 61.81 71.33 40.50 69.21 80.82 11.02 27.56 37.24 23.40 40.90 47.80 48.46
ReSpec (ours) 27.50% 42.10 67.00 76.10 36.31 62.30 72.42 40.50 69.79 81.69 11.33 26.75 37.20 24.10 40.60 48.50 49.11

Table 1. Performance on 5 downstream tasks trained with WebVid2M dataset.

Model Clip ratio (%) MSR-VTT DiDeMo ActivityNet YouCook2 LSMDC Avg. Perf.

R1 R5 R10 R1 R5 R10 R1 R5 R10 R1 R5 R10 R1 R5 R10

Full data 100.00% 35.00 58.80 69.80 34.79 58.97 70.27 31.70 60.48 74.61 6.86 18.33 25.62 18.90 34.10 41.10 42.62
CLIP Avg Threshold 15.57% 39.60 64.70 73.70 34.72 60.02 68.65 35.34 65.10 77.56 9.59 23.76 33.17 20.90 38.40 46.00 46.08
CLIP Mid Threshold 43.62% 39.90 63.50 73.60 35.32 59.72 70.04 34.87 62.83 76.38 9.24 23.18 32.54 22.10 38.10 44.20 45.70
CLIP Max Threshold 39.36% 38.30 64.60 74.40 34.79 59.86 70.37 35.37 63.67 76.58 9.07 23.55 32.57 21.70 38.80 45.50 45.94
LB Threshold 23.95% 40.00 65.90 75.40 35.74 60.79 70.89 37.33 66.76 79.06 9.99 24.24 33.43 22.48 39.36 46.85 47.21
CiT 20.69% 40.60 65.90 75.70 35.64 62.18 70.89 37.78 65.77 78.37 10.01 24.89 33.10 21.98 38.96 46.55 47.22
CoLoR-Filter 12.51% 41.30 65.10 76.10 35.45 60.40 70.00 37.87 66.58 79.44 10.10 24.96 34.23 22.70 38.50 46.10 47.25
ReSpec (ours) 5.41% 40.80 65.50 75.00 34.99 61.45 70.17 37.28 66.88 79.78 10.27 25.83 35.01 21.68 39.06 46.45 47.34

Table 2. Performance on 5 downstream tasks trained with VideoCC3M dataset.
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Figure 2. Additional architecture performance comparison on
VideoCC3M We compare our approach using the FrozenBiLM
architecture [27] to the top performing baselines based on the av-
erage performance and the ratio of filtered data size to full data
size (VideoCC3M here). The average performance is the average
of Recall at 1, 5 and 10 across four downstream tasks.

As shown in Fig. 1, ReSpec delivers the best perfor-
mance, requiring the least amount of data while achiev-
ing the highest average performance across five downstream
tasks.

4.2. Additional Architecture and Downstream
Tasks Results

In addition to BT-Adapter [12], we also validate the effi-
cacy of ReSpec on another architecture, FrozenBiLM [27],
which is also well-suited for online training. FrozenBiLM
endows the pretrained bi-directional language model with
zero-shot video question answering capabilities by freezing
the visual backbone and the bi-directional language model
and training visual-text projection and adapter layers using
the masked language modeling (MLM) objective.

Unlike BT-Adapter, which used zero-shot video-text re-
trieval as downstream tasks, we use four zero-shot open-
ended video question-answering tasks (MSRVTT-QA [25],
MSVD-QA [25], ActivityNet-QA [30], and TGIF-QA [9])
and one zero-shot video-conditioned fill-in-the-blank task
(LSMDC-FIB [14]) as downstream tasks of FrozenBiLM.

Fig. 2 reports the result of the online trained Frozen-
BiLM on video-text data filtered from VideoCC3M. ReSpec
outperforms CiT and CoLoR-Filter in terms of average per-
formance (average of top-1 and top-10 accuracy) while be-
ing most efficient in terms of the amount of the selected
data.

4.3. Generalization to Online Image-Text Filtering

While we mainly focus on the video-text domain since on-
line filtering is more critical for video data, where stor-
age and computational demands are significantly higher,
ReSpec is generalizable to online image-text filtering. To
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(c) LAION10M

Figure 3. Performance comparison on online image-text fil-
tering We compare our approach to the baselines based on two
metrics: average performance and the ratio of filtered data size
to full data size. The evaluation is conducted on three datasets:
CC3M [22], CC12M [6], and a 10M subset of LAION-400M [20].
The average performance is computed as the mean of Recall at 1,
5, and 10 across two downstream tasks.

demonstrate the generalizability, we conduct experiments
on online image-text filtering and training by using CLIP
ViT-B/16 features for filtering and training CiT [26] archi-
tecture with ViT-B/16 image encoder pretrained on Ima-

geNet21k and pretrained SimCSE-BERTbase text encoder
using the filtered image-text pairs in an online manner. we
freeze the pretrained image encoder and train the text en-
coder and two projection layers. we use COCO [10] and
Flickr30k [29] retrieval as the downstream tasks.

Fig. 3 compares ReSpec to CiT and CoLoR-Filter when
using CC3M [22], CC12M [6], and 10M subset of Laion-
400M [20] as the noisy source datasets. in all three settings,
ReSpec achieves the best average performance (average of
Recall at 1, 5, and 10) while using the smallest amount of
data.

4.4. Multi-Dataset Training Results

We conduct two multi-dataset training experiments: one us-
ing a sequential stream from VideoCC3M to WebVid2M,
and the other with a randomly shuffled stream of both
datasets. We evaluate performance using two metrics: av-
erage performance (mean Recall at 1, 5, and 10 across five
downstream tasks) and the relative ratio of filtered data size
to total data size.

First, Fig. 4 compares sequential multi-dataset training
(VideoCC3M → WebVid2M) across different approaches.
Our method outperforms CiT in average performance and
requires significantly less data, with a ratio of 21%, com-
pared to CiT’s 31%. In contrast, CoLoR-Filter shows
slightly lower performance and a data usage ratio similar to
CiT’s, while the LB Threshold method requires the largest
data volume (55%) but performs the worst. This highlights
our approach’s efficiency in minimizing data requirements
while maintaining top-tier recall performance across down-
stream tasks with sequential multi-dataset training.

Second, Fig. 5 shows results from training on a ran-
domly shuffled stream of VideoCC3M and WebVid2M.
This experiment tests whether the model retains robust per-
formance despite the random dataset order. Our approach
again outperforms others, requiring only 16% of the data,
compared to CiT’s 32% and CoLoR-Filter’s 34%. This fur-
ther underscores the efficiency of our method in minimizing
data usage while maintaining state-of-the-art recall perfor-
mance across downstream tasks, even with randomly shuf-
fled multi-datasets.

4.5. Per-Task Results

Tab. 1–2 shows the recall at 1, 5, and 10 for each down-
stream tasks and the average of the recalls across five down-
stream tasks (Avg. Perf.), along with the clip ratio (the ra-
tio of the filtered data size over the original dataset size).
ReSpec achieves the best average performance while fil-
tering the least amount of data in both WebVid2M and
VideoCC3M.
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Figure 4. Online multi-dataset (VideoCC3M → WebVid2M)
filtering and training performance comparison. We evaluate
our approach using the FrozenBiLM architecture [27] and com-
pare it against the top-performing baselines based on two key met-
rics: average performance and the ratio of filtered data size to full
data size (CC3M in this case). The average performance is calcu-
lated as the mean of the Recall at 1, 5, and 10 across four distinct
downstream tasks.
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Figure 5. Online multi-dataset (randomly shuffled
VideoCC3M + WebVid2M) filtering and training perfor-
mance comparison. We compare our approach to the top
performing baselines based on the average performance and
the ratio of filtered data size to full data size (VideoCC3M +
WebVid2M here). The average performance is the average of
Recall at 1, 5 and 10 across five downstream tasks.

5. Extended Analysis

5.1. Embedding Robustness Analysis

Fig. 6 presents a comparative evaluation of various base-
line methods using three distinct variants of CLIP embed-
dings: Max, Mid, and Avg. Across all embedding types,
our proposed method consistently outperforms competing
approaches, achieving the highest average recall while mak-
ing use of small data subsets for training.

Relevance Filter Clip ratio (%) Avg. perf.

Cosine similarity (threshold = 0.55) 49.99% 48.55
Gaussian distribution modeling 45.51% 48.23
vMF distribution modeling 34.12% 48.95
vMF kernel density estimation (ours) 27.50% 49.11

Table 3. Ablation of relevance filters on WebVid2M

Threshold τtext Clip ratio (%) Avg. perf.

τtext = 0.5 57.4% 48.58
τtext = 0.55 42.5% 48.99
τtext = 0.6 29.9% 48.89
τtext = 0.65 20.1% 48.62

Table 4. Ablation on the choice of text cosine similarity thresh-
old τtext in CiT [26]. τtext = 0.55, which is the default value in the
original CiT paper and the value we use for our main experiments,
shows the best performance. The results are from WebVid2M.

These results show the robustness of our approach,
demonstrating its effectiveness across diverse embedding
variants, in addition to the primary LanguageBind embed-
dings used in our main experiments. This consistent per-
formance further highlights the versatility of the proposed
method, emphasizing its potential for broad applicability
across a range of tasks and datasets.

5.2. Relevance Filter Ablations

To better understand and justify the design choice of our
relevance filter, we conduct three comparisons. The first
comparison involves using cosine similarity on downstream
data, the second compares modeling each downstream task
using a Gaussian distribution, and the third explores the
use of a von Mises-Fisher (vMF) distribution to model each
downstream tasks. As shown in Table 3, our relevance filter
with vMF kernel density estimation outperforms the other
approaches by a significant margin while requiring the least
amount of data.

5.3. Baseline Ablations

CiT [26] requires the hyperparameter τtext that is used as a
threshold on the cosine similarity between incoming data
and downstream task text embeddings. Tab. 4 shows the
ablation on the choice of τtext. As in the main experimen-
tal results of the original CiT paper, choosing τtext = 0.55
shows the best performance.

For another ablation, we experiment with CiT without
the parameter update, which we call train-free CiT, and the
results can be found in Tab. 5. While the train-free CiT im-
proves the computational efficiency over CiT, as it does not
require any parameter update of the filtering model, its per-
formance worsens in terms of both the average performance
and the number of data sampled.

While we adapt CoLoR-Filter to operate in sample-wise
manner to better suit the online video-text filtering setting,
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(a) Using CLIP Max embedding
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(b) Using CLIP Mid embedding
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(c) Using CLIP Avg embedding

Figure 6. Performance comparison using Max/Mid/Avg CLIP embeddings We compare our approach to the baselines based on the
average performance and the ratio of filtered data size to full data size. The average performance is the average of Recall at 1, 5, and 10
across the five downstream tasks. All experiments shown are based on WebVid2M.

Filtering method Clip ratio (%) Avg. perf.

CiT [26] 42.5% 48.99
Train-free CiT 51.5% 48.63

Table 5. Ablation of CiT [26] with and without filtering model
parameter update. While the Train-free CiT, which does not re-
quire the parameter update of the filtering model, improves the
computation efficiency, it results in worse performance while sam-
pling more data. The results are from WebVid2M.

we also show the result of applying CoLoR-Filter in a batch-
wise manner. In the batch-wise CoLoR-Filter, the incoming
data is first stored in a delayed buffer (batch) if it passes the
video-text cosine similarity thresholding. When the buffer
is full, top p% of the data within the delayed buffer is se-
lected based on the cosine similarity difference between the
finetuned and the prior models. Tab. 6 shows the result of
using batch-wise CoLoR-Filter in online video-text filter-
ing with the buffer size of 100. Note that while the per-
formance slightly improves, using the batch-wise CoLoR-
Filter increases the storage cost and decreases the respon-
siveness as it needs to wait until the buffer is full, making
it less efficient and applicable in the online filtering setting.
It also introduces another hyperparameter p, the sampling
ratio within the buffer.

5.4. Qualitative Analysis

We present qualitative analyses in Fig. 7, Fig. 8, Fig. 9,
Fig. 10 and Fig. 11. Fig. 7-(a) shows samples selected by
ReSpec but not by any of the baselines. These samples
are generally meaningful regarding alignment, downstream
task relevance, and text specificity. However, the baseline
fails to select these samples, indicating that the efficiency
of task-aware online training is reduced. Fig. 7-(b) and (c)
display samples selected by CiT and CoLoR-Filter but not
by ReSpec. This suggests that while CiT and CoLoR-Filter
maintain a certain level of downstream task relevance, they

Sampling ratio p Clip ratio (%) Avg. perf.

50% 38.7% 48.46
45% 34.8% 48.46
40% 31.0% 48.58
35% 27.1% 48.67
30% 23.2% 48.67
25% 19.4% 48.44

Sample-wise 56.4% 48.46

Table 6. Results of using batch-wise version of CoLoR-Filter.
While using the batch-wise version slightly improves the perfor-
mance, note that it incurs additional storage cost and reduces the
responsiveness. The results are from WebVid2M.

often select less informative samples with insufficient text
specificity. Fig. 7-(d) demonstrates that the LB Threshold
method selects data that maintains alignment but falls sig-
nificantly short in relevance and text specificity.



(b) Sampled by CiT, but not by ReSpec

(d) Sampled by LB Threshold, but not by ReSpec

(a) Sampled by ReSpec, but not by all baselines

(c) Sampled by CoLoR-Filter, but not by ReSpec

Young cute African girl with afro hair having headache

Pharmacist woman offers the visitor a cure at the chemists shop

Happy man enjoying life. Carefree lifestyle background

A video of two fired while they are frying in the pan. Typical carnival cake

Young red-haired woman running across the field from sunflowers, slow motion

Rock climbing, peak success and enthusiastic team

Fishing rod coil

Fresh mint leaf

Squirrel
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Red beans on a background
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Repair and tools
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Figure 7. Qualitative analysis (a) represents samples only selected by ReSpec (ours) and not by other baselines (CiT, CoLoR-Filter).
(b), (c), and (d) visualize samples selected by other baselines but not selected by ours. In each case, the samples selected generally
ensure a certain level of alignment, relevance, and specificity. While downstream relevance is shown for (b) and (c), there are noticeable
shortcomings in terms of text specificity. In the case of (d), there are shortcomings in both downstream relevance and text specificity. More
samples are shown in Fig. 8, Fig. 9, Fig. 10 and Fig. 11.
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Process of anodizing aluminum products in production, automatic production line. 

Doctor holding in hand prevent hearing loss 

Figure 8. Additional qualitative analysis of ReSpec



Www http data tunnel 

The cargo is lifting in a large warehouse 

Country in vector agriculture 

Tamarind 

Tree 

Us cruiser 

Businessman signing business documents. 

Equipment for the production of liquid drugs. 

Cutting wood for woodworking machines 

Mechanical watch repair 

Scheme electronic 

Oak tree 

Sunflower field 

Abstract background with beautiful color 

Japanese pampas grass 

Marine aquarium 

Micro organism are going to in word aids 

Firework 

Mashed potato preparation 

Wedding 

Figure 9. Additional qualitative analysis of CiT



Waterfall 

The cargo is The steering mechanism  in a large warehouse 

Wheat field 

Colobus 

Fish in aquarium 

News word media text 

Chocolate factory and production of candies part 1 

Charcoal fire 

Chicken sandwich 

Dandelion field taraxacum officinale 

White swan 

Chicken farm, eggs and poultry production 

Microphone 

Working oil pump 

Ink splashes 

Blue mosque in istanbul, turkey 

Background of hexagons. abstract background 

Oranges cut gyrating 

Dental examination and treatment 

Business data graph chart bar 

Figure 10. Additional qualitative analysis of CoLoR-Filter



The traditional production of homemade sausage 

Abstract gradient pastel multicolored background. 

Wind turbine close-up 

Merry christmas

Lotus flowers  

Technical class - preparing electric circuit 

Contact us. looping. 

Worker gas welding 

Dice 

The electric car engine 

Grass flower 

Underwater world 

Marking timber 

Toast for breakfast 

Motocross, winter training 

Apple field 

Candle on black background 

Fireworks beautiful fireworks to celebrate  

Violin musical instrument 

Meditation - chakras 

Figure 11. Additional qualitative analysis of LB Threshold
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