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A. Method Details
A.1. Training Details
The training pipeline of SapiensID is largely similar to the
setting of training a ViT model in face recognition [37].
This is possible because WebBody4M is a labeled dataset
with a sufficient number of subjects, just as face recognition
datasets. We use the AdaFace [34] loss and optimize the
model with the AdamW [49] optimizer for 33 epochs. The
learning rate is scheduled by the Cosine Annealing Learning
Rate Scheduler [48] with an additional warm-up period of 3
epochs. The maximum learning rate is set to 0.0001. We use
7 A100 GPUs with a batch size of 128. We also change the
classifier to PartialFC [2] with a sampling ratio of 0.1 to save
GPU memory and gain computation efficiency. Overview of
the model is shown in Fig. 8.

For data augmentation, we find that it is important to
use a moderate amount of geometric augmentation (zoom
in-out: 0.9 → 1.1, translation: ±0.05) and aspect ratio ad-
justments (0.95 → 1.05). We also find it effective for im-
proving aligned face recognition performance to include
face-zoomed-in images frequently (40%). We also oversam-
ple images that contain more visible keypoints because those
images are relatively scarce (note Tab. 16).

A.2. Notation Clarification in the Main Paper
In Semantic Attention Pooling’s SAH, the equation pre-
sented as Eq. 8:

O
i

part = Attention
(
Q

i

kp
, PE, backbone(Xi)

)
, (11)

Attention(Q,K,V) is specifically defined as:

O
i

part = softmax
(
WqQWkK

→
↑
d

)
WvV, (12)

where Q, K, and V represent the query, key, and value matri-
ces, respectively, and Wq , Wk, and Wv are their associated
projection weights. This is how the size of the attenion is
modulated during learning.

Also notice that without the learnable projections Wq,k,v

and a small d, the attention simply focuses on the position
with the highest proximity to the keypoint. To make sure
that we have this feature from the sharp peak at the keypoint
location, we additionally use

O
i

peak = softmax
(
QK

→
↑
d

)
V. (13)

The final feature vector is computed by concatenating the
two sets of semantic features Oi

part and O
i

peak and flattening

them for MLP projection. Specifically, it is

f i = MLP(flatten([Oi

part,O
i

peak])). (14)

The addition of O
i

peak is simply to ensure that the model
always has the feature from the keypoint location. We have
not tested how much performance gap is created by remov-
ing this inductive bias in SAH. The final number of part
features is 152 (19 keypoints ↓ 4 offset repeats ↓ 2 from
concatenating O

i

part and O
i

peak. We realize that the readers
could be confused about the formulation of SAH attention,
so we will make it clearer in the main paper.

A.3. Things We Tried That Did Not Make it into the
Main Algorithm

• We tried to initialize the model with the Sapiens [33] pre-
trained backbone, thinking it would be a good starting
point that leads to better generalization. However, it did
not lead to better performance. We believe this is because:
1) our patch scheme is dramatically different from the
original patch scheme, and 2) Sapiens is trained with the
MAE [22] objective, which is suitable for dense prediction
tasks. However, SapiensID is a classification (or metric
learning) task. Dense prediction tasks prioritize spatial
consistency and detailed reconstruction, whereas classi-
fication tasks focus on extracting discriminative features,
which may require different feature representations.

• We tried using the differential layerwise learning rate [72],
but it did not help and the learning was only slower.

• We tried not learning the size and offset for the Semantic
Attention Head (SAH) by simply taking the feature from
the keypoint locations. This led to worse performance in
general.

A.4. Transforming Keypoints to ROIs
SapiensID relies on predicted keypoints to define Regions of
Interest (ROIs). Assuming we have an input image roughly
cropped around the visible body area (typically using a per-
son detector’s bounding box), we start with a set of predicted
keypoints K = {(xk, yk)}Nk=1, where N is the number of
keypoints. Our goal is to generate bounding boxes for each
ROI. Specifically, we generate two bounding boxes—for
the face and the upper torso—in the format (x1, y1, x2, y2),
representing the top-left and bottom-right corners.

1. Valid Keypoint Selection:
Let K = {1, 2, . . . , N} be the set of keypoint indices. For
each keypoint k ↔ K, the coordinates are (xk, yk) ↔ R2.
We define a visibility indicator vk for each keypoint:

1



R
P

Tokens B × 𝑁𝑖 × 𝐶

MRM: Masked Recognition Model

V
iT

Mask Tokens

Compress Mask Output Feature

M
R

M

SA
H

RP: Retina Patch

Feature map B × (𝑁𝑘+1) × 𝐶
Feature 
Vector 
B × 𝐶′

SAH: Semantic Attention Head

Key: Pos Emb

Query: 
Keypoints

Value: 
Feature

ATT
M

LP

Figure 8. Illustration of the feature vector generation in SapiensID. First, Retina Patch (RP) generates image patches. Then, Masked
Recognition Model (MRM) modifies the number of tokens. Finally, Semantic Attention Head (SAH) produces the feature vector from the
set of tokens.

vk =

{
1, if xk ↗= ↘1 and yk ↗= ↘1,

0, otherwise.
(15)

Define the sets of keypoint indices relevant to each ROI:

K1: Left Eye K6: Left Mouth Corner
K2: Right Eye K7: Right Mouth Corner
K3: Left Ear K8: Left Shoulder
K4: Right Ear K9: Right Shoulder
K5: Nose

Then Face Keypoints are

Mf = {K1,K2,K3,K4,K5,K6,K7}.

And Upper Torso Keypoints are

Mu = Mf ≃ {K8,K9,K10,K11}.

The valid keypoints for each ROI are those that are both
visible and relevant:

V face = {k ↔ Mf | vk = 1}, (16)
V torso = {k ↔ Mu | vk = 1}. (17)

2. Bounding Box Center and Size Calculation:
For each ROI (face or upper torso), we compute the center
using the set V , which is either V face or V torso:
First compute the minimum and maximum coordinates
among valid keypoints:

xmin = min
k↑V

xk, ymin = min
k↑V

yk, (18)

xmax = max
k↑V

xk, ymax = max
k↑V

yk. (19)

Then calculate the center of the bounding box:

cx =
xmin + xmax

2
, cy =

ymin + ymax

2
. (20)

Then determine the maximum distance d from the center
to the valid keypoints:

d = max
k↑V

√
(xk ↘ cx)2 + (yk ↘ cy)2. (21)

3. Bounding Box with Padding:
First define the bounding box size s with a padding factor
p (e.g., p = 0.3):

s = d↓ (1 + p). (22)

Then calculate the coordinates of the bounding box:

x1 = cx ↘ s, y1 = cy ↘ s, (23)
x2 = cx + s, y2 = cy + s. (24)

4. Making Bounding Box Divisible: To ensure that the
patches cover the image without any overlap, the bound-
aries of the bounding box must snap onto the patch grid.
In other words, the bounding box coordinate should be
divisible by the patch size (pw, ph) of the enclosing ROI.
Let nr and nc be the desired number of rows and columns
for patches within the ROI. We modify the bounding box
size s to ensure divisibility.

x↓
1 = ⇐ x1

pw
⇒ ↓ pw, y↓1 = ⇐ y1

ph
⇒ ↓ ph (25)

x↓
2 = ⇑ x2

pw
⇓ ↓ pw, y↓2 = ⇑ y2

ph
⇓ ↓ ph (26)

The final, grid-aligned bounding box is then:

b = (x↓
1, y

↓
1, x

↓
2, y

↓
2) ↔ R4. (27)

This snapping process ensures that the bounding box
boundaries coincide with patch boundaries, resulting in
clean, non-overlapping patch extraction. We compute
two bounding boxes, bface and b

torso, using this process.
All these steps can be conducted in GPU for efficient
computation.
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A.5. Proof of Scaled Attention Equivalence
Let the scaled dot-product attention mechanism for self at-
tention is defined as:

A = softmax
(
QK

→
↑
d

)
V,

We aim to prove that when a scaling factor ω ↔ R1↔M is
added to the logits:

A = softmax
(
QK

→
↑
d

+ ω

)
V,

this is equivalent to repeating each key Kj and value Vj

exactly mj times, where ωj = logmj .
Proof: Consider the following term:

QK
→

↑
d

+ ω.

For a query i and key j, the element of this matrix is:
(
QK

→
↑
d

+ ω

)

ij

=
Qi ·K→

j↑
d

+ logmj ,

where Qi is the i-th query and Kj is the j-th key. Applying
the softmax function, we get:

Aij =

exp

(
Qi·K→

j↗
d

+ logmj

)

∑
k
exp

(
Qi·K→

k↗
d

+ logmk

) .

Using the property exp(a + b) = exp(a) exp(b), this sim-
plifies to:

Aij =

exp

(
Qi·K→

j↗
d

)
mj

∑
k
exp

(
Qi·K→

k↗
d

)
mk

.

This is equivalent to each key Kj and corresponding value
Vj are duplicated mj times. We discard the values corre-
sponding to the mask, so the result of the attenion mechanism
is the same. Thus, the attention mechanism with ω scaling is
mathematically equivalent to duplicating the keys and values
proportionally to the number of times the mask appears.

A.6. Token Length in MRM during Inference
To clarify the MRM’s mechanism during training and infer-
ence, we include a more detailed explaination. One single
masked token replaces all selected image tokens to mask
during training. Eq.4 computes exactly same attention be-
tween 1 1 1 1 1 and 1 1 1 2 where the black box
is the mask token the number inside represents the attention
offset (ω in Eq.4). So in inference, we append 1 with 1
(essentially no repeat) to make the token length same. Eg:

Sample 1: 1 1 1 1 Sample 2: 1 1 1 1

Dataset Avg LFW CPLFW CFPFP CALFW AGEDB
WF4M 97.44 99.80 94.97 98.94 96.03 97.48
WB4M-
Facecrop 97.63 99.82 95.12 99.19 96.07 97.97

Table 7. Performance Comparison between WebFace4M and Web-
Body4M in the Face Recognition Task.

AVG LTCC CC PRCC CC
Top1 mAP Top1 mAP

Body 42.04 38.01 18.84 55.69 55.63
Face 36.56 17.60 4.91 72.62 51.10
Fused-Max 42.93 39.80 13.25 61.22 57.45
Fused Min-Max 49.92 39.80 12.95 79.00 67.93
Fused-Mean 49.99 39.80 12.82 79.48 67.85
SapiensID 52.87 42.35 17.79 78.75 72.60

Table 8. Performance table of score fusion (Body and Face).

B. Performance
B.1. WebBody4M vs WebFace4M Comparison
To assess the quality of the face image data within Web-
Body4M, we create WebBody-Facecrop by cropping face
from the WebBody datset. And we compare its face recog-
nition performance against WebFace4M [86], a dedicated
large-scale face recognition dataset. We train the same ViT-
based model with AdaFace loss on both datasets. Tab. 7
presents the results on standard face recognition benchmarks
(LFW, CPLFW, CFPFP, CALFW, and AGEDB). The model
trained on WebBody4M achieves a slightly higher aver-
age accuracy (97.63%) compared to that of WebFace4M
(97.44%). This indicates WebBody4M label is of compara-
ble quality, even slightly exceeding WebFace4M label.

B.2. Fusion Performance
While SapiensID inherently handles both face and body
information within a single model, a common alternative ap-
proach involves training separate face and body recognition
models and fusing their outputs. We compare SapiensID’s
performance with such multi-modal fusion methods. We con-
sider a baseline where a body model (CAL [20]) is trained on
either PRCC or LTCC, and a face model (ViT-Base [34]) is
trained on WebFace4M. We then fuse the similarity scores of
these two dedicated face and body models using three com-
mon fusion strategies: Max Fusion, Min-Max Normalization
Fusion, and Mean Fusion. Tab. 8 presents the performance.

As shown in the table, even the best fusion strategy (Mean
Fusion) achieves an average mAP of 49.99%, lower than
SapiensID’s 52.87%. Fusion is more helpful in PRCC but
not much in LTCC with an increase in Top1 and a decrease
in mAP. This result highlights the advantage of SapiensID’s
unified architecture, which learns to integrate face and body
information more effectively than post-hoc fusion methods.
Fusion methods treat each modality independently, poten-
tially missing valuable contextual information that arises
from their combined analysis.
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Method KPR [57] + SOLDIER SapiensID
Training Data LUPerson4M + OccludedReID WebBody4M

OccludedReID top1 84.80 87.30
mAP 82.60 75.57

LTCC General top1 68.15 74.24
mAP 32.42 36.88

LTCC CC top1 21.17 42.60
mAP 10.19 17.39

Table 9. Generalization performance comparison under occlusion.
SapiensID demonstrates superior generalization to unseen datasets
(LTCC) compared to KPR+SOLDIER.

B.3. Occluded ReID
Occlusions pose a significant challenge for robust human
recognition. While specialized methods can be effective
within their training domain, generalization to unseen scenar-
ios is crucial for real-world deployment. We compare Sapien-
sID’s performance with KPR [57] combined with SOLDIER,
a state-of-the-art occlusion handling method, to evaluate
their respective generalization capabilities. KPR+SOLDIER
is trained on a combination of LUPerson4M and the Oc-
cludedReID [87] dataset, while SapiensID is trained on our
WebBody4M dataset without any OccludedReID data.

Tab. 9 presents the results on OccludedReID and the
LTCC dataset (both General and Clothing Change protocols).
KPR+SOLDIER and SapiensID similar performance on Oc-
cludedReID, SapiensID demonstrates significantly better
generalization performance. On LTCC, SapiensID substan-
tially outperforms KPR+SOLDIER across both protocols,
highlighting the limitations of specialized training. This
underscores the importance of training on diverse datasets
like WebBody4M to achieve robust generalization in real-
world human recognition. SapiensID, by learning from a
wide range of poses, viewpoints, and clothing styles, is more
adaptable and effective in unseen scenarios.

B.4. Impact of Body Part Features
We investigate the relative importance of different body parts
in human recognition by conducting an ablation study on the
Semantic Attention Head (SAH). Starting from part features
(Oi

part
in Eq. 8) multiplied by zero, we progressively undo

masking, either from nose-to-ankles (top-down) or ankles-
to-nose (bottom-up). We evaluate performance on LTCC
(Clothing Change protocol) and PRCC (Clothing Change
protocol). Results are presented side-by-side in Tab. 10.
The top-down approach generally yields faster performance
gains than bottom-up, suggesting that upper-body features
contribute more significantly to recognition.

Interestingly, ankle features alone appear more discrim-
inative than nose features alone. However, this counter-
intuitive finding does not imply that ankles are inherently
more informative than noses for person identification. We
hypothesize that this observation arises because each part
feature within SAH is not solely derived from the corre-
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Figure 9. Illustration of how Images are erased from top to bottom
or bottom to top.

sponding body part. Due to the preceding ViT backbone’s
attention mechanism, each part feature incorporates infor-
mation from other body regions. Therefore, the presented
results reflect the discriminative power of a part plus periph-
eral information from other parts, rather than the isolated
contribution of each part.

A more accurate assessment of a part’s individual discrim-
inative ability would involve manipulating the input image
directly, such as by occluding specific body parts. This ap-
proach, which isolates the impact of each part, is explored
in the following section.

B.5. Impact of Actual Image Erased
To isolate the contribution of each body region, we conduct
a second ablation study where we progressively erase sec-
tions of the input image, either top-down or bottom-up, as
illustrated in Fig. 9. We erase equal-sized horizontal strips,
starting with a single strip and progressively adding more
until the whole image is erased (represented as "None" in the
tables). The "Full" row represents the baseline performance
with the complete image. Results are presented in Tab. 11.

The direct manipulation of the image confirms the impor-
tance of upper body regions. On both datasets, removing
the top portion of the image drastically reduces performance.
It comes as a surprise that PRCC can achieve a very good
performance with only 1 top strip of image. But for LTCC,
the lower parts are necessary to obtain a good performance.
This indicates that different datasets exhibit different charac-
teristics that can be exploited for conducting ReID.

B.6. Sensitivity to Pose Estimation
To understand the sensitivity of SapiensID to the pose esti-
mation, we compare OpenPose [7], and YoloV8 [31] and add
Gaussian noise (ε = 0.01). Tab (a) shows minimal impact
from detector choice, but systematic keypoint errors reduce
performance. Contrarily, in (b) we show how 5% zoom
degrades CLIP3DReID, while SapiensID remains robust,
making it the first ReID model robust to input extrinsics.

B.7. (Ablation on Model Size
We investigate the relationship between performance and the
model and dataset size. In Tab. 12, we include ViT size vari-
ation (small vs base). The trend shows that the larger model
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LTCC CC PRCC CC
Top1 mAP Top1 mAP

1 None 0.00 3.56 1.47 4.28
2 1+Nose 25.77 5.78 27.21 21.04
3 2+Eye 30.61 8.87 63.87 55.17
4 3+Mouth 38.01 11.81 73.36 65.05
5 4+Ear 39.80 14.05 77.65 70.45
6 5+Shoulder 41.84 15.82 79.73 73.14
7 6+Elbow 41.07 16.64 80.55 73.54
8 7+Wrist 41.07 17.16 79.34 73.16
9 8+Hip 40.56 17.50 79.99 73.38
10 9+Knee 42.35 17.73 79.00 72.88
11 10+Ankle (full) 42.35 17.79 78.75 72.60

(a) top-down

LTCC CC PRCC CC
Top1 mAP Top1 mAP

1 None 0.00 3.56 1.47 4.28
2 1+Ankle 27.04 7.37 45.05 35.32
3 2+Knee 32.14 9.55 55.12 44.97
4 3+Hip 35.71 12.34 66.07 55.04
5 4+Wrist 37.24 13.83 67.63 58.43
6 5+Elbow 40.05 15.72 69.57 62.61
7 6+Shoulder 41.33 16.87 73.84 67.80
8 7+Ear 41.58 17.61 76.21 70.62
9 8+Mouth 41.58 17.95 78.18 72.63
10 9+Eye 41.58 17.80 79.23 72.92
11 10+Nose (Full) 42.35 17.79 78.75 72.60

(b) bottom-up

Table 10. Comparison of feature erasing performance. (a) shows the performance as we progressively introduce features from Nose to
Ankle (top-down approach). (b) demonstrates the performance when adding features from Ankle to Nose (bottom-up approach). Results are
evaluated on LTCC and PRCC Cloth Changing (CC) protocol.

LTCC CC PRCC CC
Top1 mAP Top1 mAP

1 None 2.30 1.89 12.67 4.78
2 1+Top1 5.10 2.61 78.04 67.29
3 2+Top2 27.04 11.88 79.25 70.53
4 3+Top3 29.34 13.20 78.35 69.85
5 4+Top4 33.67 13.88 77.82 69.55
6 5+Top5 37.24 14.65 76.97 69.28
7 6+Top6 36.48 15.49 78.55 70.39
8 7+Top7 41.07 16.63 80.07 71.52
9 Full 42.35 17.79 78.75 72.60

(a) top-add

LTCC CC PRCC CC
Top1 mAP Top1 mAP

1 None 2.30 1.87 12.50 4.78
2 1+Bottom1 2.81 2.26 24.56 10.89
3 2+Bottom2 6.12 3.08 31.22 16.94
4 3+Bottom3 5.87 3.62 33.78 20.65
5 4+Bottom4 10.20 4.26 33.08 24.59
6 5+Bottom5 12.50 5.33 22.10 21.31
7 6+Bottom6 16.07 6.48 24.47 24.80
8 7+Bottom7 35.46 13.20 29.07 28.63
9 Full 42.35 17.79 78.75 72.60

(b) bottom-add

Table 11. Impact of progressively adding visible parts from the (a) top and from the (b) bottom. In contrast to Tab. 10 which measures the
performance with the intermediate features zeroed out, here the actual input image is masked out.

Keypoint Predictor Whole Body ReID
Short Long

Open Pose 66.30 73.05
Yolo V8 65.62 72.76

Open Pose + ω 56.08 65.72
(a) SapiensID with keypoint changes

Extrinsic Change LTCC (CC)
Original Zoom 5%

CLIP3DReID[44] 41.84 31.88
SapiensID 42.35 41.58

(b) Different camera extrinsics
OpenPose Yolo +Noise Zoom 5%

(c) Example visualization

has higher performance. We also created WebBody12M, in
addition to 4M and the dataset increase further improves the
performance.

SapiensID Dataset LTCC CCDA Celeb LFW AGEDB
Small WB4M 71.40 57.04 91.29 99.67 96.58
Base WB4M 74.24 61.84 92.77 99.77 97.18
Base WB12M 75.66 66.80 94.01 99.85 98.02

Table 12. SapiensID backbone and dataset size Variation.

B.8. FLOP Analysis
In this subsection, we provide the FLOP analysis of Sapi-
ensID. The backbone model shares face model backbone
(ViT-base). The major difference with ViT-base is the num-
ber of tokens. In inference, RetinaPatch produces 281 tokens
on average (vs. 196 in ViT), increasing FLOPs from 24.69G
to 35.39G. RetinaPatch (0.45G FLOPs) and Head (1.09G
FLOPs, 336.65M params) add minimal overhead. Similarity
measure is cosine dist, same as ArcFace.

B.9. Role of Masked Recognition Model (MRM)
In this subsection, we provide more ablation of MRM to
showcase the importance of variable masking rate. Starting
from simple ViT, we progressively add elements that com-
prises MRM. First we introduce token masking to handle
varying token counts from RetinaPatch and improve training
speed. Yet, simple masking significantly reduces perfor-
mance due to discrepancies between training and testing
samples. Thus, we propose variable rate masking (MRM),
which restores performance to full-token training levels (see
the table below, row 1 vs 3). All performance is measure
without Retina Patch or Semantic Attention Pooling.

Metric same as Tab.5 (main paper) Face Whole Body ReID
Short Long

(1) ViT (Full Token) 90.63 56.17 31.81
(1) + Token Masking (always remove 33%) 57.73 49.23 25.83
(1) + MRM (variable remove rate) 89.54 55.56 30.76
(1) + MRM + Retina Patch 92.93 59.16 46.95

Table 13. Performance of ViT as measured in Tab.5 of main paper.
MRM is needed to allow Retina

B.10. Additional Face Recognition (FR) Perf.
We include more face recognition performances to inves-
tigate the performance of SapiensID in more challenging
face recognition scenarios. We include the performance mea-
sured in IJB-B [69], IJB-C [69], TinyFace [11]. TinyFace
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measures the face recognition performance in low quality
imageries. WebBody4M is actually rich in small faces due
to whole body images. It results in better TinyFace perfor-
mances (row 2,3) than WebFace4M. SapiensID, inherently
a body ReID model works well on aligned faces is because
RetinaPatch always focuses on the face region.

Aligned FR Training Data IJBB IJBC TinyFace
TAR@FAR0.01% R1 R5

ViT-AdaFace WebFace4M 95.60 97.14 74.81 77.58
ViT-AdaFace WB4M (Face crop) 95.92 97.22 75.32 78.76
SapiensID WB4M 95.07 96.43 75.97 79.69

Table 14. Face Recognition Performance with ViT-Base. IJB,C
measured in TAR@FAR=0.01%. All input images are aligned.

B.11. IJB-S Evaluation
A unified model is useful when matching cross modality
imagery. In IJB-S [32] evaluation Surv2Single protocol,
probe surveillance videos are matched to close-up gallery
face images. UAV2Book presents an even greater challenge,
with drone-captured probe videos featuring smaller faces and
high-pitch angles. In such case, facial regions are too small.
With a shared representation for both the whole body and
face, the unified model (SapiensID) opportunistically cap-
tures more contextual cues, leading to improved matching,
as shown below. Separate face or body models don’t share
the same representation space to conduct cross-modality
matching. All models are finetuned on LQ BRAIR dataset.

IJB-S Evaluation Input Type Surv2Single UAV2Book
Model Probe Gallery R1 R5 R1 R5

Body Models Body Face NA because raw gallery is face.
ViT-AdaFace Face Face 75.6 79.7 29.1 38.0

SapiensID Face Face 75.8 80.0 31.6 44.3
Body Face 72.6 77.9 39.2 49.4

Table 15. Performance in IJB-S Evaluation Dataset.

B.12. Unaligend Face Recognition
We also show unaligned IJB-B/C results to see the face
recognition performance without alignment. A dedicated
FR model is better in aligned, but SapiensID has less perfor-
mance drop in unaligned settings.

Metric TAR@FAR=0.01% Unaligned Aligned
IJB-B IJB-C IJB-B IJB-C

ViT-AdaFace 93.26 94.97 95.60 97.14
SapiensID 94.30 96.05 95.07 96.43

C. Visualization
C.1. Token Length Sampling Distribution
In Masked Recognition Model (MRM), we propose an adap-
tive token sampling strategy during training to enhance the
robustness and generalization of our masked recognition

Figure 10. Illustration of the masked image and the sampling
distribution of the number of tokens to keep n̂k. The red vertical
line shows where the sampling took place for the right image. From
top to bottom, less samples are kept (more masking).

model. Fig. 10 illustrates the sampling distribution and its
effect on the input image. The number of tokens to keep, n̂k,
is determined by Eqn. 6:

n̂k = nk + (ni ↘ nk) · e↘ε·U(0,1),

where ni is the maximum possible number of tokens (432
in our case, with 3 ROIs of 12x12 patches each), nk is the
minimum number of tokens to keep, U(0, 1) is a uniform
random variable, and ϑ controls the decay rate (set to 4).

This sampling strategy allows us to retain between 26%
and 80% of the tokens (112 to 345 tokens), with an aver-
age of 166 tokens per batch. As depicted in Fig. 10, heavy
masking can significantly distort the input image. Fixing the
masking rate to such high levels could introduce a distribu-
tion shift between training and testing (where all tokens are
used), causing a performance drop. Our adaptive sampling
mitigates this issue by exposing the model to a variety of
masking ratios, encouraging it to learn robust representations
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Visibility Left (%) Right (%)
Eye 93.49 93.59
Ear 76.87 74.48

Shoulder 88.15 90.04
Elbow 53.76 53.80
Wrist 49.98 50.35
Hip 45.68 45.70

Knee 23.92 23.95
Ankle 16.98 17.00

Table 16. Keypoint Visibility in WebBody Dataset.

that generalize well to full token input during inference.
One thing to note is that the sampling of n̂k happens per

batch. And when a larger n̂k is sampled per batch, we reduce
the batch size accordingly for the given GPU memory (See
Sec. 3.2 for more details).

C.2. WebBody4M Dataset Body Parts Visibility
WebBody4M dataset encompasses a wide range of human
poses and viewpoints, resulting in varying visibility of body
keypoints. Tab. 16 presents the percentage of images in
which each keypoint (left and right sides) is visible. As
expected, keypoints in the upper body, such as eyes and
shoulders, exhibit high visibility rates (over 74% and 88%
respectively). Visibility decreases progressively down the
body, with elbows and wrists around 50%, hips around 45%,
and knees and ankles below 24% and 17% respectively. This
distribution reflects the natural tendency for upper body parts
to be more frequently visible in unconstrained images, as
lower body parts are often occluded by clothing, objects, or
the image frame itself. This distribution also helps explain
why upper body parts provide greater discriminative power
for person ReID in our earlier analysis (Supp B.4).

C.3. Visualization of Part Weights
To facilitate effective learning from a mixture of short-term
and long-term ReID datasets, we hypothesize that it would
be helpful to add learnable weights that modulate the im-
portance of individual part features within the Semantic
Attention Head (SAH). Our conjecture is the discriminative
characteristics of body parts can vary significantly depend-
ing on whether clothing remains constant or varying in the
training dataset.

Fig. 11 visualizes the learned weights (Eqn. 14) for Web-
Body4M and several additional whole-body ReID datasets.
WebBody4M, primarily composed of web-collected images,
exhibits a higher emphasis on facial features compared to
lower body parts. This is expected, as the WebBody4M was
collected largely based on facial similarity.

In contrast to WebBody4M, auxiliary datasets like Mar-
ket1501, LTCC, and PRCC, which feature many images with
consistent clothing (e.g., 1-3 outfits across 20-30 images per
person), show increased emphasis on body features for recog-
nition. This highlights the importance of body shape, pose,
and clothing appearance as discriminative cues when attire

All Face Whole Body ReID
Short Long

SapiensID 78.67 96.66 73.05 66.30
SapiensID-Weight 78.59 96.66 75.72 63.39

Table 17. Performance comparison of SapiensID and SapiensID
without weight masking during training across different metrics.

remains relatively constant. However, Celeb-ReID, similar
to WebBody4M, primarily contains images with clothing
changes across captures. Consequently, Celeb-ReID exhibits
a similar weighting pattern, with less emphasis on body
features and a relatively higher focus on other cues, likely
emphasizing facial features.

To validate the hypothesis, we conducted an ablation
study to evaluate the impact of training with learnable
weights. Tab. 17 presents a comparison between Sapien-
sID and SapiensID without the learnable weights. In the
latter, all aspects remain the same except that the learnable
weights are removed during training.

From the results, it is evident that the inclusion of learn-
able weights does not yield a significant overall improve-
ment. Instead, it shows a specific enhancement in long-term
ReID performance, possibly because WebBody4M’s learn-
ing was not hindered by the influence of short-term datasets
with same clothings. However, for short-term datasets, the
addition of weights does not result in performance gains.
This suggests that while the weighting mechanism provides
insights into dataset-specific learning behaviors, it is not a
definitive factor for achieving better ReID performance.

In conclusion, while the introduction of learnable weights
is interesting for analytical purposes, we want to let the read-
ers clearly know that it is not a deciding factor for learning
universal representation that works for both short-term and
long-term ReID. Future research could explore alternative
methods that better balance the learning from diverse dataset
characteristics without negatively impacting specific subsets.

C.4. SAH Visualization

The Semantic Attention Head (SAH) plays a crucial role
in SapiensID by generating pose-invariant features. To un-
derstand how SAH behaves after training, we visualize its
attention maps in Fig. 13. To be specific, we visualize the
following. Let Qi

kp
= GridSample(PE, kpi) + B be the

semantic query embedding for i-th image created by sam-
pling from the fixed 2D position embeddings (PE) at the 19
keypoint locations. The dimension is Qi

kp
↔ Rnk↔C , where

k = 19 and n = 4 because it is repeated 4 times to learn 4
different offsets. In SAH, we perform attention with Q

i

kp

and PE by

O
i

part = softmax
(
WqQWkK

→
↑
d

)
WvV. (28)
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Figure 11. Comparison of learned part weights across seven datasets. Left and right sides are averaged together before visualization.

Figure 12. Keypoint visualization (left) and corresponding Retina Patch results (right) for images from the CUB dataset.

In our visualization, we are showing

softmax
(
WqQWkK

→
↑
d

)
,

for each keypoint and each offset. We have nk attention
maps as shown by the visualization.

For each input image, we show each row corresponds
to a different offset. There are 4 rows because we learn
n = 4 offsets for each of 19 keypoints. Offest refers to
B ↔ Rnk↔C in Eqn. 7. Offset bias allows the keypoints
to move slightly from its original position. Each column
correspond to different keypoints used by SAH (e.g., nose,
left right shoulder, etc). As the visualization shows, the
learned attenion maps are not limited to the keypoint location
but also move around the keypoints and vary in size.

D. Potential Application of Retina Patch
While SapiensID focuses on human recognition, the Retina
Patch (RP) mechanism has broader applicability to other do-
mains. Figure 12 demonstrates its potential for fine-grained
visual recognition, using the CUB birds dataset as an exam-
ple. This dataset provides semantic keypoints, enabling the

definition of meaningful regions of interest (ROIs) for RP.
We define two ROIs: "head" (beak, forehead, crown, left eye,
right eye, throat) and "body" (back, belly, breast, nape, left
wing, right wing) excluding tail, left leg and right leg.

The figure showcases multiple bird images processed
with RP, illustrating its ability to handle variations in bird
size and head size. By dynamically allocating more patches
to these regions, RP ensures consistent representation of
crucial features, regardless of their scale within the image.
Though we do not know whether the performance of CUB
bird classification will be improved with RP, we want to
suggest that RP could be beneficial for general recognition
tasks where image naturally contains large pose and scale
variation. Future work could explore the integration of RP
into models for more broad set of datasets to quantitatively
evaluate its benefits.

E. Limitations
While SapiensID demonstrates promising results for human
recognition, its reliance on predefined Regions of Interest
(ROIs) introduces certain limitations. The effectiveness of
the Retina Patch mechanism hinges on the ability to define
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Figure 13. Visualization of attention maps in the Semantic Attention Head (SAH). Regions with higher attention values are highlighted in
red, while regions with lower attention values are shown in blue. Blacked-out areas represent parts of the images without visible keypoints.
The visualizations provides how SAH allows learning both varied size and offsets based on a set of keypoints.

meaningful ROIs that capture discriminative features. This
approach works well for humans, who share a consistent
body topology and where keypoints like the face, torso, and
limbs provide valuable cues for recognition.

However, this reliance on ROIs poses challenges when
dealing with objects or entities that lack a consistent or
well-defined structure. For instance, applying SapiensID
to amorphous objects, scenes with highly variable elements,

or categories with significant intra-class topological differ-
ences would require alternative strategies. In such cases,
predefined ROIs might not adequately capture the relevant
information, or might even be detrimental by focusing on
irrelevant or inconsistent features. Future research could
explore more flexible or adaptive mechanisms for defining
regions of interest, enabling the application of similar princi-
ples to a wider range of object recognition tasks.
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While SapiensID achieves state-of-the-art performance
in long-term ReID, its short-term ReID accuracy lags be-
hind methods like Soldier [9] and HAP [79]. This discrep-
ancy stems from a fundamental conflict between short-term
cues—such as clothing—and long-term biometric traits like
facial features and body shape. Soldier and HAP lever-
age masked reconstruction objectives that emphasize visible
appearance cues, including clothing, making them more ef-
fective for short-term scenarios. In contrast, SapiensID is
trained on the WebBody4M dataset, which features frequent
clothing changes and thus prioritizes identity over appear-
ance. Addressing this trade-off remains an open challenge,
and future work could explore unified models that balance
both short-term appearance cues and long-term identity fea-
tures.

F. Ethical Concerns
Our goal is to facilitate research in human recognition while
operating strictly within the bounds of copyright law, pri-
vacy regulations, and ethical considerations. For large-scale
image datasets, it is a common practice to release datasets
in URL format [3, 54] because researchers do not hold the
rights to redistribute the data directly. By providing perma-
nent link URLs, labels and a one step code to download and
prepare dataset, researchers can have access and utilize the
data responsibly, while respecting the rights of copyright
holders and individuals. We believe this approach balances
the need for large-scale datasets to advance research with
the imperative to protect intellectual property and privacy.
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