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Figure 10. The architecture of our face fitting network.

A. Overview

This supplementary material presents additional implemen-
tation details and results to support the main paper.
• In Section B, we explain details of the Face-Fitting net-

work architecture and provide further implementation
specifics.

• In Section C, we visualize the aligned actors from 3DLo-
cator and provide a detailed explanation of how actors are
tracked with ShotMatcher.

• Section D shows the results of additional TV show and
CMU dataset videos.

B. Implementation Details

Our unoptimized implementation runs offline, which can
be boosted with parallel processing. When processing 100
frames of a single person in TBBT scenes in Sitcoms3D
dataset [45], our pipeline takes about 30 minutes for stage
reconstruction, 10 minutes for SMPL alignment, 1 hour for
custom diffusion training, and 3 hours for actor reconstruc-
tion. We utilized a single NVIDIA A6000 GPU for training.

3DLocator (Sec. 3.4) optimizes global translation t and
scale s for the first 10k iterations using depth loss (Eq. 5).
To ensure SMPL aligns with the image, we freeze {t, s}
and optimize pose parameter θ by comparing projected 3D
joints with the detected 2D key points for the subsequent
2k iterations. We use Adam optimizer and apply early stop-
ping. We set the learning rate as 0.01 for the first 2.5k iter-
ations and then increase it to 0.1. The learning rate is then
reduced with a scale of 10 every 2.5k iterations.
Face fitting network architecture. Fig. 10 shows the ar-
chitecture of our face-fitting network (Sec. 3.6). We modify
the deformation network from D-3DGS [20]. Instead of de-
forming the position, rotation, and scale of Gaussians, our

network adjusts the color and opacity of Gaussians at each
time step. In this way, our approach can capture the detailed
expression change of the actors.

The face-fitting network takes Gaussian positions and
time embeddings as input. To handle multiple actors, we
concatenate each actor Gaussian set as concat{Gactor

n }Nn=1.
Concatenated input is then processed through eight fully
connected layers with ReLU activation functions. Addition-
ally, the feature vector from the fourth layer is concatenated
with the input. Output is a 256-dimensional feature vector,
which is then passed to two separate fully connected lay-
ers. D-3DGS [20] does not utilize normalization at the end.
However, since the opacity and color have a value between
0 and 1, we add a tangent hyperbolic activation function at
the end to prevent overflow.

Preprocessing process. First, SAM [23] generates masks
for the background stage without actors. These masks are
used to exclude actor-containing regions during the feature-
matching stage. Subsequently, camera parameters and the
SfM point clouds are obtained using GLOMAP [40].

For object removal, Stable Diffusion XL-inpainting
model [47] is used to inpaint the specified regions. Depth-
Pro [1] is then utilized to predict per-frame depth maps,
which are aligned with SfM point clouds. Lastly, we use
4D-Humans [9] to estimate the SMPL parameters of multi-
ple actors.

C. Reconstruction Visualization
In this section, we present the visualization results from
3DLocator and the association algorithm from Shot-
Matcher.

Alignment visualization. As shown in Fig. 11, by using
3DLocator, actors are correctly aligned to the stage. Addi-
tional results are given in Fig. 12. The green points indicate
the centers of the actor Gaussians.

Unlike methods [11, 17, 24] that determine the scale
of SMPL by identifying the intersection point between the
ground plane and the feet, our approach optimizes scale us-
ing aligned depth information. This approach is robust to
scenarios where actors are cropped or occluded by objects.

Actor Association. As we see in Scene 1 of Fig. 4, some
actors may not appear in the frame when the shot changes.
ShotMatcher ensures robust tracking across multiple shots
by associating actors with their location. In Scene 2 of
Fig. 4, a different person appears in each shot. If matching
is performed using minimum distance alone, the two indi-
viduals will be identified as the same person. To address



Figure 11. Visualization of aligned actors, estimated cameras, and reconstructed 3D stage.

this problem, we employ a matching threshold to correctly
identify the two individuals. The detailed matching algo-
rithm is provided below.

D. Additional Results
We evaluate additional qualitative results from CMU
Panoptic dataset [19]. This dataset captures multiple peo-
ple interacting with each other within the multi-view cam-
era system. To simulate a TV show within the dataset, we
select 8 cameras (out of the original 31) that capture frontal
views of the human subject. These 8 views are used for
stage reconstruction, while only one among them is used
for actor reconstruction. Fig. 13 illustrates novel view syn-
thesis results, achieving a PSNR of 25.21 on average.

Algorithm 1 Actor association algorithm

1: Input:
• Fi: last frame of the previous shot
• Fi+1: first frame of the subsequent shot
• A = {A1, A2, . . . , An}: centers of N actors in Fi

• B = {B1, B2, . . . , Bm}: centers of M actors in Fi+1

• λ: matching threshold
2: Output: P : matched pairs set
3: Begin:
4: P ← ∅
5: Bunmatched ← B
6: for Ai ∈ A do
7: min distance←∞
8: Bselected ← None
9: for Bj ∈ Bunmatched do

10: d← EuclideanDistance(Ai, Bj)
11: if d < min distance then
12: min distance← d
13: Bselected ← Bj

14: end if
15: end for
16: if min distance < λ then
17: P ← P ∪ {(Ai, B

selected)}
18: Bunmatched ← Bunmatched −Bselected

19: end if
20: end for
21: return P
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Figure 12. Additional results of the aligned actors.
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Figure 13. Results on CMU dataset.
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