
A Appendix: Sufficient Invariant Learning for Distribution Shift

A.1 Limitations and Future Works

ASGDRO utilizes adversarial perturbations to find flat minima, similar to SAM. It requires two
forward and backward passes in a single training iteration, which is one of the persistent issues
with SAM-based algorithms. However, recent research has been actively focusing on improving the
computational cost of SAM (Du et al., 2021, 2022). The computational cost of ASGDRO can also be
improved in a similar context, and we consider this to be a future work.

To evaluate whether the algorithm effectively learns diverse invariant mechanisms sufficiently and
performs robust predictions, a new benchmark dataset is necessary. Unlike existing invariant learning
benchmarks that only require a small number of attributes, constructing an SIL benchmark demands
rich attribute annotations to form multiple invariant features. In this paper, we attempt to validate
SIL using H-CMNIST, but it is a synthetic dataset based on MNIST. This implies the need for a new
benchmark to validate SIL on real-world data, which we leave it as a future work.

A.2 The subset relationship of invariant features

In Definition 3, hθg (Ẑ
I) refers to a classifier that relies solely on Ẑ I ⊆ Z I. Given a single sample, if

any invariant feature within Ẑ I is observed, we expect the loss evaluated by the classifier to be very
small. For two different subset Ẑ I

a, Ẑ
I
b ⊆ Ẑ I that satisfy Ẑ I

b ⊆ Ẑ I
a, the following inequality holds:

P (Ẑ I
i ⊆ Ẑ I

b is observed in e ∈ E) ≤ P (Ẑ I
i ⊆ Ẑ I

a is observed in e ∈ E).

where P denotes the probability. Note that Z I also can be partitioned as follows:

Z I =

p⋃
i=1

{Ẑ I | |Ẑ I| = i},

where |·| denotes the cardinality of a set and p the number of invariant features. It follows that

max
ẐI⊆ZI

E[ℓ(hθh(Ẑ
I), Y e)] = max

[
E[ℓ(hθh(Z

I), Y e)],

max
ẐI⊆ZI

s.t.|ẐI|=p−1

E[ℓ(hθh(Ẑ
I), Y e)],

. . . ,

max
ẐI⊆ZI

s.t.|ẐI|=1

E[ℓ(hθh(Ẑ
I), Y e)]

]
= max

ẐI⊆ZI

s.t.|ẐI|=1

E[ℓ(hθh(Ẑ
I), Y e)]

= max
ZI

i⊂ZI
E[ℓ(hθh(Z

I
i), Y

e)],

assuming that observing additional invariant features do not adversely affect the performance of the
current model.

A.3 Proof of Proposition 1

Proposition 1. By the Taylor expansion,

max
e∈E

max
||ϵe||≤ρ

Re(θ + ϵe) ≈ max
e∈E

[Re(θ) + ρ||∇Re(θ)||].

ASGDRO leads to a regularization of the gradient norm, Re, ||∇Re(θ)||, across environments, which
drives the model to converge to common flat minima.
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Proof. Recall that objective function of ASGDRO (Equation 9) is as follows:

max
e∈E

max
||ϵe||≤ρ

Re(θ + ϵe).

We use E instead of Etr, since this property of ASGDRO holds in any set of environments. As Re(θ)
is independent of ϵe, it can be factored out of the maximization term over ϵe as follows:

max
e∈E

max
||ϵe||≤ρ

Re(θ + ϵe) = max
e∈E

[Re(θ) + max
||ϵe||≤ρ

[Re(θ + ϵe)−Re(θ)]]

Note that we intentionally add and subtract Re to reformulate the expression, enabling the separation
of terms for clearer analysis. Using the Taylor approximation expanded up to the first-order term, we
have:

max
e∈E

[Re(θ) + max
||ϵe||≤ρ

[Re(θ + ϵe)−Re(θ)]] ≈ max
e∈E

[Re(θ) + max
||ϵe||≤ρ

[ϵe · ∇Re(θ)]]

= max
e∈E

[Re(θ) + ϵ∗e · ∇Re(θ)], (5)

where ϵ∗e = ρ ∇Re(θ)
||∇Re(θ)|| . Note that Eq. 5 holds because the maximum value over ||ϵe|| ≤ ρ is achieved

when ϵe and ∇Re(θ) are aligned in the same direction (Foret et al., 2020). By substituting ϵ∗e , we
obtain the following equation:

max
e∈E

[Re(θ) + ϵ∗e · ∇Re(θ)] = max
e∈E

[Re(θ) + ρ||∇Re(θ)||]. (6)

Zhao et al. (2022) demonstrate that minimizing the gradient norm of the risk leads to finding flat
minima. Eq. 6 minimizes both risk and the gradient norm of risk for each environment. Consequently,
ASGDRO constrains the training process to find a common flat minimum across environments.

A.4 Proof of Theorem 1

Theorem 1. Let θIλ be a convex combination of θIi , where λ is a p-dimensional vector. Consider
mean-squared error as the loss function. Assume a linear model with Z ∈ Rp, where the p features
are orthogonal, and suppose Z = ZI = (1, . . . , 1). Then,

λ∗ =argmin
λ

max
e∈Etr

max
||ϵ||≤ρ

Re(θIλ + ϵ)

≈ argmin
λ

max
e∈Etr

[
Re(θIλ) + ρ||λ|| · ||∇Re(θIλ)||

]
(7)

=argmin
λ

||λ|| = (
1

p
, . . . ,

1

p
)

where || · || denotes L2 norm.

Proof. In this setting, we consider a single input for each environment e. Suppose there are p invariant
features, and every invariant feature has the same activation:

Z I = (1, . . . , 1),

where |Z I| = p. We assume that all spurious features are completely removed. Thus, Z =
(Z I, ZNI) = Z I, where |Z| = p. Consequently, the risk for Z is identical across all environments e:

Re(θ) = Re′(θ) = c for any e, e′ ∈ Etr, (8)

where c is a constant. Given Z I, we focus only on the parameters of the classifier, denoted by θI.
Recall that the classifier satisfying Eq. 3 in main paper, and Eq. 8, is not unique. Define θI

i as the
classifier that utilizes only the i-th element of Z I.

For simplicity, let θI
i be a column vector where only the i–th element is one, and all other elements

are zero:

Z IθI
i = Z I

i = 1. (9)
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Furthermore, the convex combination of θI
i also yields an equivalent output:

Z I
p∑

i=1

λiθ
I
i = 1,

where
∑p

i=1 λi = 1 and 0 ≤ λi ≤ 1 for all i ∈ {1, . . . , p}. We denote the current classifier as
θI
λ :=

∑p
i=1 λiθ

I
i, where λ = (λ1, . . . , λp). From Proposition 1, we know:

max
e∈E

max
||ϵe||≤ρ

Re(θ + ϵe) = max
e∈Etr

[Re(θ) + ρ||∇θRe(θ)||] . (10)

For the mean-squared error loss function Re(θ) = 1
2∥Y

e −
∑p

i=1 θi∥2, the gradient is given by
∇Re(θ) = −(Y e −

∑p
i=1 θi) · 1, where 1 is a p-dimensional vector whose elements are all equal to

1. Substituting θI
λ into Eq. 10, we get:

max
e∈E

max
∥ϵe∥≤ρ

Re(θI
λ + ϵe) = max

e∈Etr

[
Re(θI

λ) + ρ∥∇θRe(θI
λ)∥
]
.

This simplifies to:

max
e∈Etr

[
Re(θI

λ) + ρ∥ − λ⊙∇Re(θI
λ)∥
]
= max

e∈Etr

[
Re(θI

λ) + ρ∥λ∥ · ∥∇Re(θI
λ)∥
]
,

where Re(θI
λ) = c for any λ. Since the classifier uses only invariant features, minimizing the

adversarial term reduces to:

argmin
λ

max
e∈Etr

max
||ϵ||≤ρ

Re(θI
λ + ϵ) = argmin

λ
max
e∈Etr

[
Re(θIλ) + ρ||λ|| · ||∇Re(θIλ)||

]
= argmin

λ
||λ||.

By the Cauchy-Schwarz inequality:(
p∑

i=1

λi

)2

≤ p ·
p∑

i=1

λ2
i = p · ||λ||2.

Under the condition
∑p

i=1 λi = 1, equality holds when λi =
1
p for all i, yielding:

argmin
λ

||λ|| = (
1

p
, . . . ,

1

p
)

A.5 Mechanism of ASGDRO for Removing Spurious Features

ASGDRO successfully removes spurious features. Inspired by Andriushchenko et al. (2023), we
reformulate the two-layer ReLU case presented in that paper to demonstrate this. Consider a two–layer
ReLU network

f(θ) = ⟨θh, σ(θgx)⟩,
where θ = (θg, θh), θg ∈ Rk×m and θh ∈ Rk. Recall that ASGDRO minimizes the maximum
sharpness across environments:

max
e∈E

max
||ϵe||≤ρ

Re(θ + ϵe).

Let et denote the environment that attains the maximum risk at the current step t. Then, the adversarial
perturbation is ϵ∗et = ρ ∇Ret (θ)

∥∇Ret (θ)∥ (Foret et al., 2020) and the risk is

max
||ϵet ||≤ρ

Ret(θ + ϵet) = Ret(θ + ρ
∇Ret(θ)

∥∇Ret(θ)∥
)

Under the first–order Taylor approximation,

∇Ret

(
θ + ρ

∇Ret(θ)

∥∇Ret(θ)∥

)
≈ ∇ [Ret(θ) + ρ∥∇Ret(θ)∥]
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Andriushchenko et al. (2023) shows that under two–layer ReLU network, the update rule for pre-
activation of k–th neuron is as follows:

⟨θ(k)g , x⟩(t+1) ≈ ⟨θ(k)g , x⟩(t) −ηγ

(
1 + ρ

∥∇f(θ)∥√
Ret(θ)

)
akσ

′(⟨θ(k)g , x⟩)∥x∥2︸ ︷︷ ︸
(a)

−ηρ

√
Ret(θ)

∥∇f(θ)∥
σ(⟨θ(k)g , x⟩)∥x∥2︸ ︷︷ ︸
(b)

,

where η denotes the learning rate, γ = f(θ)− y, i.e. the residual.

In ASGDRO, regularization on the gradient norm has two key effects. First, as seen in term (a),
the gradient update direction remains the same, but the model is updated with a larger learning rate.
Second, in term (b), when Ret(θ) is large enough, the pre-activation of the k-th neuron, ⟨θ(k)g , x⟩,
turns negative. Note that a large Ret implies that highly activated neurons at this point tend to
encode significant information from spurious features. When Ret(θ) causes the pre-activation of a
neuron to become negative, the nature of the ReLU activation function ensures that the output of that
neuron becomes zero. This indicates that, under distribution shifts, regularization via the common
flat minima in ASGDRO effectively removes spurious features.

A.6 Heterogeneous-CMNIST (H-CMNIST)

Dataset Details

The test set of H-CMNIST is constructed by flipping the proportion of ZBP from the training set.
H-CMNIST conducts two types of tests. First, TestBed 1 evaluates whether the algorithm learns at
least one invariant feature. To assess this, it compares the prediction differences between cases where
the spurious feature ZBP is present and absent. TestBed 2 examines whether the model remains robust
to ZBP and maintains good performance when only Zshape is present, excluding Zcolor among the two
invariant features.

Experimental Details

In H-CMNIST experiments, we use ResNet18 (He et al., 2016) with SGD. We also conduct reweighted
sampling when the algorithm setting can use the environment information, i.e., GDRO (Sagawa et al.,
2019) and ASGDRO. In the H-CMNIST experiment, we set the loss of GDRO and ASGDRO by the
group, not the domain. That is, there is four groups; (Class=0,BP=Top Left), (Class=0,BP=Bottom
Right), (Class=1,BP=Top Left), (Class=1,BP=Bottom Right). For hyperparameter tuning, we perform
grid search over learning rate, {10−3, 10−4}, and L2–regularization, {1, 10−1, 10−3, 10−4}. We
fix the batch size, 128, and train the model up to 20 epochs. For ASAM (Kwon et al., 2021) and
ASGDRO, we search the hyperparameter ρ among {0.05, 0.2, 0.5, 0.8}. We fix the robust step size,
γ, as 0.01 for GDRO and ASGDRO. We evaluate the models with three random seeds.

A.7 Subpopulation Shifts: Datasets and Experimental Details

Dataset Details

In Table 2 in the main paper, we conduct our experiment for subpopulation shifts with five datasets:
CMNIST (Arjovsky et al., 2019), Waterbirds (Sagawa et al., 2019), CelebA (Liu et al., 2015),
CivilComments (Borkan et al., 2019). CMNIST, Waterbirds, and CelebA datasets correspond to
computer vision tasks (Figure 6), while CivilComments pertain to natural language processing tasks.
In this section, we will describe each dataset and provide experimental details. To implement this, we
utilized the codes provided by (Yao et al., 2022)1.

1https://github.com/huaxiuyao/LISA
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Figure 6: CMNIST, Waterbirds, CelebA. In each dataset, each row represents the class and each
column represents the spurious feature. The numbers written below the images represent the ratio or
count of data belonging to each group in the training dataset, where each group consists of (Class,
Spurious Feature) pairs.

Colored MNIST (CMNIST)

In the CMNIST dataset provided by (Arjovsky et al., 2019), we perform binary classification to
predict which number corresponds to the shape of a given digit. Specifically, when the shape of the
digit corresponds to a logit between 0 and 4, the class is assigned as 0, and when it falls between 5
and 9, the class is assigned as 1. However, unlike the original MNIST dataset (LeCun et al., 1998),
CMNIST introduces color as a spurious feature in the training set. When this spurious correlation
becomes stronger than the invariant relationship between the class and the shape of the digit, a model
trained without any regularization may be prone to relying on the spurious feature for predictions.

While Arjovsky et al. (2019) constructs two environments with different ratios of spurious features
in the training set, Yao et al. (2022) uses a single environment to compose the training set. Our
CMNIST dataset experiment follows the same setting as (Yao et al., 2022), where the dataset consists
of four groups when considering combinations of “Shape of Logit” and “Color” as a single group.
Concretely, Class 0 and Class 1 have similar numbers of data points, but the distribution of spurious
features differs between the two classes. Class 0 consists of 80% red logits and 20% green logits,
while Class 1 has 80% green logits and 20% red logits. Furthermore, within each class, 25% of the
data acts as label noise, having a logit shape that does not correspond to its class. Therefore, the
spurious feature, color, forms a stronger correlation between classes compared to that of the invariant
feature, the shape of logits.

The validation set is constructed with an equal number of instances per group. The worst-group
accuracy, defined as the lowest accuracy among all the groups, is utilized to select the best model.
For the test set, we assume a distribution of the spurious feature that is opposite to the training set.
Specifically, for Class 0, 90% of the data has a red color, and 10% has a green color, while for Class 1,
it is the opposite. It is done to assess whether the model relies on the spurious feature for predictions.

Waterbirds

Waterbirds dataset, constructed by (Sagawa et al., 2019), is designed for the task of determining
whether a bird belongs to the Landbird or Waterbird class. It consists of images of birds, from
(Wah et al., 2011), as the invariant feature, while the spurious feature is the background, from (Zhou
et al., 2017), which can either be Water or Land background. Indeed, in the Waterbirds dataset, the
groups are formed by the combination of “Bird” and “Background”. Specifically, the bird images
corresponding to each class consist of more than 10 different species of birds. On the other hand,
each background is composed of two categories obtained from (Zhou et al., 2017). As can be seen in
Figure 6, the Landbird class predominantly has images with Land background, while the majority of
images in the Waterbird class have Water background. Therefore, the spurious feature, background,
may indeed form a strong spurious correlation with each class.

We follow the setting of previous research, (Sagawa et al., 2019; Yao et al., 2022), for the validation
and test processes as well. The best model is selected based on the highest worst-group accuracy on
the validation set. Unlike the training set, the validation and test sets are designed to have an equal
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number of images for each group within each class. When reporting the average accuracy on the
test dataset using the best model, we first compute the group accuracy for each group in the test set.
Then, we calculate the weighted average of these accuracies using the group distribution from the
training set. This approach is adopted to mitigate the uncertainty in estimating group accuracies,
as the number of images belonging to the minority group in the Waterbird dataset is significantly
smaller compared to other datasets (Sagawa et al., 2019).

CelebA

CelebA dataset by (Liu et al., 2015) is a collection of facial images of celebrities from around the
world. It includes attribute values associated with each individual, such as hair color and gender. In
order to evaluate the effects of subpopulation shifts, Sagawa et al. (2019) reformulated the CelebA
dataset to align with the task of predicting whether the hair color is blond or not. In this case, the
spurious feature is gender, and thus, the dataset is composed of four groups based on the combinations
of hair color and gender. It can be observed from Figure 6 that images belonging to Class 0,
corresponding to dark hair rather, are plentiful regardless of gender. However, for images in Class
1, which represent blond hair, the majority of them are distributed in the Female group. Therefore,
gender can act as a spurious feature, and the goal of this task is to obtain a model that focuses solely
on the invariant feature, hair color, rather than the face which may capture the characteristics of
gender-related features.

The best model is selected based on the best worst-group accuracy on the validation set. In this
case, the validation set and test set have the same distribution of images per group as the training set.
Therefore, the average test accuracy reflects this distribution accordingly.

CivilComments

The CivilComments dataset, (Borkan et al., 2019), is a dataset that gathers comments from online
platforms and is used for the task of classifying whether a given comment is toxic or not. We
conduct the experiment on the CivilComments dataset, which has been reformulated by (Koh et al.,
2021). Each comment is labeled to indicate whether it mentions the presence of any word of
the 8 demographic identities; Black, White, Christian, Muslim, other religions, Male and Female.
Therefore, the CivilComments dataset consists of 16 groups, formed by the combination of toxic labels
and the presence or absence of the 8 demographic identities in each comment. Each demographic
identity can potentially act as a spurious feature. To prevent this, the goal of the task is to train the
model to focus solely on the invariant feature of toxic labels and not rely on demographic identities
as predictive factors.

However, in reality, unlike other datasets, each comment in the CivilComments dataset can mention
more than one demographic identity. Considering all possible combinations of demographic identities
for each comment and training the model on all these combinations would be inefficient. Therefore,
we follow the learning approach proposed by (Koh et al., 2021). Concretely, we only consider four
groups based on whether the comment mentions toxicity and whether it mentions the demographic
identity of being “Black”, without considering other demographic identities. We train the model using
these four groups. However, during the validation and test, we evaluate the model’s performance
individually for all 16 groups and record the lowest accuracy among the group accuracies as the
worst-group accuracy. The Best model is selected based on this worst-group accuracy.

Experimental Details

The search range of the hyperparameter ρ, which determines the range for exploring the flat region, is
fixed to {0.05, 0.2, 0.5, 0.8, 1.0, 1.2, 1.5} for all datasets. We evaluate the model across three random
seeds and report the average performance. We set robust step size γ, in Algorithm 1 of the main paper,
{0.1, 0.01}. In addition, we use the same range for adjusted-group coefficient C, {0, 1, 2, 3, 4, 5}
(Section 3.3 in (Sagawa et al., 2019) for details). In CMNIST, Waterbirds, and CelebA datasets, we
utilize ResNet50 (He et al., 2016) models. The same hyperparameter ranges are applied to ASAM
and ASGDRO, and the other performances for other baselines are reported performances from (Liu
et al., 2021; Yao et al., 2022; Han et al., 2022). All experiments in this paper were conducted using
NVIDIA RTX A6000 with 49140 MiB of GPU memory and GeForce RTX 3090 with 24.00 GiB of
GPU memory.
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CMNIST Waterbirds CelebA CivilComments
Avg Worst Avg Worst Avg Worst Avg Worst

ERM‡ 27.8± 1.9% 0.0± 0.0% 97.0± 0.2% 63.7± 1.9% 94.9± 0.2% 47.8± 3.7% 92.2± 0.1% 56.0± 3.6%
ASAM 40.5± 0.8% 34.1± 1.2% 97.4± 0.0% 72.4± 0.4% 93.7± 0.8% 46.5± 10.3% 92.3± 0.1% 58.9± 1.7%
IRM‡ 72.1± 1.2% 70.3± 0.8% 87.5± 0.7% 75.6± 3.1% 94.0± 0.4% 77.8± 3.9% 88.8± 0.7% 66.3± 2.1%

IB-IRM‡ 72.2± 1.3% 70.7± 1.2% 88.5± 0.6% 76.5± 1.2% 93.6± 0.3% 85.0± 1.8% 89.1± 0.3% 65.3± 1.5%
V-REx‡ 71.7± 1.2% 70.2± 0.9% 88.0± 1.0% 73.6± 0.2% 92.2± 0.1% 86.7± 1.0% 90.2± 0.3% 64.9± 1.2%

CORAL‡ 71.8± 1.7% 69.5± 0.9% 90.3± 1.1% 79.8± 1.8% 93.8± 0.3% 76.9± 3.6% 88.7± 0.5% 65.6± 1.3%
GDRO‡ 72.3± 1.2% 68.6± 0.8% 91.8± 0.3% 90.6± 1.1% 92.1± 0.4% 87.2± 1.6% 89.9± 0.5% 70.0± 2.0%

DomainMix‡ 51.4± 1.3% 48.0± 1.3% 76.4± 0.3% 53.0± 1.3% 93.4± 0.1% 65.6± 1.7% 90.9 ± 0.4% 63.6± 2.5%
Fish‡ 46.9± 1.4% 35.6± 1.7% 85.6± 0.4% 64.0± 0.3% 93.1± 0.3% 61.2± 2.5% 89.8± 0.4% 71.1± 0.4%
LISA‡ 74.0± 0.1% 73.3± 0.2% 91.8± 0.3% 89.2± 0.6% 92.4± 0.4% 89.3± 1.1% 89.2± 0.9% 72.6± 0.1%
PDE‡‡ –% –% 92.4± 0.8% 90.3± 0.3% 92.0± 0.6% 91.0± 0.4% 86.3± 1.7% 71.5± 0.5%

ASGDRO 74.8± 0.1% 74.2± 0.0% 92.3± 0.1% 91.4± 0.1% 92.1± 0.4% 91.0± 0.5% 90.2± 0.2% 71.8± 0.4%

Table 5: Subpopulation Shift. ‡ denotes the performance reported from (Yao et al., 2022), and ‡‡ denotes the
performance reported from (Deng et al., 2024). Avg. denotes average accuracy, and Worst denotes worst group
accuracy

In CMNIST, we have the same hyperparameter search range as (Yao et al., 2022) by default: batch
size 16, learning rate 10−3, L2–regularization 10−4 with SGD over 300 epochs. For Waterbirds, we
perform the grid search over the batch size, {16, 64}, the learning rate, {10−3, 10−4, 10−5}, and
L2–regularization, {10−4, 10−1, 1}. We train our model with SGD over 300 epochs. We also conduct
grid search over the batch size, {16, 128}, the learning rate, {10−4, 10−5}, and L2–regularization,
{10−4, 10−2, 1} for CelebA, training with SGD over 50 epochs. We referenced (Yao et al., 2022;
Liu et al., 2021) for this range of hyperparameter search. For CivilComments, we use DistilBERT
(Sanh et al., 2019) model. We follow the hyperparameter search range provided in (Koh et al., 2021).
For optimizer, we use AdamW (Loshchilov and Hutter, 2017) with 10−2 for L2–regularization. We
find the optimal learning rate among {10−6, 2 × 10−6, 10−5, 2 × 10−5}. We train up to 5 epochs
with batch size 16. The gradient clipping is applied only during the second step, which is the actual
update step, in the SAM-based algorithm (Foret et al., 2020).

A.8 Error bars for Wilds Benchmark

Figure 7: Standard Deviations for Wilds Benchmark Datasets.
We demonstrate the differences between GDRO and ASGDRO in various distribution shift scenarios
that could occur in the real world. Wilds benchmark Koh et al. (2021) consists of datasets collected
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from the real world. Camelyon17 and RxRx1 are datasets where domain shift is predominant.
Amazon and FMoW are datasets where both subpopulation shift and domain shift are simultaneously
predominant. Figure 7 shows the results of ASGDRO and GDRO on Wilds Benchmark, MetaShift
dataset, and Multi-NLI (Williams et al., 2017). ASGDRO shows superior performances consistently
compared with GDRO. It implies that identifying common flat minima across environments enhances
the robustness of models.

A.9 Experimental Details and Error bars for Domainbed with DPLCLIP

Experimental Details for DomainBed Experiment

Using DomainBed framework (Gulrajani and Lopez-Paz, 2020), we evaluate domain generalization
algorithms by randomly sampling hyperparameter combinations within predefined hyperparameter
search ranges for each algorithm. The goal of domain generalization is to train models that perform
robustly on unseen domains. Consequently, the choice of the best model is heavily influenced by
whether the validation set used for model selection is sampled from the test domain or the train
domains. To account for this, we provide results for both the training-domain validation set, which
does not utilize information from the test domain, and the test-domain validation set, where model
selection is performed using information from the test domain. The following subsections present the
results for each dataset, considering both model selection methods.

By combining ASGDRO with the existing successful domain generalization approach, DPLCLIP
(Zhang et al., 2021)2, we demonstrate the versatility of ASGDRO, as it can easily be integrated
with other algorithms. Moreover, our results show that ASGDRO not only improves perfor-
mance in the context of subpopulation shift but also achieves performance gains in the pres-
ence of domain shift. For experimental details, we set the range of the robust step size γ as
lambda r: 10**r.uniform(-4, -2) with γ = 0.001 by default and the neighborhood size ρ as
lambda r: r.choice([0.05, 0.5, 1.0, 5.0]). The other settings are the same as DPLCLIP
(Zhang et al., 2021). Following common convention, we conduct 20 hyperparameter searches and
reported the averages for three random seeds. We evaluated our model on the five datasets: VLCS
(Fang et al., 2013), PACS (Li et al., 2017), OfficeHome (Venkateswara et al., 2017), TerraIncognita
(Beery et al., 2018) and DomainNet (Peng et al., 2019). For the original ASGDRO experiments, we
follow the experimental setup of Wang et al. (2023)3.

Model selection: training-domain validation set

VLCS

Algorithm C L S V Avg
DPLCLIP 99.1 ± 0.5 61.1 ± 1.5 72.6 ± 2.6 83.1 ± 2.5 79.0
DPLCLIP GDRO 99.9 ± 0.0 61.3 ± 2.5 74.4 ± 1.1 83.4 ± 2.6 79.7
DPLCLIP ASGDRO 100.0 ± 0.0 62.7 ± 0.4 74.5 ± 1.4 85.7 ± 0.8 80.7

PACS

Algorithm A C P S Avg
DPLCLIP 97.6 ± 0.2 98.3 ± 0.3 99.9 ± 0.0 90.5 ± 0.5 96.6
DPLCLIP GDRO 97.0 ± 0.7 98.2 ± 0.1 99.8 ± 0.1 88.6 ± 1.4 95.9
DPLCLIP ASGDRO 97.7 ± 0.1 98.7 ± 0.1 99.8 ± 0.0 91.0 ± 0.5 96.8

OfficeHome
Algorithm A C P R Avg
DPLCLIP 80.6 ± 0.8 69.2 ± 0.2 90.1 ± 0.2 91.1 ± 0.0 82.7
DPLCLIP GDRO 82.3 ± 0.2 70.9 ± 0.1 90.0 ± 0.4 91.1 ± 0.1 83.6
DPLCLIP ASGDRO 82.1 ± 0.4 71.3 ± 0.8 90.3 ± 0.6 91.2 ± 0.3 83.7

2https://github.com/shogi880/DPLCLIP
3https://github.com/Wang-pengfei/SAGM
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TerraIncognita

Algorithm L100 L38 L43 L46 Avg
DPLCLIP 47.1 ± 1.4 50.1 ± 1.2 41.6 ± 1.9 42.7 ± 0.7 45.4
DPLCLIP GDRO 49.1 ± 0.9 48.7 ± 2.6 46.3 ± 2.6 39.8 ± 1.4 46.0
DPLCLIP ASGDRO 52.8 ± 0.9 51.5 ± 2.1 49.2 ± 1.2 42.1 ± 0.9 48.9

DomainNet

Algorithm clip info paint quick real sketch Avg
DPLCLIP 70.9 ± 0.3 51.9 ± 0.3 66.6 ± 0.3 14.6 ± 0.5 84.3 ± 0.2 66.6 ± 0.1 59.1
DPLCLIP GDRO 71.8 ± 0.4 51.3 ± 0.4 67.0 ± 0.3 15.3 ± 0.2 84.4 ± 0.1 65.0 ± 0.9 59.1
DPLCLIP ASGDRO 71.5 ± 0.5 52.2 ± 0.4 67.5 ± 0.6 16.4 ± 0.2 84.7 ± 0.1 66.5 ± 0.2 59.8

Averages

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
DPLCLIP 79.0 ± 0.7 96.6 ± 0.1 82.7 ± 0.2 45.4 ± 1.0 59.1 ± 0.1 72.6
DPLCLIP GDRO 79.7 ± 1.3 95.9 ± 0.4 83.6 ± 0.1 46.0 ± 1.0 59.1 ± 0.2 72.9
DPLCLIP ASGDRO 80.7 ± 0.3 96.8 ± 0.2 83.7 ± 0.5 48.9 ± 0.3 59.8 ± 0.2 74.0

Model selection: test-domain validation set (Oracle)

VLCS

Algorithm C L S V Avg
DPLCLIP 99.8 ± 0.1 69.7 ± 0.6 72.4 ± 1.0 86.2 ± 0.5 82.0
DPLCLIP GDRO 99.9 ± 0.0 64.9 ± 1.1 79.1 ± 0.5 86.5 ± 0.2 82.6
DPLCLIP ASGDRO 99.8 ± 0.1 67.4 ± 0.9 78.1 ± 0.5 86.9 ± 0.1 83.1

PACS

Algorithm A C P S Avg
DPLCLIP 97.6 ± 0.1 98.7 ± 0.3 99.8 ± 0.1 91.2 ± 0.3 96.8
DPLCLIP GDRO 97.4 ± 0.3 98.9 ± 0.2 99.8 ± 0.1 91.9 ± 0.3 97.0
DPLCLIP ASGDRO 97.7 ± 0.2 99.1 ± 0.0 99.9 ± 0.0 91.7 ± 0.3 97.1

OfficeHome

Algorithm A C P R Avg
DPLCLIP 81.7 ± 0.2 70.9 ± 0.1 90.3 ± 0.3 90.7 ± 0.0 83.4
DPLCLIP GDRO 81.3 ± 0.8 70.6 ± 0.3 90.5 ± 0.1 90.9 ± 0.3 83.3
DPLCLIP ASGDRO 83.2 ± 0.4 71.7 ± 0.2 91.9 ± 0.1 91.3 ± 0.1 84.5

TerraIncognita

Algorithm L100 L38 L43 L46 Avg
DPLCLIP 55.9 ± 2.3 58.5 ± 0.3 48.2 ± 0.5 40.9 ± 3.0 50.9
DPLCLIP GDRO 57.9 ± 1.0 55.3 ± 1.5 49.6 ± 2.0 41.8 ± 1.4 51.2
DPLCLIP ASGDRO 56.2 ± 0.8 54.1 ± 0.3 50.7 ± 0.7 42.1 ± 0.5 50.8
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DomainNet

Algorithm clip info paint quick real sketch Avg
DPLCLIP 72.0 ± 0.5 52.1 ± 0.3 67.3 ± 0.2 16.6 ± 0.2 84.4 ± 0.2 66.8 ± 0.1 59.9
DPLCLIP GDRO 72.0 ± 0.2 51.7 ± 0.1 67.2 ± 0.4 16.7 ± 0.2 84.5 ± 0.0 66.3 ± 0.1 59.7
DPLCLIP ASGDRO 71.5 ± 0.5 52.8 ± 0.3 68.1 ± 0.3 16.5 ± 0.2 84.9 ± 0.0 67.0 ± 0.1 60.2

Averages

Algorithm VLCS PACS OfficeHome TerraIncognita DomainNet Avg
DPLCLIP 82.0 ± 0.3 96.8 ± 0.1 83.4 ± 0.1 50.9 ± 0.6 59.9 ± 0.2 74.6
DPLCLIP GDRO 82.6 ± 0.2 97.0 ± 0.2 83.3 ± 0.2 51.2 ± 1.0 59.7 ± 0.0 74.8
DPLCLIP ASGDRO 83.1 ± 0.2 97.1 ± 0.1 84.5 ± 0.1 50.8 ± 0.3 60.2 ± 0.1 75.1

A.10 Grad-CAM Analysis

In this section, we present additional Grad-CAM (Selvaraju et al., 2017) results on the Waterbirds and
CelebA datasets. In Figure 8 and 9, the red-colored-name features represent invariant features in the
respective task, while the green-colored-name features represent spurious features. In the Grad-CAM
images, the pixels that each model focuses on to predict the ground-truth label are highlighted closer
to the red color in the image.

ERM (Vapnik, 1999) and ASAM (Kwon et al., 2021) are regularization-free algorithms that do not
specifically encourage models to focus on invariant features, and this is reflected in the Grad-CAM
results. Specifically, when observing Group 0 and Group 3 of Waterbirds, which can strongly
form the correlation between class and spurious, as well as Group 0, 1, and 2 of CelebA, in most
cases, the results show a strong focus on both spurious and invariant features simultaneously or
solely on spurious features. For some images, particularly between CelebA dataset’s Group 0 and
1 where there are no minority groups within a class, there is some degree of focus on invariant
features. However, these images still contain a significant amount of unnecessary pixels such as the
background. Conversely, in minority groups such as Group 1 and 2 in Waterbirds or Group 3 in
CelebA, there is a predominant focus on invariant features to predict the ground-truth label. However,
this focus is limited to only a subset of the overall invariant features and still include some spurious
features.

In algorithms specifically designed to learn invariant features like GDRO (Sagawa et al., 2019), LISA
(Yao et al., 2022), and ASGDRO (Ours), the Grad-CAM results exhibit different patterns compared to
ERM and ASAM. In the most of results for the three algorithms, the models demonstrate a reasonable
focus on invariant features. Compared with ERM and ASAM, there are significant reductions in
the extent to which they focus on spurious features. However, GDRO and LISA still concentrate
only on a part of invariant features. Additionally, in some cases, they may exhibit a greater focus on
spurious features than on the subset of invariant features. It is also frequently observed that they still
heavily include spurious features or solely focus on spurious features when dealing with majority
groups such as Group 1 and 3 in Waterbirds or Group 0, 1, and 2 in CelebA. As in the results of
Group 1, and 2 in Waterbirds or Group 3 in CelebA, we observe that the models’ low ability to fully
concentrate on invariant features is affected by the performance of models that still exhibit a focus on
spurious features. This observation highlights the impact of the models’ performance on their ability
to completely focus on invariant features.

In contrast to other baselines, ASGDRO demonstrates a stronger focus on invariant features. As a
result, Grad-CAM analysis shows that ASGDRO has relatively larger regions of focus on invariant
features compared to other baselines. Simultaneously, it successfully eliminates spurious features
while accurately predicting the ground-truth label. Therefore, these results demonstrate that ASGDRO
has a higher capacity for capturing sufficiently diverse invariant features, and this characteristic is
reflected in its performance. That is, ASGDRO promotes that the model performs SIL.
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Figure 8: Grad-CAM results on the Waterbirds Dataset. The words highlighted in red represent
invariant features: Landbird and Waterbird. On the contrary, the words highlighted in green represent
spurious features: Land and Water background. In the Training Set, Group 1 and Group 2 are minority
groups with significantly fewer data samples compared to other groups.
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Figure 9: Grad-CAM results on the CelebA Dataset. The features highlighted in red represent
invariant words: Dark Hair and Blond Hair. On the contrary, the words highlighted in green represent
spurious features: Female and Male. In the Training Set, Group 3 is a minority group with significantly
fewer data samples compared to other groups.
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A.11 Hessian Analysis for Waterbirds Dataset

The Largest Eigenvalue The Second Largest Eigenvalue

Method Majority Minority Total Majority Minority Total

ERM 990 4894 2265 166 511 709

ASAM 972 5475 2624 178 524 647

GDRO 131 447 353 118 346 129

ASGDRO 107 342 279 98 274 105

Table 6: Hessian Analysis on Waterbirds. ASGDRO finds the common flat minima for both majority and
minority groups.

ERM and ASAM have significantly sharper minima for the minority group compared to GDRO and
ASGDRO due to the spurious correlation, although ASAM is designed to find flat minima. Compared
to GDRO and other baselines, ASGDRO achieves the lowest eigenvalue in the first and second
maximum eigenvalues for every group.
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