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Abstract

In text-to-image diffusion models, the cross-attention map
of each text token indicates the specific image regions at-
tended. Comparing these maps of syntactically related to-
kens provides insights into how well the generated image
reflects the text prompt. For example, in the prompt, “a
black car and a white clock”, the cross-attention maps for
“black” and “car” should focus on overlapping regions to
depict a black car, while “car” and “clock” should not. In-
correct overlapping in the maps generally produces gener-
ation flaws such as missing objects and incorrect attribute
binding. Our study makes the key observations investigating
this issue in the existing text-to-image models: (1) the simi-
larity in text embeddings between different tokens—used as
conditioning inputs—can cause their cross-attention maps
to focus on the same image regions; and (2) text embed-
dings often fail to faithfully capture syntactic relations al-
ready within text attention maps. As a result, such syntactic
relationships can be overlooked in cross-attention module,
leading to inaccurate image generation. To address this,
we propose a method that directly transfers syntactic re-
lations from the text attention maps to the cross-attention
module via a test-time optimization. Our approach lever-
ages this inherent yet unexploited information within text
attention maps to enhance image-text semantic alignment
across diverse prompts, without relying on external guid-
ance. Our project page and code are available at: https:
//t-sam-diffusion.github.io/

1. Introduction
Recent diffusion models can generate images from diverse
text prompts [4, 7, 29]. However, semantic discrepancies
often arise between the text and generated images, rais-
ing problems such as missing objects—where certain ele-
ments are overlooked—and attribute mis-binding—where
attributes are incorrectly assigned to subjects.

*Equal contribution.

Figure 1. The overview of our method. We leverage text self-
attention matrix and optimize the latent noise (zt) by minimizing
the distance between the cross-attention similarity matrix (S) and
the text self-attention matrix (T). This encourages integrating syn-
tactic relationships into text-to-image diffusion models.

Prior studies [10] demonstrated that the cross-attention
map of each token in text-to-image (T2I) diffusion models
highlights the attended regions in the image and provides
clues about the spatial placement of elements correspond-
ing to the tokens. In particular, [1, 21, 28] suggest that spa-
tial alignment in cross-attention maps among related words
influences the fidelity of images to text prompts in Stable
Diffusion (SD) [29], as we also demonstrate in Section 4.1.
For instance, in the prompt a black car and a white clock, if
the cross-attention maps for car and clock overlap, unique
token contributions can dilute, potentially omitting one ob-
ject. Conversely, if the maps for black (or white) and car
(or clock) diverge too much, attribute mis-binding can oc-
cur. This implies syntactically related words should ideally
have spatially aligned cross-attention maps, as discussed in
[8, 28]. However, the factors determining this spatial align-
ment between the maps remain poorly understood.

In our study, we first investigate the factors that con-
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Figure 2. For the analysis, we use SD v1.5 as the base model and adopt the prompt sets from [3], structured as “[attribute1] [object1]
and [attribute2] [object2]”, “[object1] and/with [object2]” or “[object1] and [attribute2] [object2]”. (a) Comparison of the cosine similarity
of text embeddings with that of the corresponding cross-attention maps at denoising step 1, with pairs of tokens (objecti, objectj), where
i ̸= j, and pairs of tokens (attributem, objectn) for both m = n and m ̸= n. As text embeddings become more similar, their cross-
attention maps get similar. (b) The distributions of text embedding similarity between i) Bound tokens— (attributei, objecti) for i = 1, 2,
and ii) Unbound tokens—(object1, object2). The distributions show no discernible difference, indicating text embeddings do not effectively
represent the syntactic relationships. (c) Comparison of text embedding similarity (left) and the text self-attention map power by 3 (right)
for the prompt a black car and a white clock. In the self-attention maps (T), clock attends more to white, unlike the text embeddings.

tribute to the spatial alignment of cross-attention maps
across different tokens, which can ultimately affect the ac-
curacy of T2I generation. We reveal that text embeddings,
which function as keys in the cross-attention modules, play
a pivotal role in determining the similarity of these maps, as
illustrated in Figure 2a. Specifically, as the text embeddings
for different words become more similar, the cosine simi-
larity of their corresponding cross-attention maps increases.
This effect is noticeable from the initial denoising step.

Considering that (i) cross-attention maps should capture
syntactic relationships between words and that (ii) the spa-
tial alignment of cross-attention maps is influenced by the
text embeddings, we question whether text embeddings ac-
curately capture the linguistic structure in text prompts. Our
findings suggest they do not, as illustrated in Figure 2b
and the left of Figure 2c. Syntactically related words in
prompts (e.g., black-car and white-clock) do not necessar-
ily yield similar text embeddings, as detailed in Section 4.1.
This finding is further supported by [40], which argues that
CLIP [25] often behaves like a bag-of-words model. As a
result, the cross-attention maps, derived from text embed-
dings, can likely fail to faithfully reflect the syntactic rela-
tionships. In the end, the T2I diffusion models can often
generate images that inaccurately represent the prompts.

To address the above issue, prior studies [1, 8, 21, 28]
resort to external sources to obtain syntactic information
within text prompts and regularize cross-attention maps to
incorporate these relationships. Specifically, [8, 28] employ
external text parsers to obtain linguistic structure, while
[1, 21] rely on human intervention to manually group tokens
based on syntactic relationships. However, these methods
are limited by their dependence on external inputs.

Do we really need to rely on external sources to ob-
tain syntactic relations within a sentence? Remarkably, T2I

diffusion models inherently capture syntactic relationships
within prompts through the self-attention maps in their text
encoder. In the encoder’s self-attention module, each token
pays more attention to related words, leading to encoding
the entire sentence effectively. As shown in the right of Fig-
ure 2c, the text self-attention maps exhibit higher attention
scores between the syntactically related words. However,
this information is weakly encoded in the text encoder out-
puts (i.e., text embeddings). We conjecture this is due to the
text attention module’s strong focus on the <bos> token,
known as attention sink [32, 35], which minimizes the in-
fluence of other tokens, as further discussed in Section 4.1.

As illustrated in Figure 1, our approach reuses the self-
attention maps from the text encoder and directly transfers
the syntax information to the diffusion models. We first de-
fine a similarity matrix whose values indicate the similarity
between pairs of cross-attention maps. Then, we update the
latent noise in diffusion models to minimize the distance
between the cross-attention similarity matrix and the text
self-attention matrix during inference. This allows for the
seamless integration of syntactic relationships into the dif-
fusion process. By guiding cross-attention modules to bet-
ter capture contextual relationships, our method ultimately
produces images accurately reflecting the intended meaning
of prompts. We leverage overlooked information already
embedded in T2I models, offering two key advantages: (i)
Self-contained: no need for external inputs like text parsers
or manual token indices; and (ii) Generalizable: effective
across diverse sentence structures.

2. Related Work

Text-to-image generation. Text-to-image (T2I) generation
[4, 5, 7, 23, 27, 30] is commonly based on latent diffusion
models [29] where text data is processed via a text encoder



[25, 26]. An important problem in T2I models is the lack of
full correspondence between the input text and the image.
Although diverse methods [2, 8, 12, 19, 24, 31, 38] are pro-
posed to diagnose and fix this problem, a common theme
in prior works is adjusting the cross-attention maps in infer-
ence time, following the seminal work [10].
Cross-attention control for improved sematic align-
ment. Several defects in cross-attention maps hinder se-
matic alignment, including attention dominance [41]—one
token getting huge attention weight, and attention leak-
age/overlap [20, 36]—attention weights not respecting the
spatial boundaries of the intended objects. In particular, one
line of work employs contrastive objectives to guide atten-
tion optimization [1, 14, 21, 28]. For example, CONFORM

[21] uses prompts with distinct groups, where tokens in
the same (opposite) group are treated as positive (negative)
pairs. Similarly, [28] uses text parser models to identify
such pairs. Other approaches, like those in [15, 34], opti-
mize attention maps with spatial guidance (e.g., segmenta-
tion maps, masks, or layouts). However, these methods rely
on external resources for text-to-image generation.
Attention sinks. The attention weights in pretrained trans-
formers tend to be heavily biased towards special tokens
such as <bos>, <eos>, and punctuation tokens, as stud-
ied in (vision-)language models [9, 32, 35]. The T2I diffu-
sion model literature [3, 37] also notes the focus of attention
scores on the <bos> token in the CLIP text encoder.

3. Preliminaries
In this section, we briefly review the structure of text-to-
image diffusion models including the text encoder and the
cross-attention module [4, 29].
Text encoder. To condition the text data for the diffusion
process, a text encoder is needed. The input text is first
tokenized and then converted into dense vectors. The dense
vectors are then processed via a series of multi-head self-
attention layers [33].

At a given layer ℓ in the text encoder, let us denote the key
by e

(ℓ)
i ∈ RHeDe , i = 1, · · · , s, where s is the key sequence

length, De is the embedding dimension per head and He is
the number of heads in the text encoder. The corresponding
self-attention matrix T (ℓ,h) ∈ Rs×s is given by

T
(ℓ,h)
ij =

exp(ωij)∑
k exp(ωik)

, ωij := e
(ℓ)⊤
i W (ℓ,h)

en e
(ℓ)
j , (1)

where W
(ℓ,h)
en ∈ RHeDe×HeDe is a pretrained matrix at head

h in layer ℓ of the text encoder.
In our proposed method, we use the self-attention matrix

averaged over layers and heads:

T′ =
1

LeHe

Le∑
ℓ=1

He∑
h=1

T (ℓ,h). (2)

Due to the high attention probabilities assigned to <bos> and
<eos> tokens, we remove their corresponding values and
re-normalize each row as follows:

Tij =
T′

ij∑i
m=2 T

′
im

. (3)

We denote the final output of the text encoder by ki ∈
RHeDe where i = 1, · · · , s, which used as conditioning in-
puts in T2I diffusion models. We call ki as text embeddings.
Denoising latent variables. Latent diffusion models gen-
erates latent tensors (z0) of an image. A latent diffusion
model Dθ learns to simulate the denoising process: starting
from Gaussian noise zτ , the model iteratively reconstruct z0
by predicting the noise at step t:

zt−1 = zt −Dθ(zt; {ki}), 0 < t ≤ τ. (4)

Cross-attention module. In T2I latent diffusion models,
the interaction between text and image data is performed by
multi-head cross-attention. In the cross-attention layer ℓ, we
define the query, q(ℓ)

a ∈ RHcDc , where a = 1, · · · , Nc, and
Nc is the query sequence length at the given cross-attention
layer. Dc is the hidden dimension per head, and Hc is the
number of heads of the cross-attention layer.

The cross-attention map A(ℓ,h) ∈ RNc×s at head h with
elements A(ℓ,h)

ai is defined as

A
(ℓ,h)
ai :=

exp(Ωai)∑s
j=1 exp(Ωaj)

, Ωai := q(ℓ)⊤
a W (ℓ,h)

c k
(ℓ)
i .

(5)

Here, W (ℓ,h)
c ∈ RHcDc×HcDc is a pretrained matrix at head

h in layer ℓ.
Cross-attention similarity matrix. In our study, we use
the cross-attention maps averaged over heads and over all
layers for which Nc = M :

A =
1

LMHc

LM∑
ℓ=1

Hc∑
h=1

A(ℓ,h). (6)

Here, LM is the number of cross-attention layers with Nc =
M . Based on the average cross-attention map above, we
define the similarity matrix S ∈ Rs×s as follows:

Sij :=
Cij∑s
k=1 Cik

,Cij :=

∑Nc
a=1 AaiAaj(∑Nc

a=1 A
2
ai

) 1
2
(∑Nc

a=1 A
2
aj

) 1
2

.

(7)

Cij denotes cosine similarity between maps corresponding
to i and j.

4. Understanding and Resolving Text-to-Image
Semantic Discrepancy

In this section, we examine the cross-attention maps in Sta-
ble Diffusion (SD) [29] to identify factors that lead to se-
mantic discrepancies between generated images and text



prompts. We provide additional results with PixArt-α [4]
in Appendix B.1. Based on these findings, we introduce
an approach to enhance the fidelity of T2I diffusion models
by leveraging text self-attention maps to regularize cross-
attention maps.

4.1. Why Do Generated Images Misrepresent Text?

Our findings are based on the premise that cross-attention
maps should capture syntactic relationships between words
for accurate T2I generation, as supported by prior works
[1, 8, 21, 28]. We identify a key factor contributing to in-
correct relations in cross-attention maps, resulting in less
faithful image generation: While text embedding (ki) simi-
larity strongly correlates with the cross-attention similarity
matrix C, it insufficiently reflects syntactic bindings in the
text prompt. This highlights a fundamental issue in text-
image semantic discrepancy: the similarity in text embed-
dings lack the syntax information necessary for accurate
image generation. We reveal that text self-attention maps
(T) effectively capture syntactic information, but this is not
sufficiently encoded in text embeddings. The absence of the
information in text embeddings can be due to an artifact in
the attention module, known as attention sink [35], where
attention weights are biased toward the <bos> token as de-
tailed later. These findings motivate the solution presented
in the following section.

For the following empirical analysis, we use the prompt
sets introduced in [3], containing prompts structured as the
following three categories:
(i) [attribute1][object1] and [attribute2][object2],
(ii) [object1(animal)] with [object2],
(iii) [object1(animal)] and [attribute2][object2].
Prompt sets in the above formats enable us to focus on two
key cases of text-image semantic discrepancies: missing ob-
jects and attribute mis-binding. In the following, we refer to
the group of syntactically bound words (tokens) as pairs of
([attributei], [objecti]), i = 1, 2, and the group of syntac-
tically unbound words (tokens) as ([attributei], [objectj ])
and ([object1], [object2]), where i ̸= j.

We revisit the role of cross-attention maps in text-image
semantic coherence, where spatial overlap or separation is
crucial, as discussed in [1, 8, 21, 28]. Figure 3 illustrates
this effect: On the left, overlapping attention maps for
syntactically unbound words lead to object missing, while
greater overlap for syntactically bound words enhances at-
tribute binding. This suggests that syntactic associations
should be reflected in cross-attention maps.

To statistically assess cross-attention map’s impact, we
analyze categories (ii) and (iii) of the aforementioned
prompt sets. Assuming spatial overlap is measurable by the
cosine similarity matrix (C) in eq.(7), we compute cosine
similarities for the attention maps of object1 and object2 in
missing objects, and for attribute2 and object2 in attribute

Figure 3. The generated images and cross-attention maps (A) for
the specific tokens from SD v1.5. This illustrate the importance
of spatial alignment in cross-attention maps for accurate image
generation. Divergent (overlapping) cross-attention maps for syn-
tactically unbound (bound) words enhances text-to-image fidelity.

(a) (b)
Figure 4. Comparison for the distributions of cosine similarity
between cross-attention maps (at denoising step 10). (a) The cases
with one missing object–incorrect and two objects present–correct.
(b) The cases with incorrect and correct attribute binding. Correct
instances are more frequent when the cosine similarity is low for
objects presence and high for attribute binding.

Figure 5. Correlation between the cosine similarity of text em-
beddings and that of cross-attention maps across denoising steps
(t = 1, 21, 50). Similar text embeddings generally lead to similar
cross-attention maps, with the correlation weakening over time.

binding cases. Then, we compare cosine similarity distribu-
tions for correct vs. incorrect images on both cases. See Ap-
pendix B.1 for setup details. Figure 4 shows that lower co-
sine similarity tends to correlate with object presence, while
higher similarity supports more accurate bindings.

This observation motivates us to examine the factor con-
tributing to similarity in cross-attention maps across tokens.
Finding 1: The cosine similarity of text embeddings has
a large correlation with cross-attention similarity matrix
C. Figure 5 shows there is a correlation between the cosine
similarity of text embedding and C, which persists through-
out the final denoising steps. This indicates that similar text



embeddings can result in overlapping cross-attention maps.
Next, we justify this finding mathematically.

Proposition 1. If A(ℓ,h) ∈ RNc×s is a cross-attention map
defined in eq. (5), then under the assumptions i, ii, and iii
described in Appendix A, the cosine similarity matrix can
be written in terms of key vectors k(ℓ,h)

i ∈ RHcDc as

cos(A
(ℓ,h)
i , A

(ℓ,h)
j ) =

exp
(
− 1

2
(ki − kj)

⊤W 2(ki − kj)
)
, (8)

up to terms of at least O(1/
√
Nc) and O(ϵ), where W 2 :=

W
(ℓ,h)⊤
c Σ(ℓ)W

(ℓ,h)
c and Σ(ℓ) ∈ RHcDc×HcDc is the covari-

ance matrix of query vectors. □

Refer to Appendix A for the proof.
We empirically and mathematically showed that the

similarity in text embeddings ki influences cross-attention
maps. Next, we evaluate whether the similarity of these em-
beddings reflects syntax information in text inputs.
Finding 2-1: There is no significant correlation between
word syntactic bindings and text embedding similarity.
Prior study [40] suggests CLIP embeddings [25], used in
SD, behave like a bag-of-words model, ignoring word rela-
tionships. We also show in Figure 2b the similarity in CLIP
text embeddings does not correlate with syntactic bindings.
Specifically, we expect close embeddings for syntactically
bound tokens and distant embeddings for unbound tokens,
yet the distributions lack separation.
Finding 2-2: Text self-attention maps do have syntax in-
formation. We examine the text encoder that produces text
embeddings. Interestingly, the self-attention maps in the en-
coder capture syntactic relationships, as shown in Figure 6a.
These maps reveal higher similarity between syntactically
bound tokens and lower similarity between unbound tokens.
For more complex prompt structures, see the Appendix B.1.

Finding 2-3: The attention sink can contribute to why
text embeddings lack the syntax information. Why do
text embeddings lack relational information despite being
derived from multiple self-attention modules? We attribute
this gap to attention sink [32, 35], where attention scores
are concentrated on a few tokens. In CLIP’s text encoder,
attention is mainly focused on the <bos> token, as discussed
in [3, 37] and shown in Figure 6b. We hypothesize the focus
on the <bos> token can limit the transfer of relational infor-
mation from self-attention maps (T ) to text embeddings, as
attention scores for other tokens remain much smaller, min-
imizing their influence in each self-attention layer.

To provide a mathematical justification, we express the
difference between the output and input of one block of the

(a) (b)

Figure 6. (a) The distributions of text self-attention value (T′
ij in

eq.(2)) for bound tokens (attributem, objectm) and unbound tokens
(attributem, objectn) / (object1, object2), where m,n ∈ {1, 2}.
The separate distributions indicate text self-attention maps can in-
deed represent the syntactic relationships. (b) Comparison of text
self-attention probability histograms between <bos> token and
non-<bos> tokens on 100 prompts: The probability allocated to
<bos> is on average 20 times larger than that of other tokens.

self-attention module for a token ei as:

o
(ℓ,h)
i =

i∑
j=1

T
(ℓ,h)
ij W (ℓ,h)

v e
(ℓ)
j , (9)

where W (ℓ,h)
v ∈ RDe×HeDe is a parameter, ei ∈ RHeDe , and

T
(ℓ,h)
ij is the self-attention matrix in eq. (1). We consider the

situation where attention sink occurs, that is the attention
weights for the <bos> token is much higher than the rest of
the sequence:

ϵ =

∑i
j ̸=1 Tij

Ti1
≪ 1, i = 2, · · · , s. (10)

In Appendix A, we prove the following statement:

Proposition 2. Define matrix R ∈ Rs×s as

Rij = e
(ℓ)⊤
i W (ℓ,h)⊤

v W (ℓ,h)
v e

(ℓ)
j , (11)

and suppose it has the property

|Rmn|
R11

∼ O(1/ϵ),
|R1m|
R11

∼ O(1), 1 < m,n ≤ s,

(12)
where e

(ℓ)
1 is the bos embedding. Then the following holds:

cos(o
(ℓ,h)
i ,o

(ℓ,h)
j ) = 1−O(ϵ). (13)

□

This suggests that cosine similarity between token
vectors (o(ℓ,h)

i )—potentially influencing cross-attention
maps—remains barely changed across text self-attention
layers due to attention sink on the <bos> token. In other
words, the attention sink can hinder the accurate encoding
of self-attention maps into embeddings.

Our findings reveal text embedding alone are insufficient



for generating semantically aligned images. On the other
hand, we notably show the potential of transferring ne-
glected syntactic information from text self-attention maps
to the cross-attention to enhance T2I semantic alignment.

4.2. Text Self-Attention Maps (T-SAM) Guidance

In the previous section, we show text self-attention maps
capture syntax information within a sentence. Building on
this insight, we propose leveraging the self-attention maps
within the text encoder—a component of diffusion mod-
els—to enhance cross-attention maps. By minimizing the
distance between the similarity matrix of the cross-attention
maps and the text self-attention matrix, our approach en-
sures that embedded syntactic relationships are effectively
transferred to cross-attention.

Our method optimizes cross-attention maps during infer-
ence, adjusting their similarity matrix to align with the text
self-attention matrix T. The normalized cosine similarity
matrix, S (defined in eq.(7)), is used as the cross-attention
similarity matrix. This is achieved by simply minimizing
the loss function:

L(zt) =
s∑

i=1,j≤i

ρi|Tγ
ij − Sij(zt)|, (14)

where the exponent γ acts to amplify larger values and
compress smaller ones so the effect of controlling tempera-
ture and ρi = i/s. For example, if two words in the prompt
have negligible syntactic relation according to the text self-
attention matrix, i.e. Tij ≈ 0, we demand that their similar-
ity of cross-attention maps must not be similar: Sij ≈ 0.

In practice, this optimization will be applied only to zt at
a few denoising steps during inference as followed:

z′t = zt − α · ∇ztL(zt). (15)

5. Experiments
This section presents our empirical study on the effective-
ness of T-SAM in enhancing semantic alignment across di-
verse T2I diffusion models, including SD v1.5 [29] and
PixArt-α [4], evaluated both quantitatively and qualita-
tively. To the best of our knowledge, this is the first work
to introduce attention control in PixArt-α, underscoring the
novelty of our approach.
Prompt datasets. We evaluate our approach on diverse
text prompts using two existing benchmarks. First, the
TIFA v1.0 benchmark [13] is a large-scale text-to-image
generation dataset featuring a wide range of sentence struc-
tures. This benchmark comprises 4,000 prompts, in-
cluding 2,000 image captions from the COCO validation
set [18], 161 prompts from DrawBench [30], 1,420 prompts
from PartiPrompt used in Parti [39], and 500 texts from
PaintSkill [6]. Second, we use structured prompt sets con-
taining multiple objects and their corresponding attributes
from Attend-n-Excite [3]. Prompts in this dataset are

Table 1. Evaluation results for the TIFA benchmark, including
TIFA scores and CLIP similarity scores. External Info. indicates
whether external information is used. CLIP-I (CLIP-T) refers to
image-text (text-text) CLIP similarity. The base model is SD.

External Info. TIFA CLIP-I CLIP-T

SD ✗ 0.79 0.33 0.77
LB ✓ 0.80 0.33 0.76
T-SAM ✗ 0.83 0.34 0.77

grouped into three categories: Objects (e.g., “[attribute1]
[object1] and [attribute2] [object2]”), Animals-Objects (e.g.,
“[animal] with [object]” or “[animal] and/with [attribute]
[object]”), and Animals (e.g., “[animal1] and [animal2]”).
We exclude the Animals category, as it lacks the complex
syntactic relations as discussed in [28].
Implementation details. For SD, we use 50 sampling it-
erations, updating zt at each denoising step from 1 to 25.
We set M = 256 in eq.(6) and γ = 2 in eq.(14). For the
TIFA benchmark, we generate one image per prompt with a
shared seed across methods, while using a unique seed for
each prompt. We set α = 40 in eq.(15). For Attend-n-Excite
prompts, we generate results using 64 seeds, in line with
standard practice, setting α = 10 and applying 20 iterative
updates at i ∈ {0, 10, 20}. See Appendix B.2 for details on
PixArt-α as well as SD.
Evaluation metrics. To quantitatively evaluate the ac-
curacy of generated images, we use two metrics: TIFA
scores [13] (for TIFA benchmark) and CLIP similarity
scores. TIFA scores measure how well generated images
reflect the text prompts. In TIFA, questions for each prompt
are generated by GPT-3.5 [22], and a vision-language
model [16] provides answers. For CLIP [25] scores, we
follow the protocol in [3] to evaluate both image-text and
text-text similarity. Additional details on CLIP scores are
provided in Appendix B.2. Moreover, we conducted a user
study with 10 random prompts in Animals-Objects, generat-
ing four images per prompt using different seeds. A total of
25 participants select the image that best matches the text.
Baselines. When evaluating our method on SD, we com-
pare our method with SD, Linguistic-Binding (LB) [28],
Attend-n-Excite (A&E) [3] and CONFORM [21]. LB depend-
ing on external parsers (SpaCy [11]) is limited to attribute-
binding tasks. This method can be applied to both the TIFA
benchmark and the Attend-n-Excite (Objects and Animals-
Objects) prompt sets, though they are used only when the
text parser identifies (modifier, entity-noun) pairs within
the given prompts. A&E and CONFORM require manual to-
ken selection per prompt, restricting their use to the fixed-
template prompts (Objects and Animals-Objects) due to the
high cost of selecting token indices for diverse prompts. We
reproduce the images with SD, CONFORM, and LB based on
SD v1.5 and using the same seeds. For PixArt-α, we com-



Figure 7. Accuracy for each question type in the TIFA benchmark. Our method achieves the best performance in most categories. The
attribute includes properties such as large, small, young, etc. The base model is SD.
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Figure 8. Comparison of our method (T-SAM) on SD with recent state-of-the-art methods on prompts from Objects and Animals-Objects.
The images corresponding to the same position across different methods are generated using the same seed. Best in zoom.

pare only with the base model, as no prior attention-control
methods have been applied to it.

5.1. Results

Quantitative results. Table 1 shows the evaluation results
in TIFA benchmark and Figure 7 illustrates the breakdown
of TIFA scores across question types, using SD as the base
model. We highlight that our approach (T-SAM) outper-
forms SD and LB on complex syntactic prompts, where
other baselines are inapplicable. While LB demonstrates
improvements over SD in the color, shape, and material

categories, which are closely related to attribute-binding
tasks, it fails to enhance accuracy in the activity and count-
ing categories. This underscores LB’s inability to capture
diverse word relationships, even when using external text
parsers. In contrast, our method shows improvements over
SD in nearly all categories including color, shape, and ac-
tivity, except for attribute (e.g., properties such as large,
small, young), which differ from the term “attribute” used in
this study, demonstrating its versatility across diverse word
relationships. Additionally, it achieves higher CLIP scores
than the baselines, proving its superior semantic alignment.



Table 2. Average CLIP similarity scores between text prompts and images generated with 64 different seeds. The base model is SD.

Image-Text Prompt Prompt-CaptionFull Prompt Minimum Object

External Info. Objects Animals-Objects Objects Animals-Objects Objects Animals-Objects

SD ✗ 0.34 0.34 0.25 0.26 0.76 0.80
LB ✓ 0.36 0.35 0.27 0.27 0.80 0.83
CONFORM ✓ 0.36 0.36 0.28 0.28 0.81 0.85
A&E ✓ 0.36 0.35 0.27 0.26 0.81 0.83

T-SAM ✗ 0.36 0.37 0.28 0.28 0.81 0.85

Table 3. CLIP similarity scores on prompts from Objects and
Animals-Objects using PixArt-α as the base model. CLIP-I
(CLIP-T) refers to image-text (text-text) CLIP similarity.

Prompt Set Method CLIP-T CLIP-I (Full, Min)

Objects
PixArt-α 0.81 0.36, 0.27
T-SAM 0.82 0.37, 0.28

Animals-Objects
PixArt-α 0.85 0.36, 0.27
T-SAM 0.86 0.37, 0.28
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“A small room with 
a futon couch, a 
sewing machine on 
a table, and a 
flatscreen TV.”

“Entire front yard is 
filled with snow 
while people walk 
around.”

“Cow being fed a 
popsicle by a 
person over a 
fence.”

“A couple of cows 
and some birds 
flying in the sky.”

Figure 9. Qualitative comparison using prompts from MSCOCO
contained in TIFA benchmark. Our approach successfully gen-
erates multiple elements, including a sewing machine in the first
prompt, people in the second, popsicle in the third, and cow in the
fourth. SD misses some elements and LB generates identical im-
ages to SD when no relations are extracted from the text parser.

In Objects and Animals-Objects, T-SAM on SD performs
comparably to the state-of-the-art CONFORM, which, unlike
our approach, requires manually defined token indices for
positive and negative groups, as shown in Table 2. Our
method outperforms LB and A&E, which also rely on exter-
nal inputs. This demonstrates extracting syntactic informa-
tion from text self-attention maps can be more effective than
relying on text parsers or manually selecting tokens for op-
timization. An additional ablation study is provided in Ap-

pendix B.2. Moreover, Table 3 shows that T-SAM is also
effective on PixArt-α with Attend-n-Excite prompts, demon-
strating the generalizability of our method to a different text
encoder (T5-XXL) and model architecture (DiT).
Qualitative results. In Figure 8, T-SAM either outper-
forms or performs comparably to the baselines in Objects
and Animals-Objects. SD often omits objects (e.g., clock, ap-
ple, or bow) or misbinds attributes (e.g., blue clock). CON-

FORM and LB improve over SD but have limitations. LB is
restricted to attribute-binding and fails on prompts without
modifiers (e.g., An elephant with a bow), producing results
identical to SD CONFORM can impose overly rigid separa-
tions, as seen in the first example. T-SAM, by leveraging
smoother linguistic cues from text attention maps—rather
than binary positive/negative pairs—achieves broader ap-
plicability and more consistent improvements. See Fig-
ure 9 for more comparison of images generated by T-SAM
and the baselines, showcasing effectiveness of T-SAM with
complex prompts, such as MSCOCO captions from the
TIFA benchmark.

For PixArt-α, Figure D illustrates the effectiveness of
our method. Although the base model is already strong
compared to SD, T-SAM further improves its performance.
User study. The user study result in Table D show that
T-SAM on SD outperforms LB and achieves performance
comparable to CONFORM. Additionally, Table E shows T-
SAM on PixArt-α surpasses the base PixArt-α model.

6. Conclusion
To enhance fidelity in T2I diffusion models, we improved
cross-attention maps by aligning their similarity matrix with
text self-attention maps. Our approach is based on two in-
sights: (1) similar text embeddings produce similar cross-
attention maps, but (2) syntactic relations are missed in em-
beddings but captured by text self-attention maps. T-SAM
enabled cross-attention to better capture syntactic struc-
ture, significantly improving text-to-image fidelity across
diverse sentence structures, without requiring external tools.
Nonetheless, our method has limitations such as inaccura-
cies in object counting and potential noise introduced by
text attention maps, leaving room for future improvement.
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Text Embedding is Not All You Need: Attention Control for Text-to-Image
Semantic Alignment with Text Self-Attention Maps

Supplementary Material

A. Proofs

A.1. Notation

Symbol Definition and Properties

Dc embedding dimension per head in cross-attention layers
Hc number of heads in cross-attention layers
Nc query sequence length in cross-attention layers
De embedding dimension per head in text encoder
He number of heads in text encoder
s text sequence length
q
(ℓ)
a ∈ RHcDc , a = 1, · · · , Nc, query vectors at layer ℓ cross-attention layer

k
(ℓ)
i ∈ RHeDe , i = 1, · · · , s, text embeddings

W
(ℓ,h)
c ∈ RHcDc×HcDc , projection parameter matrix in cross-attention layer ℓ and head h. It is related to the product

key and query projection parameters (∈ RHc×Dc×HcDc ) via W
(ℓ,h)
c = W

(ℓ,h)⊤
q W

(ℓ,h)
k

W
(ℓ,h)
v ∈ RDe×HeDe , value projection matrix in text encoder self-attention layer ℓ and head h

W
(ℓ)
out ∈ RHeDe×HeDe , out projection matrix in text encoder self-attention layer ℓ

A(ℓ,h) ∈ RNc×s, cross-attention maps at layer ℓ and head h. The elements are denoted by A
(ℓ,h)
ai

e
(ℓ)
i ∈ RHeDe , i = 1, · · · , s, text dense vectors in the text-encoder layer ℓ

T (ℓ,h) ∈ Rs×s, text self-attention matrix at layer ℓ and head h of the text encoder
ϵ ≪ 1, the inverse ratio of <bos> attention weight to the sum of attention weights of the rest of the sequence

Table A. Table of Notations

A.2. The Big O Notation

Based on the empirical observations, we consider the situation where attention sink occurs both in the text encoder and in the
cross-attention layers of the diffusion model: the attention weights for the <bos> token are much higher than the rest of the
sequence:

self-attention in the text encoder :

∑i
j ̸=1 T

(ℓ,h)
ij

T
(ℓ,h)
i1

< ϵ ≪ 1, i = 2, · · · , s, (1)

cross-attention in the diffusion model:

∑s
j ̸=1 A

(ℓ,h)
aj

A
(ℓ,h)
a1

< ϵ ≪ 1, a = 1, · · · , Nc. (2)

In practice ϵ ∼ 0.1 or smaller in the middle layers of U-Net and the later layers of CLIP text encoder. Our approach for
calculating the approximate quantities in the limit of small ϵ is perturbation theory: we assume that the variables of the
problem, such as T (ℓ,h) can be written as a power series in a small parameter ϵ:

T (ℓ,h) = T (ℓ,h)(0) + ϵT (ℓ,h)(1) + ϵ2T (ℓ,h)(2) + · · · . (3)
In this context, O(ϵ) mean terms that are linear or higher order in ϵ. If ϵ is sufficiently small, the first few term give a good
approximation to the true variable.



A.3. Proof of Proposition 1

In the following, we suppress the (ℓ, h) superscript in quantities A(ℓ,h),Σ(ℓ,h), µ(ℓ,h),W
(ℓ,h)
c ,k

(ℓ)
i ,q

(ℓ)
i defined below to

reduce clutter. Consider the similarity matrix of the form:

cos(Aai, Aaj) :=

∑Nc
a=1 AaiAaj(∑Nc

a=1 A
(ℓ,h)2
ai

) 1
2
(∑Nc

a=1 A
(ℓ,h)2
aj

) 1
2

, (4)

where

Aai :=
exp(Ωai)∑s
j=1 exp(Ωaj)

, Ωai := q⊤
a Wcki. (5)

Proposition 1. If A ∈ RNc×s is a cross-attention map defined in eq. (5), then under the assumptions i, ii, and iii described
below, the similarity matrix can be written in terms of key vectors ki ∈ RHcDc as

cos(Ai, Aj) = exp
(
− 1

2
(ki − kj)

⊤W 2(ki − kj)
)
, (6)

up to terms of at least O(1/
√
Nc) and O(ϵ), where W 2 := W⊤

c ΣWc and Σ(ℓ) ∈ RHcDc×HcDc is the covariance matrix of
query vectors and Wc ∈ RHcDc×HcDc is a parameter. □

Proof. If queries are iid samples of some distribution q
(ℓ)
a ∼ pq with finite mean and variance, we can use the Central Limit

Theorem to write the cosine similarity as

cos(Ai, Aj) :=
E[AaiAaj ] +O( 1√

Nc
)(

E[A(ℓ,h)2
ai ] +O( 1√

Nc
)
) 1

2
(
E[A(ℓ,h)2

aj ] +O( 1√
Nc

)
) 1

2

, (7)

=
E[AaiAaj ](

E[A2
ai]

) 1
2
(
E[A2

aj ]
) 1

2

+O(
1√
Nc

). (8)

Assumption i. The query sequence length Nc is large enough so that when summing over queries, deviations from true mean
can be approximated by the first term in 1/Nc expansion, and the corrections from the dependence between samples appear
at higher orders in the expansion. □

As a first approximation to the distribution of queries, consider a statistical model where the query vectors are jointly
normally distributed:

qa ∼ N (µ,Σ), µ ∈ RHcDc , Σ ∈ RHcDc×HcDc . (9)

This is strictly true at the first denoising step. Moreover, if the true distribution remains close to Gaussian, the corrections
from the distribution can in principle be perturbatively calculated and added accordingly. Therefore, the assumption above
may not be interpreted as a restriction, but as a first (and good) approximation to the true distribution.

Assumption ii. Query vectors qa ∈ RHcDc are jointly Gaussian as in (9). □

Note that the attention scores Ωai = q⊤
a Wcki are now gaussian variables with

E[Ωai] = µ⊤Wcki := µi, Var[Ωai] = k⊤
i W

⊤
c Wcki := σ2

i . (10)

Assumption iii. We empirically observe that i) µ1 ≫ µi, ii)µ1 ≫ σ1, iii)σ1 ≈ σi for , i = 2, · · · , s, such that

eµi−µ1 ∼ O(ϵ). (11)
□

Writing cross-attention probabilities in terms of attention scores, we have

Aai =
eΩai

eΩa1 +
∑s

m=2 e
Ωam

=
eΩai−Ωa1

1 +
∑s

m=2 e
Ωam−Ωa1

. (12)

Note that since attention scores are Gaussian,

P[eΩai−Ωa1 < ϵ/s] = Φ
( log(ϵ/s)− µi + µ1√

σ2
1 + σ2

i

)
. (13)



Therefore, if assumption iii holds, for some large enough µ1, we can have P[eΩai−Ωai < ϵ/s] > 1− ϵ3. This means that the
sum of attention probabilities of all non-<bos> tokens does not exceed ϵ with the probability of at least 1− ϵ3. As a result,
we have

Aai = eΩai−Ωa1 +O(ϵ2), (14)

AaiAaj = eΩai+Ωaj−2Ωa1 +O(ϵ3), (15)
with high probability. To evaluate the cosine similarity, we need to compute expectations:

E[AaiAaj ](
E[A2

ai]
) 1

2
(
E[A2

aj ]
) 1

2

=
E[eΩai+Ωaj ] +O(ϵ3)(

E[e2Ωai ] +O(ϵ3)
) 1

2
(
E[e2Ωaj ] +O(ϵ3)

) 1
2

. (16)

We can evaluate this expression using the well-known formula of the moment-generating function of Gaussian distribution:

Lemma 1. If qa ∼ N (µ,Σ) and r ∈ RHcDc , then

E[eq·r] = exp(r · µ+
1

2
r · Σ · r). (17)

□

Define rij = Wc(ki + kj − 2k1):

E[AaiAaj ](
E[A2

ai]
) 1

2
(
E[A2

aj ]
) 1

2

=
exp(µ⊤rij +

1
2r

⊤
ijΣrij)

exp( 12µ
⊤rii +

1
4riiΣrii) exp(

1
2µ

⊤rjj +
1
4rjjΣrjj)

+O(ϵ). (18)

Here, we used the fact that each of exponentials are ∼ O(ϵ2) to simplify the correction terms to O(ϵ). When applying Lemma
1, one might worry that the integration includes regions of RHcDc that the approximation (15) fails. Although this is a valid
point, the total probability of such regions is ϵ3 by assumption, which is at the order of correction terms.

Simplifying (18) gives
E[AaiAaj ](

E[A2
ai]

) 1
2
(
E[A2

aj ]
) 1

2

= exp(
1

2
r⊤ijΣrij −

1

4
r⊤iiΣrii −

1

4
r⊤jjΣrjj) +O(ϵ). (19)

Substituting the definition of rij , we get
E[AaiAaj ](

E[A2
ai]

) 1
2
(
E[A2

aj ]
) 1

2

= exp(−1

2
(ki − kj)

⊤W⊤
c ΣWc(ki − kj) +O(ϵ). (20)

A.4. Proof of Proposition 2

Proposition 2. Consider a self-attention layer with output o(ℓ,h)
i ∈ RDe defined as

o
(ℓ,h)
i =

i∑
j=1

T
(ℓ,h)
ij W (ℓ,h)

v e
(ℓ)
j , (21)

where W
(ℓ,h)
v ∈ RDe×HeDe is a parameter, ei ∈ RHeDe , and T

(ℓ,h)
ij is the self-attention matrix. Define R ∈ Rs×s as

Rij = e
(ℓ)⊤
i W (ℓ,h)⊤

v W (ℓ,h)
v e

(ℓ)
j , (22)

and suppose it has the property
|Rmn|
R11

∼ O(1/ϵ),
|R1m|
R11

∼ O(1), 1 < m,n ≤ s, (23)

where e
(ℓ)
1 is the bos embedding. Then the following holds:

cos(o
(ℓ,h)
i ,o

(ℓ,h)
j ) = 1−O(ϵ). (24)

□

Proof. In terms of the matrix R, we have



cos(o
(ℓ,h)
i ,o

(ℓ,h)
j ) =

o
(ℓ,h)
i · o(ℓ,h)

j )

∥o(ℓ,h)
i ∥∥o(ℓ,h)

j ∥
=

∑i
m=1

∑j
n=1 T

(ℓ,h)
im T

(ℓ,h)
jn Rmn(∑i

m=1

∑j
n=1 T

(ℓ,h)
im T

(ℓ,h)
jn Rmn

) 1
2
(∑i

m=1

∑j
n=1 T

(ℓ,h)
im T

(ℓ,h)
jn Rmn

) 1
2

. (25)

By separating the contributions from the <bos> token, we can write the numerator as
i∑
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j∑
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T
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where m′, n′ = 2, · · · , s. Using T

(ℓ,h)
im′ ∼ O(ϵ), T (ℓ,h)

i1 = 1 −O(ϵ)and the conditions on the R matrix stated in Proposition
2, we can show that the first term (which is necessarily positive) has a larger norm than the rest:

i∑
m=1

j∑
n=1

T
(ℓ,h)
im T

(ℓ,h)
jn Rmn = R11 +O(ϵ). (27)

We can use this property to perform a Taylor expansion in the denominator and keep up to the linear term in ϵ. At this order
of approximation, we can use 1

1+x ≈ 1−x since we are keeping only the first terms in Taylor expansion. After some algebra,
the expression drastically simplifies to

cos(o
(ℓ,h)
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i∑
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2

T
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T
(ℓ,h)2
j1

)
Rm′n′ . (28)

First, note that the expression in brackets is ∼ O(ϵ2) and since Rm′n′ ∼ O(1/ϵ) (both claims from empirical evidence),
the total expression will be 1 + O(ϵ). Furthermore, matrix R is positive semi-definite by definition. Performing an SVD
decomposition R = UκU⊤ and absorbing the terms in brackets in U matrices, one can use the Cauchy-Schwarz inequality
to show that the correction term above is negative. In conclusion, we have

cos(o
(ℓ,h)
i ,o

(ℓ,h)
j ) = 1− cϵ+O(ϵ2), (29)

for some positive c ∼ O(1).

A.5. An extension to Proposition 2

In this section, we extend the result of Proposition 2 by considering the full self-attention layer of the text encoder. Proposition
2 was only concerned with products of keys, queries, and values. However, a self-attention layer typically includes an output-
projection linear layer and a skip connection. Here, we explore the effect of these two components and compare the cosine
similarities of input text embeddings versus those of outputs. We show that based on practical assumptions that are valid in
the later layers of CLIP text encoder, the output cosine similarities are close to input cosine similarities. Consider the output
of an attention head at layer ℓ:

e
(ℓ)out
i = e

(ℓ)
i +W

(ℓ)
out concat

[ i∑
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T
(ℓ,1)
im W (ℓ,1)

v e(ℓ)m , · · · ,
i∑
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T
(ℓ,He)
im W (ℓ,He)

v e(ℓ)m

]
(30)

in which e
(ℓ)out
i , e

(ℓ)
i ∈ RHeDe for all i = 1, · · · , s. Here, W (ℓ)

out ∈ RHeDe×HeDe is the out-projection layer.
Define the average attention probabilities:

τ
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1

i
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T
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By adding and subtracting terms proportional to τ
(ℓ,h)
i we have
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We empirically observe that

∥e(ℓ)i ∥ ∼ O(1/ϵ), ∥e′(ℓ)i ∥ ∼ O(1), ∥δe(ℓ)i ∥ ∼ O(ϵ). (33)
The result of the above conditions is∣∣e(ℓ)out
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Thus, the cosine similarity will be
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This result shows that the similarity between output text embeddings corrected by terms that depend only on the averages of
attention probabilities (τi).

B. Details of the Empirical Study

B.1. Additional details on Section 4

The experiment setup for Figure 4 in Section 4. We use 144 prompts from the Animals-Objects in [3], featuring two
distinct objects, to address the missing object scenario illustrated in Figure 4a. In addition, we use 107 prompts from the
same dataset, incorporating both attributes and objects, to explore the attribute binding case shown in Figure 4b. To assess
image correctness, we use TIFA [13], which evaluates how well the generated images reflect the text prompts. In TIFA,
questions (e.g., “is there a green backpack?”) for each text prompt are generated by GPT-3.5 [22] and a vision-language
model [16] is used to provide binary or multiple-choice answers. A case is considered incorrect if the TIFA score for any
question regarding object presence or attribute binding is incorrect.

Text embeddings vs. text self-attention maps on prompts with complex sentence structure. To further highlight the
generalizability of using the text self-attention matrix, we extend our analysis to more complex prompts, including those
with relative pronouns (e.g., who, which etc.). Interestingly, Figure A shows that the text self-attention matrix effectively
captures the syntactic role of words like whose, emphasizing the preceding vocabulary (e.g., valley). In contrast to the text
self-attention matrix, the text embedding similarity rarely exhibits this pattern. In addition, Figure B demonstrates the text
self-attention maps for the MSCOCO captions included in TIFA benchmark.

Pixart-α text embedding and text self-attention maps. We apply our method to PixArt-α, which uses T5-XXL (T5) as
its text encoder and DiT as its backbone. Figures C (a) and (b) show that the T5 text encoder exhibits patterns similar to
those of the CLIP text encoder: the text embeddings do not capture word relationships, whereas the text self-attention maps
do—bound tokens tend to have higher attention values compared to unbound ones.

B.2. Experiments details on Section 5

Evaluation metric-CLIP similarity score. Image-text similarity includes two measures: full-prompt similarity, which
evaluates overall alignment with the prompt, and minimum object similarity, defined as the lowest similarity score between
the generated image and the two main subjects in the prompt. Additionally, we use BLIP [17] to generate captions for the
images, comparing the input prompt with these captions using CLIP to assess text-text similarity.

Experiment details in T-SAM on SD. Our method builds upon Stable Diffusion (SD) v1.5 [29]. To enhance processing, we
apply Gaussian smoothing to the cross-attention maps before computing cosine similarity, as discussed in [3]. Additionally,



Figure A. Comparison of text embedding cosine similarity (left) and text self-attention maps (right) on the complex prompt, “A deep blue
river flowed along the valley, whose banks were dotted with wildflowers”. The prompt includes relative pronouns whose.

Table B. CLIP scores over varying α with γ = 4.

α CLIP-T CLIP-I (Full, Min)

5 0.80 0.36, 0.28
10 0.80 0.36, 0.28
15 0.79 0.36, 0.28
20 0.78 0.36, 0.28

Table C. CLIP scores over varying γ with α = 10.

γ CLIP-T CLIP-I (Full, Min)

2 0.81 0.36, 0.28
3 0.80 0.36, 0.28
4 0.80 0.36, 0.28
5 0.80 0.36, 0.28

we renormalize the text self-attention maps, excluding the <BOS> and <EOS> tokens as clarified in Eq.(3). When computing
loss function in Eq.(14), the first row, corresponding to the <BOS> token, is omitted from the computations. Regarding the
prompt datasets, for Objects, we use 66 prompts structured as “[attribute1][object1] and [attribute2][object2]”. For
Animals-Objects, 144 prompts are employed. They are structured in two templates: “[animal] with [object]” and “[animal]
and [attribute][object]”.

Ablation study in SD. A larger α in our optimization process imposes stronger constraints on the latent variable (zt),
enhancing the regularization of cross-attention maps by aligning them more closely with the text self-attention maps. On
the other hand, γ serves as an exponent, amplifying larger values and compressing smaller ones, thereby controlling the
temperature. We conducted a grid search for α within the set {5, 10, 15, 25, 40}, and for γ, we explored values in {2, 3, 4}.
The parameters that maximize the CLIP-full and CLIP-min similarity scores are chosen. Based on the grid search, we
ultimately selected a scale factor of α = 10 and γ = 2 for Objects and Animals-Objects, and α = 40 and γ = 4 for the TIFA
benchmark, achieving the optimal balance between performance and output quality. Table B and Table C show a sensitivity
analysis on Objects prompts.



(a) A couple of cows and some birds flying in the sky.
(b) A small room with a futon couch, a sewing machine on
a table, and a flatscreen TV.

(c) Cow being fed a popsicle by a person over a fence.
(d) Entire front yard is filled with snow while people walk
around.

Figure B. Text self-attention maps power by 3 for the MSCOCO captions included in TIFA benchmark.

Experiment details in T-SAM on Pixart-α. We highlight key differences between the CLIP and T5-XXL text encoders.
Unlike the CLIP encoder, which employs causal attention, T5-XXL uses bidirectional attention. Accordingly, when applying
T-SAM to T5-XXL, we redefine T′ in Equation 2 as T′ = tril((T′ + T′†)/2) to ensure consistency with the CLIP-based
formulation, where tril stands for “lower triangular part” of a matrix. Since PixArt-α is built on the DiT architecture, we
compute the average cross-attention maps from layers 10–18. We set γ = 4 and α = 15, and perform 50 inference steps.
During denoising, we update zt at each step from t = 1 to 25, with 10 iterative updates applied at steps 0, 10, and 20. For a
fair comparison, we also use 50 inference steps for the original PixArt-α experiments.

Qualitative comparison between T-SAM and Pixart-α. Figure D demonstrates the effectiveness of T-SAM on PixArt-α
using structured templates (Objects and Animals-Objects). These results show that extracting syntactic information from text
self-attention maps offers an effective way to improve semantic alignment in PixArt-α.

User study. The user study result in Table D show that T-SAM on SD outperforms LB and achieves performance com-
parable to CONFORM. Note that LB and CONFORM rely on external information. Additionally, Table E shows T-SAM on
PixArt-α surpasses the base PixArt-α model.



Figure C. Analysis of the PixArt-α text encoder. The text embeddings do not capture word relationships, whereas the text self-attention
maps do. Left: The distributions of text embedding similarity between bound tokens and unbound tokens. Right: The distributions of text
self-attention value for bound tokens and unbound tokens.
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Figure D. Qualitative comparison between T-SAM (ours) and PixArt-α.

Table D. Results from a user survey with 22 respondents. SD is used as the base model.

Comparison Ours Wins (%) Ours Loses (%) Tie (%)

Ours vs. LB 27.4 12.9 59.7
Ours vs. CONFORM 12.6 14.6 72.7

Table E. Results from a user survey with 25 respondents. Pixart-α is used as the base model.

Comparison Ours Wins (%) Ours Loses (%) Tie (%)

Ours vs. PixArt-α 25.0 18.7 56.3
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