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A. More Details of Methods

A.1. Details of Vector Extractor
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Figure 1. Detailed structure of Vector Extractor (E). The simple
representation of E is presented in Fig. 3 of the main paper.

The detailed structure of the Vector Extractor E in Fig.3
of the main paper is depicted in Fig. 1 and Eq. 1, which ex-
tracts an compact vector representation v ∈ R1×D from two
inputs: IPAN and ILR

MS. E leverages a pretrained lightweight
prior network P that takes IPAN and ILR

MS as inputs to gen-
erate a prior HRMS Ĩ

HR
MS and a prior uncertainty map θ̃.

These outputs, Ĩ
HR
MS and θ̃, are then processed through mul-

tiple ResBlocks, followed by average pooling and a linear
layer, to produce the final compact vector representation v.

[
θ̃ | ĨHR

MS

]
= P

(
IPAN, ILR

MS

)
,

v = Linear
(
AvgPool

(
ResBlockn

([
θ̃ | ĨHR

MS

])))
.

(1)

where θ̃ denotes prior uncertainty map and Ĩ
HR
MS is prior

HRMS obtained from prior network P . The compact vec-
tor representation v not only encapsulates the combined in-
formation from IPAN and ILR

MS, but also integrates the uncer-
tainty information θ̃ derived from the prior network P . This
representation is subsequently used as a conditioning input
to the Feed Forward Attention (FFA) block in the encoder
blocks of FSA-T.
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Figure 2. Detailed structure of Fourier Transform Channel Atten-
tion (FTCA) block. The simple representation of FTCA is pre-
sented in Fig. 3 of the main paper.

A.2. Fourier Transform Channel Attention (FTCA)
The detailed structure of FTCA in Fig. 3 of the main pa-
per is depicted in Fig. 2, which is designed to enhance fre-
quency domain features by applying the Discrete Fourier
Transform (DFT) to feature maps, allowing self-attention
to be performed more effectively in the frequency domain.
As shown in Fig. 2, the input feature map is first trans-
formed from the time domain to the frequency domain us-
ing 2D DFT. The real and imaginary parts of the 2D DFT
feature map are then processed separately using channel at-
tention. After applying channel attention to both real and
imaginary parts, the Inverse Fourier Transform is applied
to bring the features back into the time domain, producing
the enhanced output. This transform-domain self attention
facilitates more effective computations of frequency com-
ponents to selectively emphasize. This process ensures that
high-quality frequency information be effectively captured
and utilized, resulting in enhanced feature representation
and improved model performance.

A.3. Stationary Wavelet Transform Cross Attention
(SWTCA)

Following the approach of ResDiff [13], WaveDiff [11], and
WINet [19], the SWTCA in Fig. 3 of the main paper is de-
tailed in Fig. 3, which utilizes wavelet components of PAN
and MS images decomposed using the Stationary Wavelet
Transform (SWT). The SWTCA block is designed to in-
ject additional frequency information into the features fn
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Figure 3. Detailed structure of our Stationary Wavelet Transform
Cross Attention (SWTCA) block. The simple representation of
SWTCA is presented in Fig. 3 of the main paper.

enhanced by the preceding FTCA. It selectively incorpo-
rates useful frequency components derived from the IPAN
and ILR

MS using the SWT while maintaining shift invariance
as conditions for our Diffusion Model Ψ . The outputs of
SWT for IPAN and ILR

MS are constructed respectively as fol-
lows:

S(IPAN) = [LPAN | HPAN | VPAN | DPAN] ,

S(ILR
MS) =

[
LLR

MS | HLR
MS | VLR

MS | DLR
MS

]
,

(2)

where L represent the low-frequency approximation com-
ponents, while H, V, D denote the high-frequency horizon-
tal, vertical, and diagonal details, respectively. Since IPAN
provides highly detailed texture from its high spatial resolu-
tion but lacks spectral information, only its high-frequency
components, which include HPAN, VPAN and DPAN, are
used. Conversely, LLR

MS from ILR
MS contains richer spectral in-

formation. So, these components are concatenated channel-
wise to form S-Cond that is the condition to be inputted to
Ψ. S-Cond is then constructed as follows:

S-Cond =
[
LLR

MS | HPAN | VPAN | DPAN
]
. (3)

Note that the construction of this kind condition is
motivated from the traditional MRA(Multi-Resolution
Analysis)-based [1, 10, 22] PAN-sharpening methods that
have utilized high-frequency Wavelet components of IPAN
and low-frequency Wavelet components of ILR

MS. To inject
S-Cond into the feature fn obtained from FTCA at the n-th
decoder block, we employ a two-stage cross-attention pro-
cess. In the first stage, Q1 and K1 are derived from S-Cond,
directing attention toward important frequency components,
while V1 is derived from fn. The resulting intermediate fea-
ture f1n ∈ RC×h×w is given as:

[Q1 | K1] = Conv(S-Cond), V1 = Conv(fn),

f1n = SoftMax
(
Q1K

T
1 /
√
C
)
V1,

(4)

where Q1, K1, V1 ∈ RC×hw are a Query, a Key and a
Value, respectively. The Q1, K1 and V1 are reshaped to

C × hw for channel attention. In the second stage, Q2 is
derived from the intermediate feature f1n, while K2 and V2

come from S-Cond, enabling the model to refine the cor-
relation between the reconstructed feature fn and the fre-
quency components in S-Cond. This stage yields the final
feature fn ∈ RC×h×w after reshaping Q2, K2 and V2 into
C × hw for channel attention, which is given as follows:

Q2 = Conv(f1n), [K2 | V2] = Conv(S-Cond),

fn ← SoftMax
(
Q2K

T
2 /
√
C
)
V2.

(5)

The first cross-attention block in Fig. 3 uses both Query and
Key mappings from S-Cond, focusing the attention map
purely on S-Cond information, and aiding in concentrating
on the significant channels of the feature fn. The second
cross-attention block in Fig. 3 uses Query from the inter-
mediate feature f1n and Key from S-Cond, learning the cor-
relation between the reconstructed feature f1n and the mean-
ingful frequency information in IPAN and ILR

MS. This block
helps emphasizing significant frequency components within
S-Cond.

A.4. Student network FSA-S (ψ) architecture
The student model, denoted as FSA-S ψ, is a diffusion-
based model designed with the same number of encoder
and decoder blocks as FSA-T Ψ. Each block consists solely
of ResBlocks, and unlike the teacher Ψ, the FSA-S oper-
ates without any additional conditional inputs. As shown in
Fig. 2, the lightweight FSA-S ψ predicts denoised image
X̃0 from input Xt at timestep t as:

X̃0 = ψ
([
Xt | IPAN | ILR

MS

]
; t
)
. (6)

B. Stationary Wavelet Transform compared to
Discrete Wavelet Transform

Discrete Wavelet transforms have been widely used in im-
age processing and PAN-sharpening tasks due to their abil-
ity to analyze signals across multiple resolutions. Dis-
crete Wavelet Transform (DWT) decomposes signals into
low-frequency (approximation) and high-frequency (detail)
components at each level. Although DWT has proven to be
effective in numerous applications, it suffers from shift vari-
ance due to its inherent downsampling operation at each de-
composition level. To address this limitation, the Stationary
Wavelet Transform (SWT) was introduced. Unlike DWT,
SWT omits the downsampling step, ensuring that the signal
size remains constant across all levels. This design enables
SWT to maintain shift invariance, meaning that minor shifts
in the input signal do not affect the transformation results.
This property makes SWT highly advantageous in applica-
tions such as PAN-sharpening, where maintaining consis-
tency in transformed results is crucial. Specifically, SWT
ensures that the wavelet coefficients remain stable even
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Figure 4. Detailed structure of FSA-S ψ.

when the input signal undergoes small translations, leading
to more robust performance in PAN-sharpening tasks. In
addition, SWT allows for higher resolution analysis across
all levels, as the image or signal is not downsampled during
the transformation. Compared to DWT that inherently re-
duces the image resolutions at each level, SWT retains the
original resolution, making it more suitable for tasks that
require detailed frequency information.

B.1. SWT condition versus DWT condition

GF2 Dataset (Reduced-Resolution)
Condition SAM↓ ERGAS↓ SCC↑ Q4↑

DWT 0.646 ± 0.117 0.567 ± 0.095 0.993 ± 0.002 0.987 ± 0.007
SWT 0.603 ± 0.102 0.537 ± 0.077 0.994 ± 0.001 0.988 ± 0.006

Table 1. Comparison of results between DWT and SWT condi-
tioning at the SWTCA block in FSA-T Ψ, with the best values
highlighted in red.

Table. 1 represents the performance differences between
DWT and SWT for the S-Cond in Eq. 3 as the conditioning
input to the SWTCA block in FSA-T Ψ. The SWT-based
S-Cond outperforms the DWT-based one across all met-
rics. The results in Table. 1 highlight that SWT achieves
lower SAM and ERGAS values, as well as higher SCC
and Q4 scores, indicating its superior performance in PAN-
sharpening tasks. This improvement underscores the ad-
vantages of shift invariance and resolution preservation pro-
vided by SWT.

C. Uncertainty Estimation
Uncertainty estimation has been an important topic of re-
search in deep learning. Several works [2, 7, 12, 14]
have incorporated uncertainty into regression problems. A
Bayesian deep learning framework was proposed to enable

its application to per-pixel computer vision tasks. Similarly,
some other works [3, 6, 12] explored the role of data un-
certainty by modeling both the mean and variance of the
predictions. Uncertainty-based loss function of those works
can be represented as:

L =
1

N

N∑
i=1

∥xi − f(yi)∥2
2σ2

i

+
1

2
lnσ2

i (7)

where N denotes total number of input samples, xi is a tar-
get label, yi is an input, f(yi) and σ2

i denote the learned
mean and variance, respectively. Recent studies [9, 12] have
continued to explore uncertainty estimation in deep learn-
ing, particularly in a task requiring high accuracy such as
image super-resolution [9]. These approaches have demon-
strated that such uncertainty-based losses that utilize uncer-
tainty terms can achieve better results than mean square er-
ror (MSE) and mean absolute error (MAE) losses. Inspired
by this work, we formulated our LU-Diff as:

LU-Diff =

∥∥∥∥ 1

2θ̂
⊙

∣∣∣X̂0 −X0

∣∣∣+ 1

2
log θ̂

∥∥∥∥
1

, (8)

where X̂0 is a predicted residual, X0 is a target, and θ̂
serves as the estimated variance term and is regarded as
the uncertainty map in our framework. In PAN-sharpening
tasks, the regions with high uncertainty, such as com-
plex textures and edges, are visually more significant than
smooth areas. By prioritizing these regions, uncertainty-
aware models can handle complex image details more ef-
fectively, potentially leading to improved PAN-sharpening
performance in our U-Know-DiffPAN framework.

D. Additional Results
Table 2 presents the results of our proposed models, FSA-T
and FSA-S, compared with all baseline models on the WV3,



WV3 Reduced-Resolution Full-Resolution
Model PSNR↑ SSIM↑ SAM↓ ERGAS↓ SCC↑ Q8↑ Dλ↓ Ds↓ HQNR↑

PanNet[17] 36.148 ± 1.958 0.966 ± 0.011 3.402 ± 0.672 2.538 ± 0.597 0.979 ± 0.006 0.913 ± 0.087 0.035 ± 0.014 0.049 ± 0.019 0.918 ± 0.031
MSDCNN[18] 36.329 ± 1.748 0.967 ± 0.010 3.300 ± 0.654 2.489 ± 0.620 0.979 ± 0.007 0.914 ± 0.087 0.028 ± 0.013 0.050 ± 0.020 0.924 ± 0.030
FusionNet[15] 36.569 ± 1.666 0.968 ± 0.009 3.188 ± 0.628 2.428 ± 0.621 0.981 ± 0.007 0.916 ± 0.087 0.029 ± 0.011 0.053 ± 0.021 0.920 ± 0.030

LAGNet[5] 36.732 ± 1.723 0.970 ± 0.009 3.153 ± 0.608 2.380 ± 0.617 0.981 ± 0.007 0.916 ± 0.087 0.033 ± 0.012 0.055 ± 0.023 0.915 ± 0.033
S2DBPN[20] 37.216 ± 1.888 0.972 ± 0.009 3.019 ± 0.588 2.245 ± 0.541 0.985 ± 0.005 0.917 ± 0.091 0.025 ± 0.010 0.030 ± 0.010 0.946 ± 0.018
DCPNet[21] 37.009 ± 1.735 0.972 ± 0.008 3.083 ± 0.537 2.301 ± 0.569 0.984 ± 0.005 0.915 ± 0.092 0.043 ± 0.018 0.036 ± 0.012 0.923 ± 0.027
CANConv[4] 37.441 ± 1.788 0.973 ± 0.008 2.927 ± 0.536 2.163 ± 0.481 0.985 ± 0.005 0.918 ± 0.082 0.020 ± 0.008 0.030 ± 0.008 0.951 ± 0.013

PanDiff[8] 37.029 ± 1.796 0.971 ± 0.008 3.058 ± 0.567 2.276 ± 0.545 0.984 ± 0.004 0.913 ± 0.084 0.014 ± 0.005 0.034 ± 0.005 0.952 ± 0.009
TMDiff[16] 37.477 ± 1.923 0.973 ± 0.008 2.885 ± 0.549 2.151 ± 0.458 0.986 ± 0.004 0.915 ± 0.086 0.018 ± 0.007 0.059 ± 0.009 0.924 ± 0.015

FSA-T 37.894 ± 1.820 0.976 ± 0.007 2.801 ± 0.517 2.055 ± 0.463 0.987 ± 0.003 0.921 ± 0.083 0.014 ± 0.005 0.032 ± 0.003 0.954 ± 0.006
FSA-S 37.930 ± 1.824 0.976 ± 0.007 2.797 ± 0.526 2.046 ± 0.454 0.988 ± 0.003 0.922 ± 0.083 0.016 ± 0.006 0.029 ± 0.003 0.955 ± 0.008

QB Reduced-Resolution Full-Resolution
Model PSNR↑ SSIM↑ SAM↓ ERGAS↓ SCC↑ Q4↑ Dλ↓ Ds↓ HQNR↑

PanNet[17] 35.563 ± 1.930 0.939 ± 0.012 5.273 ± 0.946 4.856 ± 0.590 0.966 ± 0.015 0.911 ± 0.094 0.063 ± 0.019 0.092 ± 0.021 0.851 ± 0.035
MSDCNN[18] 37.040 ± 1.778 0.954 ± 0.007 4.828 ± 0.824 4.074 ± 0.244 0.977 ± 0.010 0.925 ± 0.098 0.058 ± 0.014 0.058 ± 0.027 0.888 ± 0.037
FusionNet[15] 36.821 ± 1.765 0.952 ± 0.007 4.892 ± 0.822 4.183 ± 0.266 0.975 ± 0.011 0.923 ± 0.100 0.074 ± 0.022 0.079 ± 0.025 0.853 ± 0.041

LAGNet[5] 37.565 ± 1.721 0.958 ± 0.006 4.682 ± 0.785 3.845 ± 0.323 0.980 ± 0.009 0.930 ± 0.095 0.075 ± 0.019 0.035 ± 0.009 0.892 ± 0.024
S2DBPN[20] 37.314 ± 1.782 0.956 ± 0.006 4.849 ± 0.822 3.956 ± 0.291 0.980 ± 0.008 0.928 ± 0.093 0.059 ± 0.026 0.036 ± 0.023 0.908 ± 0.044
DCPNet[21] 38.079 ± 1.454 0.963 ± 0.004 4.420 ± 0.710 3.618 ± 0.313 0.983 ± 0.010 0.935 ± 0.095 0.051 ± 0.017 0.073 ± 0.013 0.880 ± 0.013
CANConv[4] 37.795 ± 1.801 0.960 ± 0.006 4.554 ± 0.788 3.740 ± 0.304 0.982 ± 0.007 0.935 ± 0.087 0.039 ± 0.012 0.070 ± 0.017 0.893 ± 0.010

PanDiff[8] 37.842 ± 1.721 0.959 ± 0.006 4.611 ± 0.768 3.723 ± 0.280 0.982 ± 0.007 0.935 ± 0.084 0.028 ± 0.011 0.055 ± 0.012 0.919 ± 0.010
TMDiff[16] 37.642 ± 1.831 0.958 ± 0.006 4.627 ± 0.814 3.804 ± 0.279 0.981 ± 0.008 0.930 ± 0.096 0.034 ± 0.016 0.068 ± 0.012 0.901 ± 0.011

FSA-T 38.343 ± 1.718 0.964 ± 0.005 4.349 ± 0.723 3.502 ± 0.272 0.985 ± 0.007 0.938 ± 0.089 0.036 ± 0.018 0.031 ± 0.014 0.934 ± 0.029
FSA-S 38.361 ± 1.709 0.964 ± 0.005 4.337 ± 0.733 3.500 ± 0.272 0.984 ± 0.007 0.938 ± 0.090 0.035 ± 0.011 0.035 ± 0.021 0.931 ± 0.029
GF2 Reduced-Resolution Full-Resolution

Model PSNR↑ SSIM↑ SAM↓ ERGAS↓ SCC↑ Q4↑ Dλ↓ Ds↓ HQNR↑
PanNet[17] 39.197 ± 2.009 0.959 ± 0.011 1.050 ± 0.209 1.038 ± 0.214 0.975 ± 0.006 0.963 ± 0.009 0.020 ± 0.012 0.052 ± 0.009 0.929 ± 0.013

MSDCNN[18] 40.730 ± 1.564 0.971 ± 0.006 0.946 ± 0.166 0.862 ± 0.141 0.983 ± 0.003 0.972 ± 0.009 0.026 ± 0.014 0.079 ± 0.011 0.898 ± 0.016
FusionNet[15] 39.866 ± 1.955 0.966 ± 0.009 0.971 ± 0.195 0.960 ± 0.193 0.980 ± 0.005 0.967 ± 0.008 0.034 ± 0.013 0.105 ± 0.013 0.865 ± 0.018

LAGNet[5] 41.147 ± 1.384 0.974 ± 0.005 0.886 ± 0.140 0.816 ± 0.121 0.985 ± 0.003 0.974 ± 0.009 0.030 ± 0.014 0.078 ± 0.013 0.895 ± 0.021
S2DBPN[20] 42.686 ± 1.676 0.980 ± 0.005 0.772 ± 0.149 0.686 ± 0.125 0.990 ± 0.002 0.981 ± 0.007 0.020 ± 0.012 0.046 ± 0.007 0.935 ± 0.011
DCPNet[21] 42.312 ± 1.682 0.979 ± 0.005 0.806 ± 0.153 0.724 ± 0.138 0.988 ± 0.003 0.980 ± 0.007 0.024 ± 0.022 0.024 ± 0.008 0.953 ± 0.019
CANConv[4] 43.166 ± 1.705 0.982 ± 0.004 0.722 ± 0.138 0.653 ± 0.124 0.991 ± 0.002 0.983 ± 0.006 0.019 ± 0.010 0.063 ± 0.009 0.919 ± 0.011

PanDiff[8] 42.827 ± 1.462 0.980 ± 0.005 0.767 ± 0.134 0.674 ± 0.110 0.990 ± 0.002 0.981 ± 0.007 0.020 ± 0.014 0.045 ± 0.009 0.936 ± 0.011
TMDiff[16] 41.896 ± 1.765 0.977 ± 0.005 0.764 ± 0.155 0.754 ± 0.143 0.988 ± 0.003 0.979 ± 0.007 0.029 ± 0.011 0.030 ± 0.010 0.942 ± 0.016

FSA-T 44.757 ± 1.359 0.988 ± 0.003 0.603 ± 0.102 0.537 ± 0.077 0.994 ± 0.001 0.988 ± 0.006 0.017 ± 0.010 0.030 ± 0.008 0.953 ± 0.013
FSA-S 44.585 ± 1.521 0.986 ± 0.003 0.624 ± 0.109 0.548 ± 0.091 0.993 ± 0.001 0.987 ± 0.007 0.018 ± 0.011 0.037 ± 0.007 0.944 ± 0.012

Table 2. Additional PAN-sharpening results by our U-Know-DiffPAN and other SOTA methods for the WV3, QB, and GF2 dataset. The
best (second best) performance in each block is highlighted in bold red (underlined in blue).

QB, and GF2 datasets. The evaluation includes Reduced-
Resolution (RR), Full-Resolution (FR), and standard devi-
ation. Fig. 5 to 10 illustrate the qualitative results for the
WV3, QB, and GF2 datasets in both Reduced-Resolution
and Full-Resolution settings. For the RR results, we visu-
alize the RGB outputs, along with the difference between
the output HRMS Î

HR
MS and the ground truth IHR

MS using error
maps and their corresponding mean absolute error (MAE)
values. For the FR results, we showcase visual compar-
isons with the latest state-of-the-art methods. From the vi-
sual comparisons, we observe that our U-Know-DiffPAN
framework significantly enhances restoration qualities, par-
ticularly in the regions with high-frequency contents, high
uncertainty, and complex textures, such as edges and small
objects. In RR scenarios, these regions exhibit a closer re-
semblance to their ground truths, compared to the previous
methods. Even in FR scenarios where ground truth is un-
available, our U-Know-DiffPAN framework produces more
detailed and robust results, demonstrating superior struc-
tural and spectral fidelity in high-uncertainty regions. This
highlights the capability of our U-Know-DiffPAN to outper-

form state-of-the-art models in both qualitative and quanti-
tative aspects.
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Figure 5. PAN-sharpening results for the WV3 dataset under reduced resolution (RR) scenarios. The first row depicts the output HRMS
images, while the second row highlights the Error Map between the output HRMS and the corresponding ground truth images.The Mean
Absolute Error (MAE) values are presented alongside the Error Map. Zoom in for better visualization.
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Figure 6. PAN-sharpening results for the QB dataset under reduced resolution (RR) scenarios. The first row depicts the output HRMS
images, while the second row highlights the Error Map between the output HRMS and the corresponding ground truth images. The Mean
Absolute Error (MAE) values are presented alongside the Error Map. Zoom in for better visualization.
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Figure 7. PAN-sharpening results for the GF2 dataset under reduced resolution (RR) scenarios. The first row depicts the output HRMS
images, while the second row highlights the Error Map between the output HRMS and the corresponding ground truth images. The Mean
Absolute Error (MAE) values are presented alongside the Error Map. Zoom in for better visualization.
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Figure 8. PAN-sharpening results for the WV3 dataset under full resolution (FR) scenarios. The first row depicts the output HRMS images.
Zoom in for better visualization.
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Figure 9. PAN-sharpening results for the QB dataset under full resolution (FR) scenarios. The first row depicts the output HRMS images.
Zoom in for better visualization.
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Figure 10. PAN-sharpening results for the GF2 dataset under full resolution (FR) scenarios. The first row depicts the output HRMS images.
Zoom in for better visualization.



References
[1] Bruno Aiazzi, Luciano Alparone, Stefano Baronti, Andrea

Garzelli, and Massimo Selva. Mtf-tailored multiscale fusion
of high-resolution ms and pan imagery. Photogrammetric
Engineering & Remote Sensing, 72(5):591–596, 2006. 2

[2] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov,
and Dmitry Vetrov. Pitfalls of in-domain uncertainty es-
timation and ensembling in deep learning. arXiv preprint
arXiv:2002.06470, 2020. 3

[3] Jie Chang, Zhonghao Lan, Changmao Cheng, and Yichen
Wei. Data uncertainty learning in face recognition. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 5710–5719, 2020. 3

[4] Yule Duan, Xiao Wu, Haoyu Deng, and Liang-Jian Deng.
Content-adaptive non-local convolution for remote sensing
pansharpening. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 27738–
27747, 2024. 4

[5] Zi-Rong Jin, Tian-Jing Zhang, Tai-Xiang Jiang, Gemine
Vivone, and Liang-Jian Deng. Lagconv: Local-context adap-
tive convolution kernels with global harmonic bias for pan-
sharpening. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, pages 1113–1121, 2022. 4

[6] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? Advances in
neural information processing systems, 30, 2017. 3

[7] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty estima-
tion using deep ensembles. Advances in neural information
processing systems, 30, 2017. 3

[8] Qingyan Meng, Wenxu Shi, Sijia Li, and Linlin Zhang. Pan-
diff: A novel pansharpening method based on denoising
diffusion probabilistic model. IEEE Transactions on Geo-
science and Remote Sensing, 61:1–17, 2023. 4

[9] Qian Ning, Weisheng Dong, Xin Li, Jinjian Wu, and Guang-
ming Shi. Uncertainty-driven loss for single image super-
resolution. Advances in Neural Information Processing Sys-
tems, 34:16398–16409, 2021. 3

[10] Xavier Otazu, Marı́a González-Audı́cana, Octavi Fors, and
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