PS-EIP: Robust Photometric Stereo Based on Event Interval Profile

Supplementary Material

Kazuma Kitazawa' Takahito Aoto?

'University of Tsukuba

In this supplementary material, we provide implementa-
tion details and important results that couldn’t be included
in the main manuscript due to space constrains.

9. Details of Data Acquisition

In Sec. 5, we discuss the implementation and calibration of
the prototype system. In this section, we provide additional
details about the implementation process.

9.1. Bias Setting for Event Camera

The current event cameras generally offer a range of ad-
justable settings that enable tuning the sensor performance
to meet various application requirements and conditions,
such as higher speed, lower background activity, and a
higher contrast sensitivity threshold. These customizable
sensor settings are referred to as bias setting.

The event camera used in this paper (Prophesee EVK
Gen4) has five biases: positive and negative thresholds, low-
pass and high-pass filters, and dead time. The biases for
the positive and negative thresholds literally determine the
thresholds h,, and h,,, respectively. In the proposed method,
it is preferable for these biases to be as small as possible.
However, decreasing the bias for the threshold tends to in-
crease the deviation of the statistical threshold. Refer to
Fig. 6 in [34]. The bias for low-pass filter determines the
maximum rate of change in intensity that can be detected.
In the prototype system, we adjust this bias to ensure that
no events derived from the PWM, which is used to control
LEDs, are detected. The bias for high-pass filter determines
the minimum rate of change in intensity. In the prototype
system, we set this bias as small as possible to cover all fre-
quencies. The bias for dead time determines the duration
during which a pixel is unable to detect a new event after
each event. In the proposed method, we prefer this bias to
be small; however, a minimal dead time bias may result in
an increased number of events exceeding the event record-
ing rate. In the proposed problem, the spatio-temporal den-
sity of events is relatively high, compared to other appli-
cations, such as object tracking. Thus, we adjust this bias
as small as possible to ensure that the profile reconstruction

Table 1. Bias setting.

Bias Positive Negative ~ Low-pass  High-pass Dead
threshold  threshold filter filter time
Default 112 52 23 48 45
Ours 99 57 20 0 50
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does not collapse. Finally, we show the biases used in the
experiments in Tab. 1, along with the default biases.

9.2. Calibration Process

In the calibration process, intrinsic parameters of the event
camera is also estimated to remove lens distortion, similar
to conventional cameras. After calibrating the event thresh-
olds for all pixels, the intrinsic parameters are estimated
from 10 poses of an ArUco board under all the LEDs mod-
ulated by a triangular wave. Similar to the light trajectory
calibration, event accumulation images are reconstructed to
facilitate the camera calibration process.

As mentioned in the main manuscript, we apply Santo’s
method [50] to estimate the positions of LEDs. Here, we
provide an example of the pin shadow detection in Fig. 10.
It is important to note that the offset light should be zero to
detect any pattern based on albedos in an event accumula-
tion image.

9.3. Effect of the Offset Light

In the main manuscript, we demonstrate how the offset light
can reduce the albedo dependency in the event-generating
mechanism of the prototype system. Here, we present pixel
values in the event accumulation images for different color
chips, as shown in Fig. 11. The pixel value indicates the
number of recorded events. A small offset results in the
number of events being strongly influenced by the albedos
of the color chips, as depicted in the blue plot. Conversely,
with a sufficiently large offset, the number of events be-

Figure 10. An example of the pattern detection in the calibration.
(a) Event accumulation image. (b) ArUco detection. (c) Pins’
shadows detection.
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Figure 11. Effect of the offset light. The number of events with a
larger offset is relatively equal for different color chips.



comes relatively equal for all the color chips, as shown in
the orange plot, albeit with a decrease in the number of
events for darker chips.

In our experiments, the offset light intensity was empir-
ically set to approximately 24 % of the main light. While
there is no theoretical optimal value due to device-specific
properties, a rigorous calibration could be performed using
a color chart, ensuring stable event generation irrespective
of surface albedo.

9.4. Linear Interpolation of Reconstructed EIP

Events occur when changes in intensity exceed a threshold,
meaning the samples used for EIP reconstruction are not
evenly spaced along the time axis. This results in a tempo-
ral distribution bias during fitting with the theoretical EIP,
making the outcome overly dependent on specific samples
rather than the overall shape of curve. Additionally, when
capturing events over multiple lighting cycles, the sampling
timing is not always consistent, leading to complications
when integrating results across cycles. To address these is-
sues, we adopted a simple interpolation approach.

Specifically, we reconstructed a continuous EIP from
sparse samples using the interpolation, then resampled it at
predefined, evenly spaced time intervals to compare these
points with the theoretical EIP. In our setup, the intervals
between two consecutive events are generally small enough
that the segment of the profile between them can be rea-
sonably approximated as a linear function. This assumption
simplifies the interpolation process, enabling to model each
segment using a linear function. From this continuous rep-
resentation, we uniformly sampled EIP values.

9.5. Examples of Reconstructed EIP

Here, we show some examples of the actual reconstructed
EIPs obtained by our prototype system with Diffuse to vi-
sually demonstrate the actual shapes of the profiles. In
Fig. 12a, we show both the reconstructed and theoretical
EIPs at four surface points with varying azimuth angles,
while keeping their zenith angles constant. The EIPs have
similar overall shapes, but their phases are shifted accord-
ing to the azimuth angles. In contrast, Fig. 12b shows the
reconstructed and theoretical EIPs at four different points
with varying zenith angles, while keeping azimuth angles
constant. In this case, the amplitudes of the profiles vary
depending on the zenith angles.

9.6. Details of the Optimization Process

The proposed method employs a multi-stage approach. Ini-
tially, optimization is performed without considering out-
liers such as shadows and specular reflections. Then, the
presence of outliers is assessed, and a mask is generated ac-
cordingly for re-optimization. The process of the surface
normal recovery is illustrated in Fig. 13. Initially, the mask

for collapsed events is applied to all surface points. If the
minimized cost exceeds a threshold, ¢, the profile on that
point may contain non-Lambertian effects. For instance,
maps of costs after the first minimization are shown in the
first column of Fig. 14 when targeting Glossy and Pole. The
recovered normal maps without the second mask process
exhibit significant errors in surface points affected by the
non-Lambertian effects.

In the second mask process, the mask selection is de-
termined based on the temporal distance between the top
and bottom peaks, denoted as |t; — t;|. For specular high-
lights, the temporal distance is typically very short, while
cast shadows tend to have a relatively longer temporal effect
on the surface point. Therefore, if the temporal distance ex-
ceeds a threshold, t4;, the mask for cast shadows is applied;
otherwise, the mask for specularity is used.

We generate a single mask per outlier segment, regard-
less of the number of outlier types (e.g., multiple cast shad-
ows, as 2Poles in Fig. 16). Empirically, multiple masks
often reduce inlier observations, causing optimization insta-
bility. In future work, we will explore more robust methods,
such as L1 loss or low-rank priors, to handle multiple out-
liers simultaneously.

9.7. Time Consumption

Though not our top priority, computational speed remains
important. Our current implementation has larger time con-
sumption compared to EventPS in terms of measurements
and inferences.

The total measurement time is determined by the time for
the light source rotation and the number of measurements,
which can be reduced as suggested in Fig. 6e and Fig. 5b,
respectively. If future event cameras demonstrate improved
fidelity to the event model, it would become possible to
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Figure 12. Shapes of the EIPs at various surface points. From left
to right: surface points on Diffuse’s Al, reconstructed EIPs for
each point, and theoretical EIPs (reference). (a) Different azimuth
angles under the identical zenith angle. (b) Different zenith angles
under the identical azimuth angle.
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Figure 13. Process of the cost minimization.
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Figure 14. Effect of the second mask process. From left to right:
cost map, recovered normal map, and angular error map at the

first minimization, and normal map and angular error map at the
second minimization.
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achieve a higher rotation frequency and require fewer mea-
surements.

The long inference time is due to the complexity of our
pipeline. Algorithmically, the full pipeline (i.e., EIP recon-
struction, mask generation, and surface normal optimiza-
tion) performs at 0.07 fps. This is slower than EventPS-
FCN (2 fps) but comparable to the pixel-based EventPS-
CNN (0.1 fps). Notably, our method runs on a CPU, while
the others use GPU-based implementations, suggesting that
GPU parallelization could significantly boost performance.

10. Additional Experiments
10.1. Mask Margin for Non-Lambertian Effects

In the second mask process, the margins of the masks re-
lated to specularity and cast shadows are considerable to
enhance performance. Here, we analyze the performance
of the proposed method in relation to these margins.

For Glossy, we analyze the MAE for varying margins,
Atg, as shown in Fig. 15a. The margin for specularity is
changed in a range of 8 to 30 % of the entire cycle. A small
margin may allow specular lobes to still influence the pro-
file, while a larger margin reduces the regions used for the
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Figure 15. Analysis on the margins of masks. (a) Mean angular
error with respect to different Ats. (b) Mean angular error with
respect to different At..

cost minimization. In our prototype system, a margin of
14 % is identified as optimal for Ats. Similarly, we ana-
lyze the margin for cast shadows, At., for Pole, as shown
in Fig. 15b. In this case, a 20 % margin is found to be opti-
mal for At.. However, since these findings are only based
on Glossy and Pole, it is crucial to conduct further analysis
of the margins using various objects with different types of
specular characteristics and more complex shapes to ensure
robustness. This aspect will be addressed in future work.

10.2. EventPS with Our Mask Mechanism

We evaluated the impact only on the removal of outlier
regions by applying EventPS-FCN to event data (Diffuse,
Glossy, Pole) masked by our method. Fig. 16 shows im-
provements over Fig. 7, particularly in shadowed regions
near edges and areas with specularities and cast shadows.
However, the mean angular error (MAE) increased: Dif-
fuse: 7.96° — 12.57°, Glossy: 10.12° — 12.41°, Pole:
12.02° — 14.78°. This suggests that while filtering en-
hances robustness in non-Lambertian regions, it may reduce
informative inliers, highlighting the need to refine the mask
mechanism. The results also affirm PS-EIP’s superiority
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Figure 16. Quantitative evaluation of EventPS-FCN [67] with

events filtered by our masks. From left to right: applied mask

labels, recovered normal map, and its angular error map.

10.3. Additional Quantitative Comparisons

We additionally targeted 10 more 3D printed objects with
different shapes and reflectances. The experimental results
are shown in Fig. 17. Glossy2C is pained with two different
colors and then given a glossy top coat. The MAE remains
low, comparable to the case without the top coat, Colors.
DiffuseYR and DiffuseBG are 3-color spheres with differ-
ent colors. Recovering normals for blue and green surfaces
is more difficult compared to yellow and red surfaces. This
difficulty may arise due to the lower radiance of these sur-
faces and the spectral sensitivity characteristics of the event



camera. Despite SemiGlossy having wider specular lobes
than Glossy, the mask for specularity functions effectively.
RefsBunny contains two-color surfaces, and its top half is
glossy. The MAE is quite comparable to the gray, diffuse
case of Bunny.

2Poles poses a challenge as certain regions contain cast
shadows from two distinct parts. The current mask for cast
shadows assumes shadows derived from a single part in the
scene. In future work, addressing such complex shapes will
be a focus. Black is also challenging to recover, much like
conventional photometric stereo methods. As mentioned
earlier, the principle does not work well when the radiance
is low due to the log-amp characteristics.

10.4. Additional Qualitative Comparisons

Finally, we evaluate the proposed method on 12 more prac-
tical objects are targeted for qualitative assessment. The
experimental results are shown in Fig. 18. The fine surface
structures of objects such as Owl, CactusB, and CactusC
are successfully recovered. Most of the practical objects
exhibit specularity on their surface. For instance, WDogA
and WDogB are pottery objects with strong specularity, yet
their normal maps appear well-recovered. Bear also has
specularity with a wider lobe. It seems that the texture col-
ors do not significantly affect the normal map, but the im-
pact of specularity remains noticeable. This discrepancy
might be due to the mask margin not aligning well with
this particular case, suggesting a need for adjustment tai-
lored to the target. Additionally, Panda, being a rubber ob-
ject, exhibits subsurface scattering, presenting a challenging
non-Lambertian effect that warrants consideration in future
work.

Since the ground truth shapes of these practical objects
are unknown, we conduct a visual evaluation of depth struc-
tures reconstructed from the normal maps. Therefore, in
this paper, we employ a state-of-the-art method for re-
constructing depth from a normal map, as proposed by
Cao et al. [7]. The code is accessible on GitHub !. Upon
inputting the recovered normal map, its spatial foreground
mask image, and the camera intrinsics, a depth structure
is generated as polygons (PLY file). The depth images in
Fig. 18 are rendered from these polygons with a MatCap
(ceramic dark) in Blender [1].

10.5. Extension to non-Lambertian BRDF

Our PS-EIP assumes an event generation model based on
Lambertian diffuse reflection. However, the definition of
EIP itself is more general, allowing for extensions to mod-
els other than Lambertian diffuse reflection (e.g., microfacet
BRDF such as Cook-Torrance). Even if a non-Lambertian
model is employed, the optimization process for EIP can
still be achieved using the same methodology. Although we

Uhttps://github.com/xucao-42/bilateral_normal_integration
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Figure 17. Additional, quantitative evaluation with 3D printed ob-
jects. From left to right: photograph, event accumulation image
from the events, ground truth, normal map recovered by EventPS-
FCN [67] with its angular error map, and those by ours.

have not yet explored this, we plan to examine it in future
work.
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Figure 18. Additional, qualitative evaluation with the practical ob-
jects. From left to right: photograph, event accumulation image

from events, normal map recovered by EventPS-FCN [67] and its
depth [7], and those by ours.



