
A. Appendix

A.1. Additional dataset information

Stimuli within both NSD [1] and NSD-Imagery were dis-
played at 8.4× 8.4 degrees. All fMRI data in the NSD were
collected at ultra-high field (7T) using a whole-brain, 1.8-
mm, 1.6-s, gradient-echo, echo-planar imaging (EPI) pulse
sequence. The fMRI responses are expressed in terms of
“betas” (β; each β is a measure of the amplitude of BOLD
signal evoked by a single image in a single voxel) obtained
from a general linear model (GLM) analysis. Betas indi-
cate BOLD response amplitudes evoked by each stimulus
trial relative to the baseline signal level present during the
absence of a stimulus (gray screen). All reconstruction meth-
ods evaluated in this work were trained using GLMsingle
results provided with the NSD data release, and evaluated
on the GLMsingle preparations of the NSD-Imagery data,
specifically, the 1.8-mm volume preparation of the data and
version 3 of the GLM betas (betas fithrf GLMdenoise RR).

The shared1000 test set—which reconstruction methods
are typically evaluated on—was sampled from scanning ses-
sions of NSD where training data was also collected. Thus,
cross-session non-stationarities are likely to have had similar
impacts on the training and evaluation data. The vision trials
in NSD-Imagery, however, were collected during a sepa-
rate scanning session. Thus, it is likely that cross-session
non-stationarities had a more detrimental impact on decoder
performance when generalizing to NSD-imagery than to
the shared1000 data. This could explain why the perfor-
mance of all decoders on the NSD-Imagery vision trials
were generally lower than previously published results for
the shared1000 trials. The drop in performance relative to
the shared1000 could also have a number of other causes,
including a different task being used in the NSD-Imagery
vision trials (cue-matching vs continuous recognition), a dif-
ferent number of stimulus repetitions in NSD-Imagery (8
repetitions vs. 3 repetitions), or the possibility that the GLM-
single algorithm used to preprocess the fMRI responses [4]
is less effective on small datasets.

Across all methods evaluated in this paper [2, 3, 5, 6,
10, 11], we trained the models using the full 40 sessions
of the NSD training data (not including the shared1000),
and we perform inference using the same brain region as the
original paper authors. For the majority of methods evaluated
in the paper, this means we utilize only voxels from the
“nsdgeneral” brain region, defined by the NSD authors as the
subset of voxels in posterior cortex most responsive to the
visual stimuli presented (between 13,000 to 16,000 voxels
per participant). The method from Takagi et al. is the only
method to deviate from this, instead using the respective
ROIs for early and higher (ventral) visual regions included
in the streams atlas of the NSD.

Because the NSD-Imagery dataset comprises both vision

and imagery trials within a single scanning session, as well
as multiple types of discrete stimulus types, we Z-scored
the fMRI data within each experimental run separately. A
run is defined by a series of consecutive trials comprising
the same visual modality and stimulus type (e.g., vision
trials comprising simple stimuli), typically lasting 4 minutes.
Normalizing trials for vision and imagery runs separately
provides some control against non-stationary brain activity
(e.g., changes in SNR) across imagery and vision.

A.2. Additional evaluation metric details
All metrics calculated in Table 1 of the manuscript were
calculated across 10 reconstructions sampled from the pos-
terior distribution of each decoding method. A two-way
comparison evaluates whether the feature embedding of the
stimulus image is more similar to the feature embedding
of the target reconstruction, or the feature embedding of
a randomly selected ”distractor” reconstruction. Two-way
identification refers to percent correct across a set of two-
way comparisons performed on a pool of distractor images.
The two-way identification metrics we report, which are cal-
culated using reconstructions of the 11 other NSD-Imagery
stimuli as distractors, are notably different from the two-way
identification metrics presented in individual reconstruction
papers that perform evaluations using reconstructions of the
shared1000 as the pool of distractors. The pool of distrac-
tor images for NSD-Imagery is much smaller, and contains
multiple distinct types of stimuli that may significantly al-
ter the resulting identification accuracy metrics. Because
of this difference, the two-way identification accuracy num-
bers are not directly comparable to two-way identification
results evaluated on the shared1000 in other papers, and we
do not report the shared1000 2WC metrics in Table 1 of
the manuscript. Brain correlation scores are the Pearson
correlation between the averaged measured brain response
β and the predicted brain response β′ produced by a brain
encoding model (GNet [9]) averaged across voxels within a
respective ROI in visual cortex, including the whole visual
cortex, early visual cortical regions V1, V2, V3, and V4,
and higher visual areas (set complement of visual cortex and
early visual cortex). All metrics in Tables 1, 2, and 3 were
calculated and averaged across 10 images sampled from the
output distribution of each method using a random seed.



A.3. Median and worst case reconstructions

Figure 1. Qualitative comparison of the median-case reconstruc-
tions on stimuli seen during the vision trials of NSD-Imagery. Sam-
ples selected are the median scoring according to the reconstruction
metrics in Table 1 of the manuscript.

Figure 2. Qualitative comparison of the median-case reconstruc-
tions on stimuli imagined during the imagery trials of NSD-Imagery.
Samples are selected the same way as Figure 1.



Figure 3. Qualitative comparison of the worst-case reconstructions
on stimuli seen during the vision trials of NSD-Imagery. Samples
selected are the worst scoring according to the reconstruction met-
rics in Table 1 of the manuscript.

Figure 4. Qualitative comparison of the worst-case reconstructions
on stimuli imagined during the imagery trials of NSD-Imagery.
Samples are selected the same way as Figure 3.



A.4. Comparison of image feature metrics across stimuli types

Method Low-Level High-Level Brain Correlation

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓ Early Vis. ↑ Higher Vis. ↑ Visual Cortex ↑

Mental Imagery Reconstructions (Simple Stimuli)

MindEye1 [5] 0.033 0.456 43.71% 61.67% 37.46% 58.37% 0.974 0.563 0.200 0.107 0.148
Brain Diffuser [3] 0.013 0.524 30.68% 50.68% 34.43% 44.51% 0.983 0.603 0.152 0.091 0.128
iCNN [7] 0.063 0.427 27.42% 47.65% 45.11% 67.99% 1.006 0.546 0.138 0.045 0.081
MindEye2 [6] 0.011 0.448 23.37% 45.34% 31.14% 49.02% 0.987 0.590 0.074 0.035 0.051
Takagi et al. [10, 11] 0.027 0.595 29.70% 50.30% 37.12% 54.70% 0.980 0.591 -0.002 -0.001 0.002

Vision Reconstructions (Simple Stimuli)

MindEye1 [5] 0.129 0.506 62.01% 76.36% 43.33% 60.64% 0.961 0.549 0.370 0.140 0.243
Brain Diffuser [3] 0.075 0.586 40.19% 66.67% 38.30% 42.20% 0.988 0.601 0.209 0.106 0.169
iCNN [7] 0.132 0.454 57.01% 74.89% 37.69% 69.02% 0.992 0.534 0.447 0.133 0.278
MindEye2 [6] 0.040 0.487 50.87% 68.98% 43.52% 52.46% 0.980 0.577 0.334 0.108 0.204
Takagi et al. [10, 11] 0.015 0.542 22.16% 50.68% 32.73% 55.19% 0.968 0.588 0.012 -0.007 0.001

Table 1. Quantitative comparison between reconstruction methods for both imagery and vision trials on simple stimuli. Metrics are the same
as Table 1 of the manuscript.

Method Low-Level High-Level Brain Correlation

PixCorr ↑ SSIM ↑ Alex(2) ↑ Alex(5) ↑ Incep ↑ CLIP ↑ Eff ↓ SwAV ↓ Early Vis. ↑ Higher Vis. ↑ Visual Cortex ↑

Mental Imagery Reconstructions (Complex Stimuli)

MindEye1 [5] 0.138 0.243 75.42% 60.34% 66.51% 51.06% 0.921 0.566 0.159 0.164 0.161
Brain Diffuser [3] 0.114 0.278 73.60% 66.02% 71.02% 63.64% 0.888 0.567 0.114 0.163 0.154
iCNN [7] 0.153 0.253 73.71% 62.84% 53.67% 15.46% 0.982 0.575 0.089 0.079 0.081
MindEye2 [6] 0.032 0.231 70.42% 65.11% 61.97% 51.93% 0.943 0.601 0.062 0.074 0.068
Takagi et al. [10, 11] -0.039 0.315 54.05% 30.08% 49.39% 25.46% 0.972 0.622 -0.001 0.009 0.003

Vision Reconstructions (Complex Stimuli)

MindEye1 [5] 0.308 0.318 85.11% 85.27% 81.55% 70.04% 0.800 0.471 0.378 0.365 0.379
Brain Diffuser [3] 0.139 0.323 80.49% 79.02% 83.60% 74.43% 0.829 0.509 0.284 0.353 0.341
iCNN [7] 0.316 0.316 86.33% 87.80% 84.62% 29.05% 0.860 0.514 0.437 0.358 0.397
MindEye2 [6] 0.223 0.333 84.28% 85.83% 80.08% 77.46% 0.794 0.454 0.378 0.360 0.376
Takagi et al. [10, 11] -0.041 0.281 60.95% 27.84% 45.80% 30.83% 0.971 0.632 -0.024 0.039 0.016

Table 2. Quantitative comparison between reconstruction methods for both imagery and vision trials on complex stimuli. Metrics are the
same as Table 1 of the manuscript.



A.5. Behavioral experiment
A.5.1. Experiment protocols
We conducted a set of behavioral experiments on 500 human
raters online. For our experiment, we identified no risks to
the human participants, and our institution’s IRB approved
our experiment. We probed 3 experiments intermixed into
two discrete sections within the same behavioral tasks, with
each experiment consisting of trials sampled evenly from
the different stimulus types and the 4 NSD subjects who
completed all 40 scanning sessions (subjects 1, 2, 5, 7). The
experimental trials within each task were shuffled and 36
trials were presented to each subject. Our subjects were
recruited through the Prolific platform, with our experimen-
tal tasks hosted on Meadows. Each human rater was paid
$1.50 for the completion of the experiment, and the median
completion time was 6 minutes and 17 seconds, resulting
in an average payment rate of $14.32/hour. Each human
rater was presented with 6 attention check trials during the
experiment. An attention check is a trial in which the ground
truth image is presented as a candidate image during the
trial. Because the ground truth image will always be the
image that is most similar to itself, these trials were used to
identify whether subjects were paying attention to the task
and the instructions. We identified 5 human raters who failed
at least 2 attention checks and removed those raters from
our data before conducting our analysis. Code to reproduce
our experiment can be found in our anonymized GitHub
repository.

A.5.2. 2AFC identification task

Figure 5. An example of the 2 alternative forced choice task used
in the first behavioral experiment performed by human raters.

Our first experiment was a 2 alternative forced choice task
(2AFC) facilitated by the ”Match-To-Sample” task on the
Meadows platform. An example of the first experiment can
be seen in Figure 5. In this experiment, human raters were
asked to select which of two candidate images was more
similar to a reference image. The reference image provided
is the ground truth image the NSD-Imagery subject either
saw or imagined, and the 2 candidate images were the target
reconstruction of the reference image, or a randomly selected
reconstruction from an fMRI scan corresponding to a differ-
ent stimulus of the same stimulus type. The two candidate

images were always sampled from the same reconstruction
method and NSD-Imagery subject. This experiment was
repeated for all reconstruction methods, visual modalities,
NSD subjects, and across 10 reconstructions sampled from
the output distribution of each reconstruction method. With
the results presented in Section 4.5, we establish a baseline
for human-rated image identification accuracy of mental
image reconstructions, as no other paper has conducted be-
havioral evaluations of mental image reconstructions.

A.5.3. Continuous similarity rating task

Figure 6. An example of similarity score task used in experiment 2
of the behavioral experiment performed by human raters.

The second experiment we conducted was facilitated by
the ”Drag-Rate” task on the Meadows platform. An example
of the task can be seen in Figure 6. In this task, human
raters were presented with a reference image, two candidate
images, and a continuous two-dimensional plot that they
could drag the candidate images onto, where the Y-axis rep-
resented ”similarity to the reference image” and the X-axis
represented the rater’s confidence. The reference image pro-
vided was always the ground truth image the NSD-Imagery
subject either saw or imagined. For experiment 2, the 2 can-
didate images were reconstructions of the reference image
from the imagery and vision trials of the NSD-Imagery tri-
als. Experiment 2 was repeated for the simple and complex
stimuli (as conceptual stimuli do not have meaningful vision
reconstructions), all reconstruction methods, NSD subjects,
and across 10 reconstructions sampled from the output dis-
tribution of each reconstruction method. One-dimensional
similarity ratings—like the ones used in this section of the
experiment—can be extremely sensitive to the context of
the alternative samples being compared against, and so are
primarily useful for comparing the relative similarity of the
candidate stimuli presented during each individual trial. The
task was designed with this in mind, configured to directly
compare the difference in quality between reconstructions
of vision and imagery for each method. Our analysis of
these results in Section 4.5 provides a detailed analysis of
how reconstruction performance scales across vision and
imagery.

http://www.prolific.ac.uk)
http://meadows-research.com
https://anonymous.4open.science/r/mental_imagery_behavioral_analysis-2214/
https://anonymous.4open.science/r/mental_imagery_behavioral_analysis-2214/


A.6. iCCN implementation
Originally introduced in Shen et al. [7], and first trained on
NSD in Shirakawa et al. [8], we adapt the author’s open
source implementation to try and faithfully replicate their
results, making the following changes to the implementation:
1. Normalization of images: We disabled normalization

of images when computing VGG19 features. During
our initial trials, normalization led to unexpected color
distortions in the reconstructed images. Removing nor-
malization allowed the reconstructions to maintain their
original color integrity, which is particularly crucial for
visual comparisons in tasks requiring precise color repre-
sentation.

2. Feature decoding with Ridge Regression: Instead of the
fastl2lir library, we employed the Ridge Regression
implementation from the sklearn library. This change
enhanced compatibility with the rest of our workflow and
provided better support for managing memory-intensive
computations. For VGG19 layers with a large feature
space, feature decoding was performed in chunks. This
approach enabled the simultaneous calculation of fea-
tures and fitting of the Ridge Regression model without
requiring intermediate results to be saved to disk, thereby
optimizing both time and memory usage.

A.7. Impact of trial repetition averaging on perfor-
mance

Figure 7. Performance of various methods when averaging across
brain activity responses to multiple trial repetitions of the same
stimulus. Y axis is the normalized average of all metrics in Table 1
of the manuscript, X axis is the number of averaged trial repetitions.

One of the experimental details that varies between NSD
[1] and NSD-Imagery is the number of times each stimulus

was presented in the experiment, also called the number
of trial repetitions. NSD contained 3 trial repetitions of
each stimulus in both the training and test sets, while NSD-
Imagery contains 8 trial repetitions for the vision task and 16
trial repetitions for the imagery task. In Figure 7, we plot the
effect of these additional trial repetitions on the performance
of a subset of the reconstruction methods evaluated in this
work.

A.8. Impact of training data scale on performance

Figure 8. Performance of various methods on NSD-Imagery for
Subject 1 when trained on different numbers of fMRI sessions
present in NSD. Each session includes approximately one hour of
fMRI data. Metrics are the normalized average of all metrics in
Table 1 of the manuscript, with imagery performance on the Y axis
and vision on the X axis. Methods are indicated by color, with the
number of training sessions indicated by the numbers in each dot.

An additional challenge in deploying these fMRI-to-
image decoding methods lies in making them more gen-
eralizable to new subjects. All of the methods examined
in this paper were trained with 40 hours of subject-specific
fMRI data comprising 10, 000 unique stimuli. Collecting
this much training data for new subjects in clinical settings
is currently impractical or impossible for certain patients.
Recent work in MindEye2 [6] has made strides in scaling
decoding procedures using a multi-subject pretraining step,
however as demonstrated in Figure 8, this approach gener-
alizes poorly to mental imagery data. We additionally note
that the methods that used ridge regression decoding back-
bones (Brain Diffuser, iCNN) produce much more consistent
scaling improvements on mental images than the models that
utilize deep neural network backbones (MindEye1, Mind-
Eye2).
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