
RelationField: Relate Anything in Radiance Fields

Supplementary Material

In this supplementary material, we first provide addi-

tional training details in Sec. A. Next, we offer further in-

sights into our design choices for RelationField in Sec. B.

Sec. C contains additional details on the scene graph extrac-

tion. We then present qualitative results for relationship seg-

mentation and the relationship-guided 3D instance segmen-

tation task in Sec. D. In Sec. E, we include an adaption of

RelationField to Gaussian Splatting together with a quality

comparison. Finally, we provide examples from our curated

relationship-guided 3D instance segmentation benchmark in

Sec. F.

A. Training details

To accelerate training speed, existing feature field ap-

proaches [3, 6, 7] store extracted 2D training features to

disk and load them in RAM at training start for efficient re-

trieval at each training step instead of computing the features

online. However, storing all relationship features in RAM

or disk is infeasible for RelationField since for n input im-

ages of shape w, h, with m generated masks it would require

storing n×m× (m− 1)×w×h× d relationship features.

This would result in ~5.66TB when we store the features in

FP16 and assume 10 instances per image for a scene of 200

images each with VGA resolution of 640× 480. Instead, we

optimize the memory resources by storing a dictionary of

all relationship features in combination with a singular seg-

mentation mask and compute the relationship map for each

sampled pixel-pair using a two-step lookup in the segmenta-

tion map and then in the relationship dictionary. Using this

strategy we are able to reduce the memory requirements to
~500MB per scene when using FP16 precision. Inspired by

[7], we begin training the relationship field after 2000 steps

of NeRF optimization to let the geometry converge. We train

for 30000 steps on a single Nvidia A100, which takes around

60 minutes and consumes around 40GB of GPU memory.

The feature extraction of the object features from OpenSeg

[4] and SAM [8], as well as the relationship features with

GPT-4 increases the training time by about 30 minutes for

the first run.

B. Design choices

Prompting. To extract textual relationships using GPT-
4 [1] or Llama [2], we employ a combination of visual and
textual prompting. For visual prompting, we utilize SoM
[15] to overlay semi-transparent masks and numeric marks.
The textual prompt consists of a two-stage approach which
queries the model first to extract objects by their mark-id
and then to extract relationships referenced by the previ-

ously extracted object-ids together with a relationship label.
The complete prompt looks as follows:

1. Object Identification: Identify all objects in the image by their tag.

Create a dict that maps tag id to class name.

2. Affordance/Relationship Detection: For every pair of tagged ob-

jects that are clearly related, describe the semantic relationships and

affordances as a list of dictionaries using the format [s id: #n1, sub-

ject class: x, o id: #n2, object class: y, predicates: [p1, p2, ...]]. For

subjects and objects sharing multiple relationships/affordances, con-

catenate predicates with a comma in the [predicate] field.

- Avoid generic terms like ”next to” for ambiguous relationships. In-

stead, specify relationships with precise relationships and affordances

describing spatial relationships [over/under etc.], comparative relation-

ships [larger/smaller than, similar/same type/color], functional relation-

ships [part of/belonging to, turns on], support relationships [standing

on, hanging on, lying on, attached to].

- Do not use left/right; always use 3D consistent relationships.

- Always combine a spatial relationship with a semantic, comparative,

functional or support relationship using a comma (e.g., [A] [above,

lying on] [B]).

- For symmetrical relationships, include both directions (e.g., [A]

[above] [B] and [B] [below] [A]).

- Even for distant objects highlight if they are [same/similar/same

color/same object type]

Example Output:

objects = {4: floor, 7: table, 12: chair, ...}
relationships affordances = {
[s id: 4, subject class: table, o id: 7, object class: floor, predicates:

standing on],

[s id: 12, subject class: chair, o id: 13, object class: chair, predicates:

next to, same as],

[s id: 6, subject class: pillow, o id: 8, object class: couch, predicates:

belongs to],

...

}

After processing the image frames with the LLM we parse

the output into a JSON format in an automatic manner.

Text encoder. To embed relationships in RelationField, we

encode the output from a multi-modal LLM into the radiance

field using an encoder-only language model. The choice of

the encoder is important since it determines the structure and

queryablity of the embedding space in the radiance field.

We want an embedding space, that is highly structured and

embeds similar (relationship) concepts close together, while

contradictory relationships are supposed to be far apart in

embedding space. In Fig. 1, we provide an analysis for dif-

ferent popular open-source text encoders such as CLIP [13],

BERT [5], Jina-v3 [14], RoBERTa [10] and GPT-2 [12]. We

have a set of 41 distinct relationships with varying seman-

tic similarity to each other and plot their pair-wise cosine

similarity in a similarity matrix. We observe that Jina-v3-
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Figure 1. Language Encoder Ablation. We compare 5 language encoder-only model based on their separability in embedding space. For

each language encoder, we plot a similarity matrix, for the pairwise cosine-similarity of 41 predicates taken from the 3DSSG dataset.

embeddings generate the most well-structured feature space,

where related concepts exhibit a strong similarity, while the

majority of relationships describing distinct concepts show

a high degree of dissimilarity. As a counter-example, both

RoBERTa and GPT2 embed all relationships in a very simi-

lar feature space, which would make fine-grained querying

difficult.

Relationship direction. In Fig. 3 of the main manuscript,

we present qualitative results from RelationField on 4

scenes. In these results, we present queries of the form

“What is < > standing on/attached to/similar to etc.?”.

In this scenario, we are interested in the object of a subject-

predicate-object relationship. However similarly, it can be

interesting to investigate to query the subject of a subject-

predicate-object relationship by answering the question

“What is standing on/attached to/similar to etc. < >?”

To model this question in RelationField we simply have to

invert the supervision signal during training by swapping the

query ray origin with the ray origin. In Fig. 2, we demon-

strate different directional relationship queries for the same

objects and predicate.

C. Scene Graph Construction

In Fig. 3, we visually supplement the reported process of ex-

tracting a 3D scene graph from RelationField. First, we ex-

tract groups of points from the instance field. These groups

of points (Fig. 3a), serve as the queries for the Relation-

Field and represent the subject in a subject-predicate-object

relationship edge. In a second step, the RelationField gets

evaluated on the remaining points of the point cloud given

the query points and a textual relationship prompt such as ly-

ing on (Fig. 3b). The textual query represents the predicate

in the subject-predicate-object relationship. This step re-

turns a relationship activation map for the entire point cloud

with each point having a unique relationship response. In

the third step, the activations get aggregated based on the in-

stance head (Fig. 3c). The instances that have a relationship

response greater than a threshold of 0.5 represent objects

in the subject-predicate-object relationship edge. Finally all

edges for objects surpassing the threshold are added to the

3D scene graph.

Figure 2. Relationship Direction. (a) visualizes the relationship

response for the question “What is standing on/lying on/similar

to?”, where we localize the object in a subject-predicate-object

relationship. While (b) visualizes the relationship response for the

question “What is standing on/lying on/similar to ?”, where we

localize the subject in a subject-predicate-object relationship.

D. Qualitative Results

Relationship querying. In Fig. 4, we present qualitative

results for 4 additional scenes for the relationship querying

with RelationField.

Relationship-guided instance segmentation. In Fig. 6, we

qualitatively compare the 3D instance segmentation of Re-

lationField against OpenNeRF [3] for relationship queries



Figure 3. Relationship Edge Construction. To extract a 3D scene graph from RelationField, we automatically query instances (a), compute

the relationship response for predicates such as “lying on” (b), and aggregate the relationship response for each instance (c). We add an

edge to the scene graph for all objects whose relationship response for the subject and predicate is greater than a certain threshold.

Figure 4. Additional Qualitative Results. We provide relationship responses for 4 additional scenes from Scannet++. The colormap

visualizes the relationship response where blue is low and red is high. We visualize the relationships for the question: “What is standing

on/lying on/similar to?”

to supplement Tab. 2. OpenNeRF produces many false posi-

tives because it gets confused with the compositional queries

arising from the bag-of-words behavior of CLIP [12]. Mean-

while, RelationField uses the object information together



Figure 5. RelationField w/ NeRF or w/ Gaussian Splatting geometry. We compare the rendering speed (FPS), memory requirements and

RelationField quality for the query “standing on”.

with the relationship information from the prompt to accu-

rately filter predictions that only correspond to the object in

the prompt that has the described relationship.

E. Gaussian Splatting Support

We build RelationField on NeRF [11], however since our ap-

proach is independent of the underlying 3D representation,

it is possible to extend RelationField to Gaussian Splatting

for faster training, inference and rendering. To train Rela-

tionField, we follow [9] and initialize the Gaussian Splatting

training run with the exported point cloud of the NeRF train-

ing. This results in faster convergence and fewer Gaussians

leading to improved memory utilization. For RelationField

with Gaussian Splatting geometry, we reformulate our rela-

tionship definition from a pair of rays to a pair of 3D Gaus-

sian centers. In Fig. 5, we compare the rendering speed,

memory requirements and RelationField quality. Relation-

Field based on Gaussian Splatting achieves 4x faster ren-

dering compared to its NeRF variant with a lower memory

footprint. Overall, Fig. 5 shows that RelationField is inde-

pendent of the underlying geometry, and both NeRF and

3DGS produce high-quality RelationFields.

F. Relationship-guided 3D Instance Segmenta-

tion Dataset

In Fig. 7, we present a subset of the annotated benchmark

which we present in Sec 4.1 of the main paper. In the bench-

mark, we provide instance segmentations paired with textual

relationship prompts. When curating the benchmark we fo-

cused on samples that appear multiple times in the scene, but

which can be uniquely referenced by a relationship prompt.
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Figure 7. Releation-guided 3D Instance Segmentation Task Overview. We visualize a few annotated segments from our labeled bench-

mark on Scannet++ together with annotated relationship prompts. We focus on objects which appear multiple times in the scene, but that

can be uniquely referenced by a relationship prompt.


