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6. Derivations

6.1. Derivation for the backward pass
Given

∂L
∂[zi−1]j

=

Ni∑
k=1

∂L
∂[zi]k

[Wi]kjf
′([zi−1]j), (17)

we have that

µ

(
∂L

∂zi−1

)
=

Nn∑
k=1

E [[Wi]kj ]E
[

∂L
∂[zi]k

f ′([zi−1]j)

]
(18)

= 0 (19)

and

σ2

(
∂L

∂zi−1

)
=

Ni∑
k=1

Var
[

∂L
∂[zi]k

]
Var [[Wi]kj ](

E [f ′([zi−1]j)]
2
+ Var [f ′([zi−1]j)]

)
(20)

= Niσ
2

(
∂L
∂zi

)
σ2(Wi)

(µ2(f ′(zi)) + σ2(f ′(zi))). (21)

Finally note that Ni = Mi+1.

6.2. Initialization for the first layer
For our INR experiments, we first normalize the input coor-
dinates x0 to be within [−1, 1]D (for some input dimension
D). We then model our element input distribution as a uni-
form distribution over [−1, 1], so Din = U([−1, 1]). Then
we have that
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so µ2(x0) + σ2(x0) =
1
3 . Thus by Eq. (4) we initialize our

first layer weights with variance
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6.3. Analytical Expectations for Gaussians

Let us assume that the preactivations at layer i − 1, zi−1,
have variance σ2

p. Then to ensure that zi has the same vari-
ance, we set the variance of Wi according to Eq. (4), which
requires us to compute the mean and variance of xi. We do
the analytical derivation of this now.
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This has mean
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so
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Thus by Eq. (4) we initialize our ith layer weights with
variance
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7. SIREN’s initialization
Note that SIREN [23] also uses sine activations and specif-
ically uses σp = 1. In their derivation they use sin

(
π
2x
)

in order to only consider the monotonic region of sine. Our
method also gives σ2(Wi) =

2
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with that activation func-
tion. In the code, SIREN actually use sin(30x) which our
method also gives σ2(Wi) =

2
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. However, for sin(x) our
method gives σ2(Wi) =
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.

8. Comparison to Xavier and Kaiming init.
Our initialization for Gaussians is
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(for middle layers)
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and Kaiming initialization is of the form
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Thus for a fixed σa (the Gaussian activation function pa-
rameter), Xavier and Kaiming are equivalent to our Gaus-
sian initialization for some σp. For example, σa = 0.05,
σp = 0.33 with our Gaussian init gives σ2(Wi) = 1.02

Mi

matching Xavier initialization, and σa = 0.05, σp = 0.41
gives σ2(Wi) =

1.96
Mi

matching Kaiming.
For fixed σa (so a fixed Gaussian activation function), it

is unlikely that the σp that Xavier or Kaiming correspond
to are optimal (Tab. 8 Middle). However, if we grid search
on σa (i.e. on the activation function) then it is possible that
there will be a σa such that Xavier and Kaiming will corre-
spond to the optimal σp for that σa (Tab. 8 Bottom). In fact,
the observed trend in Fig. 2b makes it quite likely.

9. Image Comparison.
We compare image reconstruction with Gaussian activation
with the three different types of initializations in Fig. 4.



Figure 4. Image comparison. Left to right: random normal init,
our MC init, our init.

Figure 5. Performance gap vs. σa. As σa decreases, performance
drops for both inits, but a significant gap remains.

10. Audio Reconstruction Implementation de-
tails

The audio reconstruction results presented in the main pa-
per differed from the image and SDF reconstruction se-
tups in several key aspects. Specifically, the network ar-
chitecture used three hidden layers, each containing 256 el-
ements, and the bias terms were initialized identically to
the weights. These modifications were consistently applied
across all initialization methods examined and proved es-
sential for achieving convergence.

11. Improvement gap dependence on activa-
tion function parameters

We give results for small σa in Fig. 5 Left. The results show
that the proposed initialization outperforms random init for
smaller σa values while a degradation in performance is ob-
served for both.
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