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A. The EXPo Benchmark

In this section, we elaborate on the data structure, defini-
tions, configurations, statistics, and visual examples of the
proposed EXPo (Event-based Xross-Platform perception)
benchmark.

A.1. Benchmark Overview

Our EXPo benchmark serves as the first comprehensive ef-
fort to tackle the challenging task of cross-platform adapta-
tion for event camera perception. Building upon the newly
launched M3ED dataset [1], our benchmark focuses on en-
abling robust, domain-adaptive perception across diverse
robotic platforms. By incorporating a rich variety of event

Table A. The summary of platform-level statistics in £XPo.

Platform ‘ & Vehicle ‘ ¥ Drone ‘ & Quadruped
Frame (train) 30,321 13,458 17,302
Frame (val) 12,998 5,772 7,421
Res. (H, W) 360 x 640 360 x 640 360 x 640
Res. (T) 20 20 20
Duration 5,000, 000 5,000, 000 5,000, 000
Semantics ‘ 19 Classes / 11 Classes

Environment ‘ City, Urban, Suburban, Rural

data and semantic labels, we aim to highlight key discrepan-
cies among platforms and provide a robust testbed for eval-
uating cross-platform performance.

Tab. A provides the platform-level statistics of each plat-
form. The overall benchmark consists of 89,228 frames
collected from three distinct platforms — vehicle, drone, and
quadruped — across 21 sequences: 6 from the vehicle, 7
from the drone, and 8 from the quadruped. The sequences
capture a wide range of dynamic real-world scenarios and
span diverse environments, including city, urban, suburban,
and rural scenes. This diversity ensures that the bench-
mark covers both structured and unstructured environments,
replicating real-world challenges faced by event cameras
deployed across different robotic platforms.

A.2. Cross-Platform Configurations

The EXPo benchmark aims to highlight platform-specific
discrepancies, such as motion dynamics, perspectives, and
environmental interactions. Specifically, ground vehicles
capture low-altitude perspectives with dense surface-level
details, such as roads, curbs, and obstacles. Drones pro-
vide high-altitude views with sparse ground-level features,
focusing on landscapes, buildings, and environmental struc-
tures. Quadrupeds, on the other hand, operate closer to hu-
man eye levels, capturing mixed indoor-outdoor dynamics
and a wider range of semantic elements. These platform-
specific variations make this benchmark a holistic resource
for studying domain-specific adaptation and developing ro-
bust models capable of generalizing across diverse opera-
tional settings.

The event camera data in our benchmark is collected us-
ing the Prophesee Gen 4 (EVKv4) event camera [2], a state-
of-the-art sensor known for its high temporal resolution and
dynamic range. This sensor offers a spatial resolution of
720 x 1280 pixels and a field of view of 63° x 38°. This con-
sistent sensor setup is employed across all three platforms,
ensuring that the observed domain gaps arise purely from
platform-specific differences, such as variations in motion



patterns, viewpoint dynamics, and environmental interac-
tions, rather than discrepancies in sensor specifications. By
eliminating sensor-level variations, the benchmark ensures
that the adaptation challenge remains focused on the core
differences between the platforms. This configuration not
only strengthens our validity for cross-platform adaptation
but also facilitates meaningful comparisons of model per-
formance across varied operational contexts.

A.3. Benchmark Structure

The EXPo benchmark comprises 21 sequences distributed
across three platforms: 6 sequences for the vehicle, 7 se-
quences for the drone, and 8 sequences for the quadruped.
Tab. B provides a detailed breakdown of the dataset struc-
ture and sequence information for each platform.

Specifically, the benchmark includes 43,766 frames
from the vehicle platform, 19,899 frames from the drone
platform, and 25, 563 frames from the quadruped platform,
resulting in a total of 89, 228 frames. The detailed informa-
tion for each sequence across the three platforms is shown
in Tab. B. This extensive collection makes X Po the largest
benchmark for event camera perception.

As shown in Tab. A, we split each platform into two sub-
sets: training set and validation set. We sample for each
sequence in each platform the last 40% of frames for val-
idation, and use the remaining data for training. In total,
there are 61, 081 frames for training and 26, 191 frames for
validation. Since the original spatial resolution is high, we
subsample it from 720 x 1280 pixels to 360 x 640 pixels,
i.e., resize both the height and width to half of the origi-
nal values. Following the setting of DSEC-Semantic [5],
the temporal resolution is set to 20 (bins). Additionally, the
duration AT is set to 5,000, 000.

A.4. Semantic Definitions

The EXPo benchmark consists of a total of 19 semantic

classes, which ensure a holistic dense perception for the

event camera scenes acquired by the three platforms. The

specific definition of each class is listed as follows:

* M road (ID: 0): The drivable surface designed for vehi-
cle travel, typically marked by lanes and boundaries.

e M sidewalk (ID: 1): Elevated pathways adjacent to
roads, designated for pedestrian use.

e M building (ID: 2): Permanent structures designed for
residential, commercial, or industrial purposes.

e wall (ID: 3): Vertical structures that enclose or divide
areas, often used for security or boundary delineation.

e fence (ID: 4): Lightweight barriers, usually made of
wood or metal, marking boundaries or containing areas.

. pole (ID: 5): Vertical cylindrical objects, such as
lamp posts or utility poles, used for lighting, signage, or
power distribution.

e traffic-light (ID: 6): Signal devices positioned

Table B. The dataset structure and sequence information
among the & vehicle (PV), % drone (P“), and & quadruped
(P?) platforms, respectively, in the proposed EXPo benchmark.

Platform ‘ Sequence Name ‘ # Frames ‘ Total
horse 714
penno_small_loop 1,102

. rittenhouse 9,752 .

Vehicle ucity_-small_loop 16, 867 43,766
city-hall 7,453
penno_big_loop 7,878
fast_flight_1 2,229
fast_flight_ 2 4,077
penno_parking-1 2,810

Drone penno_parking._2 2,713 19,899
penno_plaza 1,694
penno_cars 3,073
penno_trees 3,303
penno_short_loop 2,942
skatepark-1 2,305
skatepark_2 1,652
srt_green_loop 1,597 . g

Quadruped srt_under_bridge_1 5,083 25,563
srt_under_bridge_2 4,533
art plaza_loop 3,615
rocky_steps 3,836

at road intersections to manage traffic flow and ensure the
safety of traffic participants.

e Mtraffic-sign (ID: 7): Informational or regulatory
signs placed along roads to guide and control traffic be-
havior.

* B vegetation (ID: 8): Plant life, including trees,
shrubs, and grass, typically forming natural surroundings
in outdoor environments.

* M terrain (ID: 9): Unpaved ground surfaces such as
dirt paths, grassy fields, or rocky areas.

e M sky (ID: 10): The open expanse above the ground,
often capturing atmospheric and weather conditions.

* B person (ID: 11): Human individuals present in the
scene, either stationary or in motion.

* M rider (ID: 12): Individuals on moving devices such
as bicycles, motorcycles, or scooters, distinct from pedes-
trians.

e Il car (ID: 13): Small to medium-sized motorized vehi-

cles used for personal or commercial transport.

B truck (ID: 14): Larger motorized vehicles designed

for transporting goods or heavy materials.

M bus (ID: 15): Large motorized vehicles used for mass

public transportation of passengers.

* W train (ID: 16): Rail-based vehicles, including loco-
motives and wagons, used for transporting passengers or
freight.

*  motorcycle (ID: 17): Two-wheeled motorized ve-
hicles, often used for individual transport or recreation.



Table C. The definitions of the semantic classes in the £XPo
benchmark. We provide two versions of label mappings, i.e., the
19-class setting and the 11-class setting, to ensure a holistic dense
perception of the scenes acquired by the event camera.

19-Class
ID | Class Name

11-Class
ID | Class Name

|
|
0 ‘ B road ‘ 5 ‘ M road
1 ‘ B sidewalk ‘ 6 ‘ B sidewalk
2 | Mbuilding | 1 | Mbuilding
3 ‘ wall ‘ 9 ‘ wall
4 ‘ fence ‘ 2 ‘ fence
5 ‘ pole ‘ 4 ‘ pole
(; -E§Z§§i§:iigit 10 | Mtraffic-sign
8 ‘ M vegetation ‘ 7 ‘ B vegetation

9 | Mterrain

10 | msky 0 | Mbackground

11 | W
person 3 | Mperson

12 | W rider

13 car

14 | M truck

15 | M bus 8 car
16 train

17 motorcycle

18 | M bicycle

e M bicycle (ID: 18): Non-motorized two-wheeled ve-
hicles powered by pedaling, used for transport or leisure.
Our benchmark supports two versions of label mappings,
i.e., the 19-class setting and the 11-class setting, where the
latter is consistent with the seminar event-based semantic
segmentation work ESS [5]. Tab. C summarizes the rela-
tionship between these two label mappings. In our bench-
mark experiments, we adopt the 11-class setting for com-
paring different adaptation methods across platforms.

A.5. Platform-Specific Statistics

Each of the three platforms in the EXPo benchmark rep-

resents a unique collection of event camera data. To better

understand the domain gaps among these platforms, we cal-
culate the following platform-specific statistics.

* Platform-Specific Semantic Distributions: The relative
proportions of each semantic class across the three plat-
forms are presented in Tab. D, with semantic occupa-
tions normalized to 1. Notable discrepancies are observed
among the platforms.

— For instance, the drone platform accounts for 45.75%
of the road class, attributed to its high-altitude per-

spective that captures expansive ground surfaces. In
contrast, the vehicle platform dominates classes such
as building, traffic-sign, and all categories
of car, reflecting its road-level viewpoint and fo-
cus on urban navigation. Similarly, all instances of
traffic-light appear exclusively in the vehicle
platform, as this class is inherently associated with
vehicle-centric scenarios.

— On the other hand, the quadruped platform, with its
low-height perspective, captures a higher proportion of
fence (76.36%), wall (83.23%), and similar seman-
tic categories. This aligns with its tendency to perceive
surroundings closer to ground level, making it better
suited for mixed indoor-outdoor environments.

— As for the drone platform, a significant proportion of
terrain (69.26%) is captured due to its elevated
viewpoint, which provides a broader landscape per-
spective. This platform also includes a notable share
of car-related classes, such as t ruck (19.20%), bus
(7.89%), and motorcycle (45.45%), reflecting its
ability to observe these objects from a unique vantage
point that complements ground-level perspectives.

— Each platform thus exhibits distinct semantic distribu-
tions, emphasizing the importance of tailored domain
adaptation strategies for robust cross-platform event
perception.

Absolute Semantic Distributions: We calculate the ab-
solute semantic occupations for each platform and present
the statistics in Tab. E. As shown, the distributions for
all three platforms exhibit a long-tailed nature, reflect-
ing real-world event camera scenarios where certain static
classes dominate while dynamic and small-object classes
occur less frequently.

— The majority classes for the vehicle platform are
building (24.91%), vegetation (23.77%), and
road (21.94%). These static classes dominate due to
the platform’s road-level perspective, which frequently
encounters large, continuous structures and roadside
greenery. In contrast, small and dynamic classes, such
as rider (0.02%) and motorcycle (0.01%), are
underrepresented, underscoring the vehicle platform’s
bias towards large, static objects in its operating envi-
ronment.

— The drone platform primarily captures road
(34.51%), terrain (31.46%), and vegetation
(14.52%). This is due to its high-altitude perspective,
which provides expansive views of ground surfaces
and surrounding landscapes. Dynamic classes, such
as different categories of car, are underrepresented
because they occupy less visual space from the drone’s
viewpoint compared to static, large-area features.

— We also observe that the quadruped platform ex-
hibits notably higher proportions of sky (8.68%),



Table D. The platform-specific semantic distributions among the & vehicle (PY), %t drone (P?), and & quadruped (P?) platforms,
respectively, in the proposed EXPo benchmark. We compare the relative proportions (normalized to 1) of each semantic class from three
platforms. The distributions of vehicle, drone, and quadruped are denoted by the e green, e red, and e blue colors, respectively.

road

sidewalk

building

wall

traffic-light

traffic-sign

terrain

26.82
%
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Table E. The absolute platform-specific semantic distributions
among the & vehicle (PV), % drone (P“), and ® quadruped
(P?) platforms, respectively, in the proposed EXPo benchmark.

Class | Vehicle | Drone | Quadruped
B road 21.94% 34.51% 18.98%
M sidewalk 6.63% 6.36% 7.09%
M building 24.91% 4.96% 12.93%
wall 0.47% 0.63% 5.46%
fence 0.55% 0.97% 4.91%
pole 2.21% 0.33% 0.56%
traffic-light 0.22% 0.00% 0.00%
Mtraffic-sign 0.45% 0.08% 0.01%
M vegetation 23.77% 14.52% 26.65%
M terrain 1.78% 31.46% 12.18%
B sky 6.53% 1.63% 8.68%
M person 0.82% 0.05% 1.56%
M rider 0.02% 0.00% 0.03%
car 7.36% 4.14% 0.91%
M truck 1.01% 0.24% 0.00%
B bus 1.05% 0.09% 0.00%
train 0.09% 0.01% 0.00%
motorcycle 0.01% 0.01% 0.00%
bicycle 0.15% 0.01% 0.03%
Total | 100% | 100% | 100%

wall (5.46%), and fence (4.91%) compared to
the other two platforms. This is attributed to its
low-altitude perspective, which captures more verti-
cal structures and surrounding boundaries, as well as
frequent mixed indoor-outdoor scenarios. Unlike the
vehicle and drone platforms, quadruped data
features a more balanced representation of close-range
objects and environmental details.

These platform-specific statistics provide a comprehen-
sive understanding of the challenges in cross-platform adap-
tation, emphasizing the need for robust event camera per-
ception models capable of handling diverse semantic distri-
butions and environmental contexts.

A.6. License

The EXPo benchmark is released under the Attribution-
ShareAlike 4.0 International (CC BY-SA 4.0)' license.

B. Event Activation Prior: Formulation

In event-based cross-platform adaptation, each platform in-
troduces unique activation patterns due to variations in sen-
sor perspectives, motion dynamics, and environmental con-
ditions. The Event Activation Prior (EAP) captures these
platform-specific activation patterns and encourages con-
fident predictions by leveraging the classic entropy mini-
mization framework. In this section, we elaborate on the
formulation of our proposed EAP in more detail.

0/legalcode.

B.1. Problem Formulation

In our setting, we address cross-platform adaptation across

three distinct event data domains: vehicle, drone, and

quadruped, referred to as D = {PV, P9, P9}, respectively.

Each domain contains:

» Event Voxel Grids: V € RTXHXW where T is the
number of temporal bins and (H, W) are the spatial di-
mensions of the event sensor.

* Semantic Labels (source domain only): y €
where each pixel corresponds to one of C' pre-defined se-
mantic classes.

In our cross-platform adaptation problem, we assume ac-
cess to fully labeled data from a source domain while only
having access to unlabeled data from a target domain. The
objective is to leverage both the labeled source data and the
unlabeled target data to train an event camera perception
model that can perform well on the target domain. This
adaptation is challenging because each platform captures
data from distinct perspectives, motion patterns, and envi-
ronmental contexts.

H
R ><W’

B.2. EAP: Motivation & Formulation

EAP is designed to guide cross-platform adaptation
by leveraging platform-specific event activation patterns.
Events are triggered by changes in brightness due to motion,
making certain regions in the event data — characterized by
frequent activations — highly informative. By minimizing
entropy in these regions, we hope to encourage the model
to make confident predictions that align with the target do-
main’s unique motion-triggered patterns, which in turn im-
prove the perception performance.

B.3. Likelihood for Supervised Loss

For labeled data from the source domain P € D, we train
our event camera perception model by maximizing the like-
lihood of the ground truth labels. This likelihood, P(y|V),
forms the supervised loss term:

L(6) =— > log P(y|V;0), ()

Vepsre

where 0 represents the model parameters. This supervised
loss anchors the model’s learning in well-labeled source
data, providing a foundation for generalization.

Since we lack labeled data in the target domain, we de-
fine the EAP to help the model leverage unlabeled data
by minimizing prediction uncertainty in high-activation
regions of the target domain. These regions, S C
{0,1,...,H—1} x{0,1,...,W — 1}, are identified based
on the characteristic event activations in each platform. To
achieve this, EAP follows the principle of entropy mini-
mization, where we aim to:

* Identify high-activation regions S in the target domain.
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* Minimize the conditional entropy H(ys|Vs,S) in these
regions, promoting confident predictions that align with
target-specific patterns.

B.4. Formulating EAP

To incorporate the EAP into the model, we enforce a prior
on @ that reduces entropy in high-activation regions S of the
target domain. Following the maximum entropy principle
[3], we express this as a soft regularization:

Eop [H(Vs,ys|S)] <c, 2

where c is a small constant enforcing high confidence in
predictions. Using the principle of maximum entropy, we
obtain:

P(0) o< exp (-AH(Vs,ys|S)) , 3)
oc exp (—AH (ys| Vs, S)) , 4)

where A > 0 is the Lagrange multiplier corresponding to
constant ¢, which balances the effect of EAP on the model’s
training objective.

B.5. Empirical Estimation of EAP

To implement the EAP, we estimate the conditional entropy
H(y|V,S) by focusing on high-activation regions S in the
target domain. This conditional entropy captures predic-
tion uncertainty within the specific spatial region S, allow-
ing us to concentrate adaptation efforts on regions aligned
with platform-specific activations. Using an empirical plug-
in estimator, we approximate this entropy as:

Hemp(ylV,8) = Ev y.s |P(y|V,8)log P(y|V,8)| ,

) 5)
where P(y|V,S) is the empirical prediction probability
conditioned on the event voxel grid V and restricted to re-
gion S. By minimizing Henmp(y|V, S), we encourage con-
fident predictions within these regions, aligning the model’s
predictions with the target domain’s activation patterns.

B.6. Integrating EAP into the Training Objective

To incorporate EAP into the model’s training, we define
the overall objective function as a maximum-a-posteriori
(MAP) estimation:

C(G) = E(Q) - /\Hemp(y|va S) ) (6)

where L(0) represents the supervised loss on source data.
Henp(y|V, S) minimizes uncertainty in the target domain
by leveraging EAP over high-activation regions.

By focusing on high-activation areas, the event cam-
era perception model learns to adapt to the target domain’s
unique event-triggered patterns, achieving robust adaptation
across platforms. This approach captures and emphasizes
platform-specific activation patterns, making EAP an effec-
tive regularization for confident adaptation in event-based
cross-platform scenarios.

C. Event Activation Prior: Observation

In this section, we provide concrete evidence supporting
the proposed Event Activation Prior (EAP) by analyzing
the platform-specific activation patterns in both static and
dynamic regions. The evidence is presented through class
distribution statistics and maps, which highlight the unique
activation characteristics of each platform.

C.1. Class Distribution Statistics

As discussed in Sec. A.4 and Sec. A.5, the same semantic
class exhibits notable discrepancies across the three plat-
forms, influenced by their unique perspectives, motion dy-
namics, and environmental contexts. Such discrepancies
emphasize the need for spatial priors, as formulated in EAP,
to account for platform-specific variations.

For example, the class road dominates the drone plat-
form (45.75%) due to its high-altitude perspective capturing
extensive ground-level surfaces, while in vehicle (21.94%)
and quadruped (15.42%) platforms, this class appears more
localized. Dynamic classes such as car and person show
higher prominence in the vehicle platform, consistent with
its traffic-oriented scenarios, while being less frequent in
drone and quadruped data due to limited proximity and
perspectives for capturing such objects. Static classes like
vegetation and building exhibit significant variation
in coverage due to platform-specific viewpoints, with drone
capturing broader fields of view compared to the ground-
level perspectives of vehicle and quadruped.

These statistics reinforce the hypothesis that leveraging
spatial priors informed by class-specific activation patterns
can significantly enhance cross-platform adaptation.

C.2. Class Distribution Maps

Tab. F and Tab. G present the activation proportions for

static and dynamic classes, respectively, across the vehicle,

drone, and quadruped platforms. These heatmaps reveal
distinct spatial coverage and density patterns for each plat-
form, which serve as the foundation for the proposed EAP.

These tables highlight the following key observations:

* In the vehicle platform, the road class is highly concen-
trated in the lower-central region, reflecting the ground-
level perspective. In contrast, drone exhibits a broader,
more evenly distributed pattern due to its high-altitude
viewpoint capturing expansive ground surfaces. The
quadruped platform shows a localized, narrower distri-
bution, aligning with its lower vantage point.

* The vehicle platform exhibits dense, vertically structured
priors for building, consistent with urban driving sce-
narios. Meanwhile, drone and quadruped display sparser
coverage, with drone capturing larger landscape-level
structures and quadruped focusing on closer, localized
regions. A similar pattern applies to some car classes,
such as bus, train, motorcycle, and bicycle.



Table F. The class distribution maps of static classes among the & vehicle (PY), % drone (P?), and & quadruped (P?) platforms,
respectively, in the proposed EXPo benchmark. The brighter the color, the higher the probability of occurrences. Best viewed in colors.

D Class Type vehicle (PV) drone (PY) quadruped (P?)
0 road static
1 sidewalk static
2 building static
3 wall static
4 fence static
5 pole static

6 traffic-light static

7 traffic-sign static
8 vegetation static
9 terrain static
10 sky static




Table G. The class distribution maps of dynamic classes among the & vehicle PY), =t drone (PY), and & quadruped (P?) platforms,
respectively, in the proposed EXPo benchmark. The brighter the color, the higher the probability of occurrences. Best viewed in colors.

o

= gt &
ID Class Type . 1
vehicle (PY) drone (P<) quadruped (P?)

) o o l
i o o -
. - o =
i o o -
i B o -
: o o -
17 motorcycle dynamic -
i o o -

* The pole and traffic-1ight classes are distinctly
prominent in the vehicle platform due to urban driving
environments. The drone platform shows certain occur-
rences, while the quadruped platform captures sporadic

patterns that align with its lower viewpoint.

 For majority classes, such as vegetation, terrain,
and sky, the spatial distribution for vehicle and drone
is broader and denser, reflecting outdoor scenarios with
natural elements. The quadruped platform captures lo-
calized vegetation mainly from the upper half of the
field of view, often in close proximity to its route.

These heatmaps demonstrate the inherent semantic and
spatial discrepancies across platforms, highlighting the
necessity of incorporating spatial priors into the cross-
platform adaptation process. By leveraging these platform-
specific semantic distributions, the EAP enables more con-
fident and domain-aligned predictions, ensuring effective
adaptation across diverse operational contexts.

C.3. Event-Triggered Activation Maps

Our EAP-driven event data mixing technique builds on
the assumption that event-triggered activations are closely



Table H. The event-triggered activation maps among the & vehicle (PY), %t drone (P?), and & quadruped (P?) platforms, respectively,
in the proposed £ XPo benchmark. The brighter the color, the higher the probability of occurrences. Best viewed in colors.

= = &

vehicle (PY) P quadruped (P9)

Class

road

building

car

fence

pole

sidewalk

vegetation

wall




linked to semantic distributions, as these activations reflect
dynamic and structural changes captured by event cameras.
To validate this assumption, we calculate probability maps
of event-triggered activations for all semantic classes and
present the results in Tab. H.

These maps reveal a striking correlation between event-
triggered activations and semantic class distributions.
Specifically, the event-triggered activations in static classes
such as road, building, and vegetation demon-
strate strong spatial consistency across platforms. For ex-
ample, in the vehicle platform, road activations are con-
centrated in the lower-central region, reflecting the expected
viewpoint of ground-level sensors. Similarly, building
activations align vertically, consistent with urban environ-
ments. This correlation underscores the utility of EAP in
capturing spatially consistent priors for static classes.

For dynamic classes such as car, activations are more
sporadic but still exhibit platform-specific patterns. The ve-
hicle platform shows dense activations in traffic-heavy ar-
eas, while the drone platform captures broader distributions
due to its high-altitude perspective. The quadruped plat-
form highlights localized activations near dynamic objects
encountered in its immediate surroundings.

These observations reinforce the premise of EAP: that
leveraging platform-specific activation patterns can guide
adaptation by aligning predictions with the unique event-
triggered dynamics of each platform. By incorporat-
ing these patterns into the adaptation process, EAP en-
hances confidence in predictions, particularly for challeng-
ing classes or underrepresented regions.

D. Additional Experiment Results

In this section, we provide additional results from our com-
parative and ablation experiments to further demonstrate
the effectiveness and superiority of the proposed EventFly
framework.

D.1. Class-Wise Adaptation Results

In the main body of this paper, due to space limits, we pro-
vide only the class-wise cross-platform adaptation results
for the & vehicle (P") to *&¥ drone (P) and the & vehicle
(PY) to &% quadruped (P“) settings.
In this supplementary file, we further provide the cross-
platform adaptation results from the following settings:
* Tab. I: Adaptation from the %&* drone (P“) platform to the
& vehicle (PY) platform.
* Tab. J: Adaptation from the *& drone (P) platform to the
&* quadruped (P) platform.
» Tab. K: Adaptation from the & quadruped (P“) platform
to the & vehicle (PY) platform.
e Tab. L: Adaptation from the ® quadruped (P%) platform
to the ¥&¥ drone (P<) platform.

10

Across all adaptation settings, our framework consis-
tently achieves the highest accuracy (Acc), mean accu-
racy (mAcc), and mean Intersection over Union (mloU),
demonstrating its robustness in adapting event-based per-
ception across platforms. Notably, EventFly outperforms
prior methods such as MIC [4] and PLSR [8] by significant
margins, particularly in complex settings such as the adap-
tation from ¥ drone (P<) to & quadruped (P%), and from
% quadruped (P9) to & drone (PY).

Our approach demonstrates superior performance in
static classes, such as road and vegetation, which
are critical for general scene understanding. This aligns
with the strengths of EAP, which captures spatially con-
sistent patterns. Dynamic classes often pose greater chal-
lenges due to motion and variability across domains. How-
ever, we observe that our approach achieves competitive re-
sults, surpassing existing methods in most cases. For exam-
ple, in the &% quadruped (P?) to & vehicle (PY) scenario,
our approach provides notable improvements in car and
person classes, highlighting its ability to transfer motion-
sensitive information effectively.

Additionally, the adaptation results emphasize the do-
main discrepancies between platforms. For instance, in the
8t drone (P9) to & vehicle (PV) setting, static classes such
as road and building are better aligned, while smaller,
dynamic classes like pole and traffic-1ight show
more variation. This reflects the inherent viewpoint differ-
ences between high-altitude drone perspectives and ground-
level vehicle data.

Similarly, in the &% quadruped (P9) to *& drone (P9)
scenario, our framework’s performance in vegetation
and terrain highlights its ability to adapt between the
low-altitude, close-proximity view of quadrupeds and the
expansive aerial coverage of drones.

The additional results reinforce the effectiveness of the
EventFly framework across diverse cross-platform settings.
By addressing both static and dynamic class distributions
and leveraging platform-specific activation patterns, our
framework demonstrates superior generalization and robust
adaptation capabilities. These insights further validate the
suitability of our approach for real-world, multi-platform
event camera perception applications.

D.2. Additional Qualitative Assessment

In addition to the visual comparisons provided in the main
body of this paper, we include more qualitative examples
in this supplementary file. Please kindly refer to Fig. A,
Fig. B, Fig. C, and Fig. D for the cross-platform adaptation
results of the state-of-the-art adaptation methods.

D.3. Failure Cases

Although the proposed approach demonstrates promising
cross-platform adaptation performance, there are certain



failure cases that highlight the limitations and challenges
of the approach.

Classes that are inherently dynamic and less frequently
represented in the datasets, pose significant challenges.
Classes such as traffic—sign, which occupy small re-
gions in the voxel grid, exhibit higher misclassification
rates. This is particularly evident in the adaptation from
i drone (P?) to & vehicle (P¥), where high-altitude
drone perspectives fail to capture the fine details necessary
for distinguishing these classes in ground-level data. Addi-
tionally, in scenarios involving dense vegetation or crowded
urban areas, occlusions lead to reduced prediction confi-
dence.

D.4. Video Demos

To provide a more comprehensive illustration of the pro-

posed EventFly framework and the EXPo benchmark,

we have attached three video demos with this supple-
mentary material. Please kindly find the demol.mp4,
demo?2 .mp4, and demo3 .mp4 files in the attachment.

Specifically, these three video demos contain the follow-
ing visual content:

* Demo #1: The first demo consists of 813 frames from
the penno_parking_2 sequence, illustrating the cross-
platform adaptation from the & vehicle (P") platform to
the %&* drone (P) platform.

¢ Demo #2: The second demo consists of 1013 frames from
the art _plaza_loop sequence, illustrating the cross-
platform adaptation from the & vehicle (P") platform to
the €@ quadruped (P) platform.

¢ Demo #3: The third demo consists of 1,000 frames from
the city_hall sequence, illustrating the cross-platform
adaptation from the & drone (P“) platform to the & ve-
hicle (P") platform.

E. Broader Impact & Limitations

In this section, we elaborate on the broader impact, so-
cietal influence, and potential limitations of the proposed
EventFly framework and the EXPo benchmark.

E.1. Broader Impact

Our approach and benchmark have the potential to redefine
event camera perception across diverse operational plat-
forms, including vehicles, drones, and quadrupeds. By
enabling robust cross-platform adaptation, our framework
could accelerate advancements in autonomous navigation,
disaster response, and robotics, particularly in dynamic and
unstructured environments. These contributions could en-
hance safety, efficiency, and adaptability in real-world ap-
plications, such as autonomous driving in dense urban ar-
eas, aerial surveillance in remote regions, and robotic assis-
tance in disaster zones.
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Moreover, the emphasis on domain-invariant learning for
event-based perception addresses a critical gap in current
technologies, facilitating the fairer deployment of Al sys-
tems across varied socioeconomic and geographical con-
texts. By creating a benchmark with diverse samples and
settings, we aim to foster transparency and reproducibil-
ity in the evaluation of event-based systems, contributing to
the broader research community’s understanding of event-
camera capabilities and limitations.

E.2. Societal Influence

The societal influence of our approach and benchmark

spans multiple domains:

* Improved Safety: Enhanced perception capabilities in
dynamic environments can improve safety in autonomous
systems, reducing the risk of accidents in transportation
and industrial applications.

* Environmental Monitoring: The adaptability of our
framework to drones and quadrupeds facilitates ecologi-
cal and environmental monitoring, promoting sustainabil-
ity and conservation efforts.

* Accessibility: The cross-platform design lowers barri-
ers for deploying event camera solutions in resource-
constrained settings, democratizing access to advanced
vision technologies.

Despite its benefits, it is essential to consider potential
ethical implications, including misuse in surveillance and
privacy-intrusive applications. Researchers and practition-
ers should adhere to ethical guidelines to mitigate risks as-
sociated with deploying these technologies.

E.3. Potential Limitations

While our approach and benchmark demonstrate substantial
advancements, there are inherent limitations. For example,
the reliance on domain-specific activation patterns might
struggle in highly heterogeneous environments with atyp-
ical dynamics, such as extreme weather or chaotic lighting
conditions. Besides, the reliance on pseudo-labels in un-
supervised settings may propagate errors, especially when
source-to-target domain gaps are substantial.

Additionally, although our benchmark is comprehensive,
it might not encompass all possible scenarios, such as multi-
agent coordination or environments with severe occlusions,
necessitating further expansions. The current version of the
benchmark also does not include settings of multi-source or
multi-target adaptation.

In future work, we aim to address these challenges by op-
timizing the framework for real-time applications, expand-
ing the benchmark to include more diverse scenarios, and
investigating advanced self-supervised learning techniques
to minimize reliance on pseudo-labels. By acknowledging
these limitations, we hope to inspire continued innovation
and improvement in event-based perception systems.



Table I. Benchmark results of platform adaptation from ! drone (P to & vehicle (PY). Target is trained with ground truth from the
target domain. All scores are given in percentage (%). The second best and best scores under each metric are highlighted in colors.
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Table J. Benchmark results of platform adaptation from #8% drone (PH to & quadruped (P?). Target is trained with ground truth from
the target domain. All scores are given in percentage (%). The second best and best scores under each metric are highlighted in colors.
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Table K. Benchmark results of platform adaptation from * quadruped (P?) to & vehicle (PY). Target is trained with ground truth

from the target domain. All scores are given in percentage (%). The second best and best scores under each metric are highlighted in
colors.
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Table L. Benchmark results of platform adaptation from & quadruped (P?) to ¥ drone (PY). Target is trained with ground truth from
the target domain. All scores are given in percentage (%). The second best and best scores under each metric are highlighted in colors.
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Figure A. Additional qualitative assessments of cross-platform adaptation from the & vehicle (P") platform to the 8t drone (PY)
platform. We use grayscaled event images for better visibility. The RGB frames are for reference purposes only. Best viewed in colors.
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Figure B. Additional qualitative assessments of cross-platform adaptation from the & vehicle (P") platform to the &* quadruped (P“)
platform. We use grayscaled event images for better visibility. The RGB frames are for reference purposes only. Best viewed in colors.
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Figure C. Additional qualitative assessments of cross-platform adaptation from the 8t drone (PY) platform to the & vehicle PY)
platform. We use grayscaled event images for better visibility. The RGB frames are for reference purposes only. Best viewed in colors.
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Event Stream
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Figure D. Additional qualitative assessments of cross-platform adaptation from the * quadruped (P?) platform to the & vehicle (PY)
platform. We use grayscaled event images for better visibility. The RGB frames are for reference purposes only. Best viewed in colors.
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F.

Public Resource Used

In this section, we acknowledge the use of the following
public resources, during the course of this work:

e M3ED? ..o CCBY-SA 4.0
e BSS® ... GNU General Public License v3.0
e E2VID*............. GNU General Public License v3.0
o AdaptSegNet’ ...............ccooiiiiiiia... Unknown
¢ CBSTO oot CCBY-SA 4.0
o IntraDA” .. ... MIT License
e DACS® .. MIT License
o MICY . Unknown
e Pytorch ' ... ... ...l Pytorch License
e Pytorch3D ' ... .. ...l BSD-Style License
e Open3D 2 ... MIT license
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