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A. Implementation details

Collection process. Queries and positives are cre-
ated/collected by a group of 16 collectors who are well-
informed about the task objectives. Most of the images con-
sist of photographs taken by the collectors for the purpose
of this work, while a smaller part is downloaded from online
repositories with a permissive license. All collected images
are manually filtered and curated by the authors. Regard-
ing the selection of the objects, the collectors are advised
to opt for objects with distinct, uncommon features—such
as unique shapes, colors, or textures—that set them apart
within their category, i.e. prioritize items with rare modi-
fications. As mentioned in the main paper, objects that are
created or share parts with other objects created before 2014
do not qualify as query objects. Fig. A illustrates some of
the objects rejected during the selection process. Fig. Aa is
the Kuggen building, whose construction finished in 2011.
Fig. Ab is a newly bought coaster that displays a well-
known van Gogh painting. Fig. Ac is a newly bought cutlery
holder whose design is rather generic with no distinctive de-
tail; hence, very similar (close to identical) objects may ex-
ist in YFCC100M. Furthermore, the collectors are provided
with older camera models used in YFCC100M. This simu-
lates similar camera distribution for the query and positive
images with the distractors. Tab. A shows the distribution of
the most used cameras. Older-generation cameras are used
for the majority of the collected images. The collectors are
instructed to avoid using the same camera for both the query
and the positives of an object to avoid any possible shortcuts
learned by pre-trained models.

Downloading and storing images. To acquire the
YFCC100M [42], we download images based on the Flickr
URLSs provided by the original authors. Approximately
~82M images are downloaded. The remaining images are
downloaded from the AWS S3 data bucket provided by the
authors. We opt for downloading the images from Flickr to
ensure that identical preprocessing has been applied to the
distractor dataset and the collected query and positive sets
in ILIAS. The collected images in ILIAS are also uploaded
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Figure A. Rejected objects. Example of objects that are disre-
garded during the selection process.

model year type images
Canon EOS 450D 2008 DSLR 770
NIKON D3000 2009 DSLR 585
NIKON 3100 2010 DSLR 443
DiMAGE X1 2005 camera 286
Xiaomi Poco X5 Pro 2023  phone 275
iPhone 14 2022  phone 237
Xiaomi Redmi Note 11 Pro 2022  phone 210
Canon EOS 6D Mark 1T 2017 DSLR 208
iPhone SE (3rd generation) 2022  phone 195
NIKON 5300 2013 DSLR 144
Canon EOS 50D 2008 DSLR 141
iPhone 14 Pro 2022  phone 122
Canon PowerShot S5 IS 2007 DSLR 118
ONEPLUS A6003 2018  phone 110
Canon EOS REBEL T2i 2010 DSLR 102

Table A. Most frequently used camera models in ILIAS. Cam-
eras used for more than 100 images are displayed. Information
about release date and type of camera is provided.

to and downloaded from Flickr. We use the “medium” op-
tion to download all images, which resizes images to 500px
based on their larger side. All images are stored with 90
JPEG compression quality with 4:4:4 chroma subsampling.
Following [, 12], white balancing is applied on all images.
All personal details (e.g. human faces, license plates) that
are displayed in the collected images of ILIAS are either
blurred or cropped.
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Table B. Examples of templates used for the text query generation
for the creation of mini-ILIAS. The » symbol is replaced with a
taxonomy term.

mini-ILIAS composition. We consider the 88 text category
labels from ILIAS taxonomy to generate text queries, man-
ually expanded with 132 terms that are synonyms or fine-
grained descriptions of the original labels. The collected
labels are combined with 43 templates used in the original
CLIP [32] to generate a list of 9,976 text queries. Exam-
ples of the templates used are in Tab. B. We do not consider
domain-specific templates. We use the large model variants
of SigLIP, OpenCLIP, and EVA-CLIP to compute the en-
semble text-image similarities between the text queries and
each image of YFCC100M.

Text query generation. We generate text queries using the
GPT-40 [26]. The prompt displayed in Fig. B is first pro-
vided to the LLM. Then, a query image of one of the ob-
jects in ILIAS and its corresponding category is provided to
the model to generate a textual description. For object cate-
gory, we use mid level category from taxonomy. If it is not
available, we use the coarser level category. The generated
text queries are manually edited by the authors to fix errors,
insufficient descriptions, or nuances of the model.

Global representations. For the implementation of global
representation models, we rely on public resources avail-
able on PyTorch [28]. We use the timm' and torchvision’
libraries that provide relevant code and weights for the ma-
jority of the models. For the models not included there, we
use the relevant code from the official github repositories
provided by the authors, i.e. [27]°, [5]%, [4]°, [15]°, [29]’,

q1chb com/rwightman/pytorch-image-models
pytorch/vision
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3q1fh1b./”, bookresearch/dinov2
4g1th4b.uoﬂ/Aa ~ebookresearch/dino
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github.com/facebookresearch/swav

github.com/facebookresearch/moco-v3
github.com/yash0307/recallatk_surrogate

You are a system generating descriptions of
objects shown in an image.

Provided with an image and a category in which
the item shown in the image belongs to, you will
describe the main item that you see in the image,
giving enough details to unambiguously describe
the object.

You can describe unambiguously what the item is
and its material, color, and style if clearly
identifiable.

Please do not describe anything about the

background.

Figure B. Prompt used for the initial generation of text queries.

[191%, [237°%, [351'9, [21'', 3412, [501", [511*. Model
weights that are not publicly available are provided to us
by the original authors. For t2i, we use the image encoders
from timm and the text encoders from huggingface'® and
OpenCLIP'®. We include only base and large model vari-
ants in our benchmark. Tab. G and H contain more in-
formation, including model checkpoints. Regarding im-
age preprocessing, following instance-level retrieval liter-
ature [23, 31, 35], the images are resized based on their
largest side respecting their aspect ratio, i.e. isotropic rescal-
ing. Image resolution is dictated by each model’s specifi-
cations together with the rule setting resolution one level
higher than those used during training. This rule is empir-
ically created based on experiments presented in Sec. B.1.
We normalize the image tensors with the mean and stan-
dard deviation statistics according to model specifications.
For all ViT-based models, bicubic interpolation of the posi-
tion embeddings is performed. Unicom [2] requires fixed-
size tensors in the backbone output, which goes through a
projection head; hence, we use adaptive average pooling to
fix the spatial dimensions of the output feature tensors. For
UDON [51] and USCRR [50] models, we use the represen-
tation before projection due to the low dimensionality of the
latter. For AlexNet [22] and VGG [36] models, we extract
descriptors based on the feature maps of the last convolu-
tional layer by applying GeM pooling [31]. For the rest of
the models, the extraction process used in the original meth-
ods is employed. All global descriptors are ¢ normalized.
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Figure C. Impact of the number of distractors. mAP@1k of
five models for varying db size. { indicates results with the linear
adaptation. b and [: base and large model variants.

Linear adaptation. The single linear adaptation layer is
trained on a 1M random subset of UnED [50]. The training
follows the UJCDS [50] method that learns a linear clas-
sifier on all classes in the UnED subset (191,513 classes).
The classifier gets the /o normalized features output from
the linear adaptation layer. During training, the Normalized
Softmax loss [52] is minimized, and no balancing across
UnED domains is performed. The linear layer and clas-
sifier are trained for 2 epochs with 128 batch size. We use
Adam [20] optimizer with 1073 learning rate and 10® weight
decay. The scale of the Normalized Softmax loss is 16.

Local representations. Following AMES [38], local de-
scriptors are extracted based on the base variant of DI-
NOv2 with registers [8, 27]. Local descriptors are selected
based on their weights estimated by a feature detector [3].
We use the pre-trained network trained on the correspond-
ing descriptors. The local descriptor extraction, the pre-
trained models, and inference configurations are publicly-
available'”. To ensure a fair comparison between re-ranking
methods, we use the same local descriptors for other meth-
ods but with different binarization. AMES consists of a
binarization layer initialized with ITQ [11, 21] and fine-
tuned during model training. Hence, for Chamfer Similarity
(CS) [33] and Spatial verification (SP) [30], the descriptors
are binarized with the same ITQ weights. For SP, we follow
the standard practice in retrieval with fast spatial match-
ing [3] and use single correspondence hypotheses, which
is translation in our case, and LO-RANSAC [7] for affine-
transformation. Due to the single scale local descriptors, de-
parting from the single correspondence hypothesis and sam-
pling correspondence pairs or triplets can potentially pro-
vide better results despite being slower. Tentative inlier cor-
respondences are extracted based on the nearest neighbor of
each query local descriptor, using a threshold of 32 Ham-
ming distance. Local similarity for re-ranking is estimated
based on the number of inliers detected by RANSAC, with

17qit hub.com/pavelsuma/ames

model train res 224 384 512 724
EVA-CLIP [10, 39] 224 5.0 7.7 5.8 3.1
MetaCLIP [48] 224 5.1 8.8 6.5 3.8
OpenCLIP [17, 24] 224 82 10.7 6.1 2.5
DINOvV?2 [27] 518 64 122 140 143
SigLIP [53] 224 9.1 141 102 6.1
SigLIP [53] 512 0.1 89 189 20.2
EVA-CLIP [10, 39] 336 47 13.1 134 9.5
MetaCLIP [48] 224 103 144 11.0 74
OpenCLIP [17, 24] 320 103 165 127 7.6
DINOV2 [27] 518 9.7 160 177 185
SigLIP [53] 256 83 188 154 108
SigLIP [53] 384 1.8 21.6 241 206

Table C. Impact of resolution. Performance (mAP@ 1k) by test-
ing at different resolutions. The underline indicates the resolution
selected for each model based on our rule. Linear adaptation is not
used. Top: base models. Bottom: large models.

a minimum threshold of 5 inliers. Also, the final AMES
similarity is an ensemble of local and global similarity. For
a fair comparison, the same ensembling scheme is also used
for CS and SP, following the same validation process. The
ensemble hyper-parameters are tuned on the public split of
the GLDv2 dataset. In the default settings, i.e. 100 binarized
local descriptors for db images, the total memory require-
ments for storing local descriptors is ~149GB, which is to
be compared with ~95GB needed for 512D global descrip-
tors stored in half-precision. Note that we do not consider
compression techniques for the global descriptors, which
can decrease the memory footprint by an order of magni-
tude with an insignificant performance loss [13, 38].

B. Additional experiments

Similar to the main paper, unless stated otherwise, we use
the large ViT model variants with the largest resolution
available, e.g. we use SigLIP ViT-L trained with 384 res-
olution. In the case of various architectures for the same
method, we use the best-performing one, e.g. we use the
large variant of ConvNext architecture for OpenCLIP.

B.1. Additional analysis

Impact of number of distractors. Fig. C presents the per-
formance of five models under varying numbers of distrac-
tors. Performance declines as more distractors are added;
however, significantly increasing the dataset’s difficulty re-
quires an exponential growth in the number of distrac-
tors. Notably, the ranking of models changes considerably
when comparing performance with no distractors to that
with 100M distractors. For example, DINOv2 demonstrates
strong robustness to distractor increases, ranking last with
no distractors but surpassing two models at 100M distrac-
tors and reaching others. Also, several crossings between
models are observed. Therefore, evaluation at a large scale,
provided by ILIAS, is important.
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Figure D. Comparison with other instance-level retrieval datasets via reporting mAP@ 1k. Results with linear adaptation. INSTRE:
27.3K db size, multi-domain. GLDv2: 762K db size, single-domain. SOP: 60.5K db size, single-domain. Different network types are
color-coded. For GLDv2 and SOP, models fine-tuned on these domains with the corresponding training sets are highlighted.

Impact of image resolution. In Tab. C, we investigate the
impact of resolution and validate the rule of using as test
resolution one up from the training one. Linear adaptation
is not used in this experiment. It is clear that the vast ma-
jority of models achieve the best performance following the
imposed rule; test at a resolution one level larger than the
training resolution. Interestingly, SigLIP collapses when
used with a resolution much lower than the training one.

Impact of background clutter. To quantify the impact of
background clutter, we experiment with masking out areas
outside object bounding boxes in the positives during de-
scriptor extraction. This approach improves SigLIPT per-
formance from 28.9 to 62.4. Fig. Ea also presents the im-
pact of clutter, i.e. number of segments detected by SAM in
a positive image outside of the object bounding box, on the
ranking of this positive. This experiment provides insight
about the type of positives, according to clutter, that popu-
late the top and bottom ranks. Positives with less clutter, i.e.
low number of segments, are the most common in the higher
ranks; while, positives with more clutter, i.e. high number
of segments, are the most common in the lower ranks.

Impact of object scale. Flowing the same strategy as
above, but object bounding boxes are cropped and rescaled
instead of masking, performance further improves to 69.4.
However, although this does not reflect solely the impact
of scale changes due to potential partial views and dras-
tic viewpoint changes, it still gives a good insight into the
limitations of the current models regarding scale changes.
Fig. Eb presents the impact of relative scale, i.e. percentage
of the bounding box area within the image area, on the rank-
ing of positive. This experiment provides insight into the
type of positives, according to relative image coverage, that
populate the corresponding rank ranges. Positives where
the object covers a large area are the most common in the
higher ranks; while, positives with a small area coverage are
the most common in lower.

Multi-scale and multi-rotation extraction. A common
approach to address scale variation is multi-scale feature
extraction, as widely adopted in the literature [31, 35]. Ap-
plying multi-scale extraction asymmetrically, i.e. only on
the queries, yields an average 0.4 performance improve-
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Figure E. Impact of clutter and area coverage. Percentage of
images per ranking range based on SigLIP' and grouped based on
(a) clutter, i.e. number of segments detected by SAM, (b) scale,
i.e. area of object bounding box in images. Column bins contain
the same number of positives. Normalization per row is applied.

ment across benchmarked models. SigLIP is marginally
improved by 0.1. Multi-rotation is also tested in a similar
manner, which, however, leads to an average drop of 0.3.
Yet, SigLIP is marginally improved by 0.2.

Comparison with other datasets using linear adaptation.
Fig. D presents the performance of global representation
models with linear adaptation. Similar conclusions derive
as in the case without adaptation. Only SigLIP achieves a
competitive performance in SOP datasets out of the models
not trained in-domain.

Performance per domain. Fig. F shows the average perfor-
mance of objects grouped based on coarser taxonomy level.
Qualitative examples. Fig. L. and M show examples of
retrieved images based on i2i and t2i retrieval, respectively.

B.2. Linear adaptation

Comparison with other approaches. Tab. D compares
the proposed linear adaptation with other linear projection
methods trained on UnED for three models. All methods
project the off-the-shelf descriptors to 512D ones. The un-
supervised PCA whitening (PCA,,) [18] and the supervised
learnable whitening (L,,) [31] approaches are evaluated.
The proposed linear adaptation scheme achieves the best
performance, typically with a large margin. It is the only
one that does not drop off-the-shelf DINOv2 performance.
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model labels DINOv2 OpenCLIP SigLIP
no adaptation - 15.3 9.6 19.6
PCA,, [18] X 14.8 12.5 222
L., [31] v 14.0 9.1 15.1
ours v 15.3 18.3 28.9

Table D. Performance comparison for linear adaptation via
mAP@1k. Label requirement is indicated. Performance before
adaptation is provided for reference.

dataset domain DINOv2 OpenCLIP SigLIP
no adaptation - 15.3 9.6 19.6
GLDv2 [47] landmarks 14.6 14.2 25.6
Food2k [25] food 12.6 13.6 22.6
Met [49] artworks 14.7 5.1 7.6
iNaturalist [45]  natural world 14.2 16.3 26.4
UnED [50] multi-domain 15.3 18.3 28.9

Table E. Performance comparison of single- and multi-domain
linear adaptation. mAP@ 1k of models with linear adaptation
trained on different dataset setups based on UnED. Performance
before adaptation is provided for reference.

Impact of multi-domain linear adaptation. Tab. E illus-
trates the performance of several models with linear adap-
tation trained on the four largest single-domain datasets of
UnED, as well as the entire UnED. Training on a single do-
main typically increases the performance of VLMs, except
in the case of Met, where performance drops dramatically.
DINOv2 performance decreases consistently with single-
domain training. Nevertheless, the margin with multi-
domain training is significant, indicating that multi-domain
training on the whole UnED is best suited for ILIAS.
Impact of descriptor dimensionality. Fig. G illustrates the
performance of five models linearly adapted on UnED with
varying descriptor dimensionalities. For all models, per-
formance saturates at a descriptor dimensionality of 256D,
with only marginal improvements observed for most mod-
els beyond this point.
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Figure G. Impact of descriptor dimensionality. mAP@ 1k of five
models with the linear adaptation of various dimensionalities.

Robustness. We conduct three independent runs using dif-
ferent random seeds to evaluate the robustness of the lin-
ear adaptation. Across five global descriptors, the proposed
scheme exhibits strong robustness, with a maximum stan-
dard deviation of 0.2 and a minimum of 0 across runs.

B.3. Re-ranking with local representations

Impact of top-M re-ranked images and number of local
descriptors. Fig. H illustrates the performance of SigL.IP
with re-ranking when an increasing number of re-ranked
images and local descriptors, translated to memory per im-
age, are used. Performance increases as both variables in-
crease. In the default scenario of top-1k and 100 descrip-
tors, the performance is 35.6, which requires 0.6sec per
query and approximately 150GB of memory. In an un-
constrained scenario, the top performance is 38.8, requiring
20sec and almost 900GB.

Combination with various global representations. Tab. F
presents the performance with and without re-ranking on
ILIAS and mini-ILIAS using various models for global rep-
resentation. mAP@ 1k is improved by more than 6 when
re-ranking is applied for all models and datasets.
Qualitative examples. Fig. | presents some queries with
the largest AP improvement from re-ranking with AMES.
Several cases of severe clutter, scale changes, and partial
views are successfully retrieved with re-ranking.
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ILIAS mini-ILIAS
model
mAP@1k oracle mAP@lk oracle

DINOv2! 15.3 34.0 18.8 41.8

+ AMES 21.8 34.0 26.5 41.8
OpenCLIP' 18.3 48.0 22.9 56.3

+ AMES 27.1 48.0 32.9 56.3
SigLIPT 28.9 56.0 34.3 63.9

+ AMES 35.6 56.0 414 63.9

Table F. Re-ranking on top of different global representations.
mAP@ 1k and oracle re-ranking on ILIAS and mini-ILIAS. + in-
dicates re-ranking with AMES. { indicates results with the linear
adaptation.

C. Dataset extras

Spatial location of objects in positives. Fig. J illustrates
the spatial location of the object in the positives. Center
bias in ILIAS is much less prominent in comparison with
INSTRE [46] dataset.

Taxonomy. Fig. K illustrate the defined categories for the
three taxonomy levels.

Query and positive examples. Fig. N provides visual
examples of the collected queries and positives of several
query objects.

Benchmarked models. Tab. G and H provide details and
performance on ILIAS and mini-ILIAS of all models.

D. Dataset hosting, sharing and license

ILIAS is hosted in our servers in its entirety (i.e. collected
images and the downloaded YFCC100M) to assert its long-
term availability to the broader public. All collected images
are shared under the permissive CC-BY 4.0 license. The
downloaded images are distributed under their original li-
cense. All collectors have signed a consent form for the
distribution of their images under this license.
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Figure I. Re-ranking with AMES. Queries with the most signifi-
cant AP increase from re-ranking. The number of negatives ranked
above positives is reported on top, as before — after re-ranking.



ILIAS INSTRE

0.6
0.4
0.2
0.0

Figure J. Distribution of object bounding boxes in positives.

References

(1]

(2]

(3]

[4]

(53]

(6]

(7]

(8]

(9]

[10]

(11]

Mahmoud Afifi and Michael S Brown. What else can fool
deep learning? addressing color constancy errors on deep
neural network performance. In /CCV, 2019. 1

Xiang An, Jiankang Deng, Kaicheng Yang, Jaiwei Li, Ziy-
ong Feng, Jia Guo, Jing Yang, and Tongliang Liu. Unicom:
Universal and compact representation learning for image re-
trieval. In ICLR, 2023. 2,9

Bingyi Cao, André Araujo, and Jack Sim. Unifying deep
local and global features for image search. In ECCV, 2020.
3

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurlIPS, 2020. 2,9

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV,2021. 2,9

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell
Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuh-
mann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scal-
ing laws for contrastive language-image learning. In CVPR,
2023. 9, 10

Ondfej Chum, Jifi Matas, and Josef Kittler. Locally opti-
mized ransac. In GCPR, 2003. 3

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr
Bojanowski. Vision transformers need registers. In ICLR,
2024. 3,9

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICML, 2021. 9

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu,
Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue
Cao. EVA: Exploring the limits of masked visual represen-
tation learning at scale. In CVPR, 2023. 3, 9, 10

Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Flo-
rent Perronnin. Iterative quantization: A procrustean ap-
proach to learning binary codes for large-scale image re-
trieval. PAMI, 2012. 3

[12]
(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

[26]
(27]

(28]

Rafael C Gonzalez. Digital image processing. 2009. 1
Albert Gordo, Jon Almazan, Jerome Revaud, and Diane Lar-
lus. End-to-end learning of deep visual representations for
image retrieval. IJCV, 2017. 3

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 9

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020. 2, 9

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In CVPR, 2017. 9

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave,
Vaishaal Shankar, Hongseok Namkoong, John Miller, Han-
naneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Open-
clip, 2021. 3,9, 10

Hervé Jégou and Ondrej Chum. Negative evidences and co-
occurences in image retrieval: The benefit of pca and whiten-
ing. In ECCV, 2012. 4,5

Sungyeon Kim, Boseung Jeong, and Suha Kwak. HIER:
Metric learning beyond class labels via hierarchical regular-
ization. In CVPR, 2023. 2,9

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In /CLR, 2015. 3

Giorgos Kordopatis-Zilos, Christos Tzelepis, Symeon Pa-
padopoulos, loannis Kompatsiaris, and Ioannis Patras. DnS:
Distill-and-select for efficient and accurate video indexing
and retrieval. IJCV, 2022. 3

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In NeurIPS, 2012. 2,9

Seongwon Lee, Hongje Seong, Suhyeon Lee, and Euntai
Kim. Correlation verification for image retrieval. In CVPR,
2022. 2,9

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. CVPR,2022. 3,9, 10

Weiqing Min, Zhiling Wang, Yuxin Liu, Mengjiang Luo,
Liping Kang, Xiaoming Wei, Xiaolin Wei, and Shuqiang
Jiang. Large scale visual food recognition. PAMI, 2023.
5

OpenAl. Gpt-4o system card. In arXiv, 2024. 2

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mah-
moud Assran, Nicolas Ballas, Wojciech Galuba, Russell
Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Je-
gou, Julien Mairal, Patrick Labatut, Armand Joulin, and Pi-
otr Bojanowski. DINOv2: Learning robust visual features
without supervision. TMLR, 2024. 2, 3,9

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
NeurlPS, 2019. 2



[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

Yash Patel, Giorgos Tolias, and Jiff Matas. Recall @k surro-
gate loss with large batches and similarity mixup. In CVPR,
2022. 2,9

James Philbin, Ondiej Chum, Michael Isard, Josef Sivic, and
Andrew Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In CVPR, 2007. 3

Filip Radenovi¢, Giorgos Tolias, and Ondfej Chum. Fine-
tuning cnn image retrieval with no human annotation. PAMI,
2019. 2,4,5

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, 2021.
2,9,10

Ali S Razavian, Josephine Sullivan, Stefan Carlsson, and At-
suto Maki. Visual instance retrieval with deep convolutional
networks. ITE Trans. on Media Technology and Applica-
tions, 2016. 3

Mert Bulent Sariyildiz, Philippe Weinzaepfel, Thomas Lu-
cas, Diane Larlus, and Yannis Kalantidis. UNIC: Universal
classification models via multi-teacher distillation. In ECCYV,
2024. 2,9

Shihao Shao, Kaifeng Chen, Arjun Karpur, Qinghua Cui,
André Araujo, and Bingyi Cao. Global features are all you
need for image retrieval and reranking. In /CCV, 2023. 2, 4,
9

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In /CLR,
2015. 2,9

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross
Wightman, Jakob Uszkoreit, and Lucas Beyer. How to train
your vit? data, augmentation, and regularization in vision
transformers. TMLR, 2021. 9

Pavel Suma, Giorgos Kordopatis-Zilos, Ahmet Iscen, and
Giorgos Tolias. AMES: Asymmetric and memory-efficient
similarity estimation for instance-level retrieval. In ECCV,
2024. 3

Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue
Cao. EVA-CLIP: Improved training techniques for clip at
scale. In arXiv, 2023. 3,9, 10

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015. 9

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, 2019. 9
Bart Thomee, David A Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and
Li-Jia Li. YFCC100M: The new data in multimedia research.
Communications of the ACM, 2016. 1

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In /ICML, 2021. 9

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muham-
mad Ferjad Naeem, Ibrahim Alabdulmohsin, Nikhil

[45]

[46]

(47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil
Mustafa, et al. SigLIP 2: Multilingual vision-language en-
coders with improved semantic understanding, localization,
and dense features. In arXiv, 2025. 9, 10

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and de-
tection dataset. In CVPR, 2018. 5

Shuang Wang and Shuqgiang Jiang. INSTRE: A new bench-
mark for instance-level object retrieval and recognition.
TOMM, 2015. 6

Tobias Weyand, André Araujo, Bingyi Cao, and Jack Sim.
Google Landmarks Dataset v2 — A large-scale benchmark
for instance-level recognition and retrieval. In CVPR, 2020.
5

Hu Xu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang,
Russell Howes, Vasu Sharma, Shang-Wen Li, Gargi Ghosh,
Luke Zettlemoyer, and Christoph Feichtenhofer. Demystify-
ing clip data. In ICLR, 2024. 3,9, 10

Nikolaos-Antonios Ypsilantis, Noa Garcia, Guangxing Han,
Sarah Ibrahimi, Nanne Van Noord, and Giorgos Tolias. The
MET dataset: Instance-level recognition for artworks. In
NeurIPS, 2021. 5

Nikolaos-Antonios Ypsilantis, Kaifeng Chen, Bingyi Cao,
Mirio Lipovsky, Pelin Dogan-Schonberger, Grzegorz
Makosa, Boris Bluntschli, Mojtaba Seyedhosseini, Ondiej
Chum, and André Araujo. Towards universal image embed-
dings: A large-scale dataset and challenge for generic image
representations. In /CCV, 2023. 2, 3,5,9
Nikolaos-Antonios Ypsilantis, Kaifeng Chen, André Araujo,
and Ondfej Chum. UDON: Universal dynamic online distil-
lation for generic image representations. In NeurIPS, 2024.
2,9

Andrew Zhai and Hao-Yu Wu. Classification is a strong
baseline for deep metric learning. In BMVC, 2018. 3
Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and
Lucas Beyer. Sigmoid loss for language image pre-training.
In ICCV, 2023. 3,9, 10

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, 2018. 9



checkpoint year cite repo arch train dims dataset datasize trainres testres 5M 100M 5M' 100Mf
alexnet.tv_inlk 2012 [22] torchvision CNN sup 256 inlk 1M 224 384 2.0 1.5 1.9 1.3
vggl6.tv_inlk 2014 [36] torchvision CNN sup 512 inlk IM 224 384 30 23 23 1.6
resnet50.tv_inlk 2015 [14] torchvision ~ R50 sup 2048 inlk 1M 224 384 2.3 1.7 2.5 1.8
resnet101.tv_inlk 2015 [14] torchvision R101 sup 2048 inlk M 224 384 2.7 1.9 2.7 1.8
densenet]169.tv_inlk 2016 [16] torchvision CNN sup 2048 inlk 1M 224 384 3.2 2.4 2.9 2.0
inception_v4.tf_inlk 2017 [40] torchvision CNN sup 1536 inlk 1M 299 512 1.7 1.1 1.5 1.0
nasnetalarge.tf_inlk 2018 [54] torchvision CNN sup 4032 inlk 1M 331 512 1.7 1.0 1.6 1.0
tf_efficientnet_b4.ns_jft_inlk 2019 [41] timm CNN  sup+dist 1792 inlk M 380 512 38 26 43 29
vit_base_patch16_224.augreg_inlk 2020 [9,37] timm ViT-B sup 768 inlk 1M 224 384 1.4 1.0 1.9 1.3
vit_base_patch16_224.augreg_in21k 2020 [9,37] timm ViT-B sup 768 in21k 14M 224 384 42 30 62 44
vit_large_patch16_224.augreg_in21k 2020 [9,37] timm ViT-L sup 1024 in21k 14M 224 384 6.0 4.6 7.3 53
vit_large_patch16_224.augreg_in21k_ft_inlk 2020 [9,37] timm ViT-L sup 1024 inlk M 224 384 5.1 3.6 6.6 4.7
vit_large_patch16_384.augreg_in21k_ft_inlk 2020 [9,37] timm ViT-L sup 1024 inlk M 384 512 72 53 8.7 6.4
deit3_base_patch16_224.fb_inlk 2021 [43] timm ViT-B sup+dist 768 inlk M 224 384 38 1.2 27 1.8
deit3_large_patch16_224.fb_inlk 2021 [43] timm ViT-L sup+dist 1024 inlk M 224 384 5.0 1.5 33 24
RNS50.0openai 2021 [32] github R50 vla 1024 opanai 400M 224 384 22 32 85 6.0
vit_base_patch16_clip_224.openai 2021 [32] timm ViT-B vla 512 opanai 400M 224 384 33 42 107 79
vit_large_patch14_clip_224.openai 2021 [32] timm ViT-L vla 768 opanai 400M 224 384 25 70 158 119
vit_large_patch14_clip_336.openai 2021 [32] timm ViT-L vla 768 opanai 400M 336 512 44 94 199 152
vit_large_patch14_clip_224.laion2b 2021 [6,17] timm ViT-L vla 768 laion2b 2B 224 384 59 94 175 137
swav_resnet50 2021 [4] github R50 ssl 2048 inlk 1M 224 384 9.0 1.7 29 2.1
dino_resnet50 2021 [5] github R50 ssl 2048 inlk M 224 384 121 29 41 29
dino_vitb16 2021 [5] github ViT-B ssl 768 inlk M 224 384 118 37 6.6 48
moco_v3_resnet50 2021 [15] github R50 ssl 2048 inlk M 224 384 19 26 34 26
moco_v3_vitb 2021 [15] github ViT-B ssl 768 inlk M 224 384 20 1.9 32 23
convnext_base.fb_inlk 2022 [24] timm CN-B sup 1024 inlk IM 288 384 2.8 2.0 39 2.7
convnext_base.fb_in22k 2022 [24] timm CN-B sup 1536 in22k 14M 224 384 3.2 6.4 99 7.6
convnext_large.fb_inlk 2022 [24] timm CN-L sup 1024 inlk M 288 384 8.9 2.2 4.2 29
convnext_large.fb_in22k 2022 [24] timm CN-L sup 1536 in22k 14M 288 384 8.6 6.6 9.1 6.9
convnext_base.clip_laion2b_augreg 2022 [17,24] timm CN-B vla 640 laion2b 2B 256 384 10.7 79 18.1 14.0
convnext_large_mlp.clip_laion2b_ft_soup_320 2022 [17,24] timm CN-L vla 768 laion2b 2B 320 512 127 9.6 229 183
recall_512-resnet50 2022 [29] github* R50 sup 512 sop 60k 224 384 37 1.6 3.1 2.1
recall_S512-vit_base_patch16_224_in21k 2022 [29] github* ViT-B sup 512 sop 60k 224 384 39 50 173 53
cvnet_resnet50 2022 [23] github R50 sup 2048 gldv2 IM 512 724 2.3 29 35 2.6
cvnet_resnet101 2022 [23] github R101 sup 2048 gldv2 M 512 724 68 30 42 31
superglobal_resnet50 2023 [35] github R50 sup 2048 gldv2 M 512 724 3.1 34 3.8 2.8
superglobal_resnet101 2023 [35] github R101 sup 2048 gldv2 M 512 724 25 34 45 32
hier_dino_vits16_sop 2023 [19] github* ViT-S sup 384 sop 60k 224 384 67 33 51 3.6
eva02_base_patch14_224.mim_in22k 2023 [10] timm ViT-B ssl 768 in22k 14M 224 384 7.8 2.1 4.7 3.2
eva02_large_patch14_224.mim_in22k 2023 [10] timm ViT-L ssl 1024 in22k 14M 224 384 13.6 1.5 39 27
eva02_large_patch14_224.mim_m38m 2023 [10] timm ViT-L ssl 1024 merged38m 38M 224 384 43 47 88 6.1
eva02_base_patch16_clip_224.merged2b 2023 [10,39] timm ViT-B vla 512 merged2b 2B 224 384 45 59 117 8.7
eva02_large_patch14_clip_336.merged2b 2023 [10,39] timm ViT-L vla 768 merged2b 2B 336 512 138 109 209 16.0
unicom_vit_base_patch16_224 2023 [2] github ViT-B dist 768 laion400m 400M 224 384 18.0 11.0 138 11.1
unicom_vit_large_patch14_224 2023 [2] github ViT-L dist 768 laion400m 400M 224 384 178 138 17.7 13.8
unicom_vit_large_patch14_336 2023 [2] github ViT-L dist 768 laion400m 400M 336 512 122 139 18.6 146
unicom_vit_base_patch16_gldv2 2023 [2] github* ViT-B sup 768 gldv2 400M 512 724 37 3.0 41 33
unicom_vit_base_patch16_sop 2023 [2] github* ViT-B sup 768 sop 400M 224 384 143 9.1 128 99
uscrr_64-vit_base_patch16_clip_224.openai 2023 [50] github ViT-B sup 768 uned 2.8M 224 384 185 3.8 6.4 4.3
dinov2_vitb14 2023 [27] github ViT-B ssl 768 lvdl42m 142M 518 724 46 115 150 121
dinov2_vitl14 2023 [27] github ViT-L ssl 1024 lvdl42m 142M 518 724 141 153 188 153
vit_base_patch16_siglip_224.webli 2023 [53] timm ViT-B vla 768 webli 10B 224 384 146 112 194 157
vit_base_patch16_siglip_256.webli 2023 [53] timm ViT-B vla 768 webli 10B 256 384 193 115 206 167
vit_base_patch16_siglip_384.webli 2023 [53] timm ViT-B vla 768 webli 10B 384 512 201 156 262 215
vit_base_patch16_siglip_512.webli 2023 [53] timm ViT-B vla 768 webli 10B 512 724 188 16.6 275 23.0
vit_large_patch16_siglip_256.webli 2023 [53] timm ViT-L vla 1024 webli 10B 256 384 242 152 263 218
vit_large_patch16_siglip_384.webli 2023 [53] timm ViT-L vla 1024 webli 10B 384 512 57 196 343 289
vit_base_patch16_clip_224.metaclip_2pt5b 2024 [48] timm ViT-B vla 768 2pt5b 2.5B 224 384 88 66 127 94
vit_large_patch14_clip_224.metaclip_2pt5b 2024 [48] timm ViT-L vla 1024 2pt5b 2.5B 224 384 144 117 217 169
dinov2_vitb14_reg 2024 [8,27] github ViT-B ssl 768 lvdl42m 142M 518 724 11.8 94 135 107
dinov2_vitl14_reg 2024 [8,27] github ViT-L ssl 1024 lvdl42m 142M 518 724 159 127 17.1 136
unic_l 2024 [34] github ViT-L dist 1024 inlk M 518 512 114 89 153 117
udon_64-vitb_in21k_ft_inlk 2024 [51] github* ViT-B sup 768 uned 2.8M 224 384 75 55 13 53
udon_64-vitb_clip_openai 2024 [51] github* ViT-B sup 768 uned 2.8M 224 384 83 59 92 67
vit_base_patch16_siglip_384.v2_webli 2025 [44] timm ViT-B vla 768 webli 10B 384 512 184 150 275 226
vit_base_patch16_siglip_512.v2_webli 2025 [44] timm ViT-B vla 768 webli 10B 512 724 18.6 154 28.6 235
vit_large_patch16_siglip_384.v2_webli 2025 [44] timm ViT-L vla 1024 webli 10B 384 512 246 199 363 303
vit_large_patch16_siglip_512.v2_webli 2025 [44] timm ViT-L vla 1024 webli 10B 512 724 253 208 373 313

Table G. Benchmarked model details and mAP@1k on ILIAS and mini-ILIAS for global representation models for i2i. Model
details include the year of publication, repository used, architecture (arch), model descriptor dimensions (dims), training scheme (train),
training data, and train/test resolution. SM and 100M correspond to the mini and full versions of the dataset, respectively. For fine-tuned
models, only the fine-tuning dataset is considered. Repo indicates the framework used to acquire model weights, i.e. torchvision, timm, or
official github. * indicates non-publicly available models provided by the original author. T indicates results with the linear adaptation. sup,
ssl, dist, vla: supervised learning, self-supervised learning, distillation, vision-language alignment. R50, R101, CN: ResNet50, ResNet101

and ConvNext.



checkpoint year cite repo arch dims dataset data size trainres testres 5M 100M
RNS50.0openai 2021 [32] oc R50 1024 opanai 400M 224 384 23 1.5
vit_base_patch16_clip_224.openai 2021 [32] timm+oc ViT-B 512 opanai 400M 224 384 27 1.6
vit_large_patch14_clip_224.openai 2021 [32] timm+oc ViT-L 768 opanai 400M 224 384 6.7 4.6
vit_large_patch14_clip_336.openai 2021 [32] timm+oc ViT-L 768 opanai 400M 336 512 84 58
vit_large_patch14_clip_224.laion2b 2021 [6,17] timm+oc VIT-L 768 laion2b 2B 224 384 94 7.0
convnext_base.clip_laion2b_augreg 2022 [17,24] timm+oc CN-B 640 1laion2b 2B 256 384 7.0 46
convnext_large_mlp.clip_laion2b_ft_soup_320 2022 [17,24] timm+oc CN-L 768 laion2b 2B 320 512 11,5 8.1
eva02_base_patch16_clip_224.merged2b 2023 [10,39] timm+oc VIT-B 512 merged2b 2B 224 384 44 25
eva02_large_patchl4_clip_336.merged2b 2023 [10,39] timm+oc VIiT-L 768 merged2b 2B 336 512 106 7.2
vit_base_patch16_siglip_224.webli 2023 [53] timm+hf ViT-B 768 webli 10B 224 384 10.1 7.1
vit_base_patch16_siglip_256.webli 2023 [53] timm+hf ViT-B 768 webli 10B 224 384 103 75
vit_base_patch16_siglip_384.webli 2023 [53] timm+hf ViT-B 768 webli 10B 384 512 144 11.0
vit_base_patch16_siglip_512.webli 2023 [53] timm+hf ViT-B 768 webli 10B 512 724 146 11.1
vit_large_patch16_siglip_256.webli 2023 [53] timm+hf VIiT-L 1024 webli 10B 256 384 164 12.8
vit_large_patch16_siglip_384.webli 2023 [53] timm+hf VIiT-L 1024 webli 10B 384 512 222 18.1
vit_base_patch16_clip_224.metaclip_2ptSb 2024 [48] timm+oc ViT-B 768 2pt5b 2.5B 224 384 76 49
vit_large_patch14_clip_224.metaclip_2pt5b 2024 [48] timm+oc VIiT-L 1024 2pt5b 2.5B 224 384 13.1 9.2
vit_base_patch16_siglip_384.v2_webli 2025 [44] timm+hf ViT-B 768 webli 10B 384 512 15.1 11.1
vit_base_patch16_siglip_512.v2_webli 2025 [44] timm+hf ViT-B 768 webli 10B 512 724 146 104
vit_large_patch16_siglip_384.v2_webli 2025 [44] timm+hf VIiT-L 1024 webli 10B 384 512 237 18.6
vit_large_patch16_siglip_512.v2_webli 2025 [44] timm+hf VIiT-L 1024 webli 10B 512 724 247 19.8

Table H. Benchmarked model details and mAP@1k on ILIAS and mini-ILIAS for global representation models for t2i. Model
details include the year of publication, repository used, architecture (arch), model descriptor dimensions (dims), training data, and train/test
resolution. SM and 100M correspond to the mini and full versions of the dataset, respectively. Repo indicates the framework used to acquire
model weights, i.e. timm for the image encoders and huggingface (hf) or OpenCLIP (oc) for the text encoders. R50, CN: ResNet50 and

ConvNext.
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Figure K. The ILIAS taxonomy with a 3 level hierarchy. The number of objects is displayed for categories with more than 5 objects. The
taxonomy is used to summarize the objects’ diversity and distribution and to report performance per category without affecting the ground

truth, which is defined at the instance level.
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Figure L. Additional examples of queries, positives, and hard negatives within the distractor set based on i2i retrieval. Average
Precision per query and rank of the negatives and positives are reported using SigLIP'. Gray: queries. Green: positives. Red: distractors.



AP: 10.0

rank 0 rank 4 rank 29 rank 57 rank 199 rank >1000

The image shows a page from a tear-off calendar. The page is yellow and
features an illustration of a pair of orange sneakers with white laces. The|

date "16 veresnia" (September 16) is printed at the bottom in black text. The

calendar is bound at the top with a blue cover that has metal fasteners.

AP: 45.8

The image shows a small ceramic sculpture of a lighthouse. The lighthouse|

features red and white horizontal stripes and a blue top. Attached to the

lighthouse is a small building with a brown roof. The sculpture is set on a

light-colored base.

AP: 50.0

rank 32
The sticker features an image of a green, textured armchair with wooden

legs. The chair is positioned next to a tall cactus in a pot. The sticker has| » y

a holographic border with the text "Generative Al by gettyimages" at the|

bottom.

AP: 6.1

rank 17
This is a white sock with yellow accents at the cuff, heel, and toe. It features

a pattern of small dog images along the entire length. At the top of the sock,|
there is a logo of a cat and a dog, along with the text in Ukrainian "Home forf|

Rescued Animals".

AP: 0.8

rank 197
The image shows a wooden Tower of Hanoi puzzle. It consists of three

vertical pegs mounted on a rectangular base. The central peg has a series of]
wooden discs stacked in decreasing size from bottom to top. The puzzle is

typically used to demonstrate recursive problem-solving techniques.

AP: 19.3

- — rank >1000
The image shows a crocheted textile with a textured pattern. It features hor-|

izontal stripes in various colors, including yellow, orange, dark blue, gray,|
green, and light yellow. The texture appears to be a bobble or popcorn stitch,|

giving it a raised, bumpy appearance.

AP: 25.3

k 194
The image shows a colorful postcard featuring an illustration of people danc-| =

ing in a circle. The figures are depicted in vibrant clothing, with a mosaic-like|
pattern on the ground and a starry night sky in the background. The scene

conveys a sense of joy and celebration.

AP: 13.9

rank 12 rank 24

This is a stuffed toy resembling a hedgehog. It has a soft, beige body with a

teal nose and ears. The toy features colorful fabric spikes in shades of teal,|

pink, and orange, adding a playful and vibrant touch. The eyes are black and

Hedgehog Taggie
Tutorial
it weorrg etz

round, giving it a cute appearance.

AP: 6.8

rank 173
This is a mural depicting a large, detailed bee with realistic features, includ-|

ing its fuzzy body and translucent wings. The bee is set against a background|
of abstract, geometric shapes and flowers in grayscale, creating a striking

contrast with the bee’s natural colors. The artwork combines realism...

AP: 45.8

The image shows a graphic card case designed to look like a treasure chest
with a monstrous theme. It features a skull with red eyes on top and sharp

teeth lining the opening. Inside, a graphics card is visible. The case has a

dark, weathered wood appearance with metal accents and a small skull...

Figure M. Examples of text queries, positives, and hard negatives within the distractor set based on t2i retrieval. Average Precision
per text query, and rank of the negatives and positives is reported using SigLIP. Gray: text queries. Green: positives. Red: distractors.



Figure N. Examples of collected query objects. Queries and multiple positives are displayed. Gray: queries.
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