Buffer Anytime: Zero-Shot Video Depth and Normal from Image Priors

Supplementary Material

1. More Video Results

In addition to the qualitative comparisons in the paper, we
provide more animated results in our website for better vi-
sualization of the prediction quality.

2. More Implementation Details

All models are implemented in PyTorch [? ]. We utilize
the official implementations of Depth Anything V2 [? ]
and Marigold-E2E-FT [? ], adapting temporal blocks from
the UnetMotion architecture in the Diffusers [? ] library.
Experiments are conducted on NVIDIA H100 GPUs with
80GB memory. Due to memory constraints, we limit the
maximum sequence length to 110 frames for depth estima-
tion and 32 frames for normal estimation.

For training, we use a dataset of approximately 200K
videos, with each clip containing 128 frames. We employ
the AdamW [? ] optimizer with learning rates of 10~* and
1075 for depth and normal estimation, respectively. Train-
ing begins with a 1,000-step warm-up phase, during which
the learning rate increases linearly from O to its target value.
The training process runs on 24 H100 GPUs with a total
batch size of 24 and incorporates Exponential Moving Aver-
age (EMA) with a decay coefficient of 0.999. The complete
training cycle requires approximately one day to complete
15,000 iterations.

2.1. Details of the Deferred Back-Propagation

In our normal model, we employ deferred back-propagation
as proposed by Zhang et al. [? ] to reduce memory con-
sumption. Algorithm 1 outlines the detailed implementation
steps. Notably, the gradients obtained by back-propagating
Lg.5 are equivalent to those computed from the pixel-wise
loss function L, across all decoded frames:
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2.2. Details of the Optical Flow Based Stabilization

Algorithm 2 presents the pseudo-code for our optical flow
based stabilization loss calculation. The loss is computed

Algorithm 1: Deferred Back-Propagation

Parameter: Trained model fy, image decoder D,
frame number K, chunk size C,

Input: Input frames I g, loss function defined
on the decoded frames £p;;.

Output: Deferred back-propagation loss L ¢

Laey + 05

z1,..k < follh,.. k)

for ch in Range(start=1, end=K, step=C) do

/* Generate chunk prediction x/

/+ Loss on decoded frames */
[+ ﬁpim(gc}l);

g°" < Autograd(l, z¢M);

/* SG means stop gradient */
Licf < Laes + %Sum(SG(gCh) . zCh) ;

end
return L. s

separately for forward optical flow (previous frame to next
frame) and backward flow (next frame to previous frame),
then combined together. This stabilization algorithm is ap-
plied to both depth and normal models. In our experiments,
we set the threshold 7, to 1°§ 2 —0.34.
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Figure 1. Additional qualitive comparison. We show com-
parison between our model and Depth Anything V2 [? ],
DepthCrafter [? ] in the Sintel [? ] dataset (Left) and the KITTI [?
] dataset (Right).

3. Additional Qualitative Comparison

In Fig. 1, we show additional qualitative comparisons in the
benchmark datasets used in the quantitative experiment (i.e.
Tab. 1) in the paper.


https://bufferanytime.github.io/

Algorithm 2: Calculating Stabilization Loss

Parameter: Video optical flow model O, frame number K, cycle-validation threshold 7.
Input: Predicted geometric buffers gﬁ"“@d 5 input frames Iy g

Output: Stabilization loss Lszqpie

/+ Calculate Optical Flow Maps
Ojwq + O(src = Ifr'ef’iKil, dst = I;T”e.’K) ;
Opya < O(src = Ig:ef’iK, dst = Ifii(,ijl) ;

/+ Calculate Cycle-Validation Masks
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/+ Calculate Edge-Based Masks
E «+ CannyEdge(g’l’TfK) ;

E < Dilate(E,kernel_size = 3);
«(E(x)=0);

.....

/x Calculate Stabilization Loss
MIPE o M MG
bwd bwd edge .
M — Mcyc N M17,"K71,
fwd 1 pred
Liapie < K-—DHW |(Warp(G7 " k1,
bwd 1 pred bwd pred
Liapie < E—1DHW |(Wafp(gz,...,KvO e — gl,...,Kfl)
1 fwd bwd .
['stable — §(Lstable + Estable)’
return L, pic-

-1 ([[Obwa(Ogwa(®)) — |2 < 7c) ;

*/

/* Shape: (K—1)x2xHXW «/
/x Shape: (K—1)x2xHxW =/
*/

/* Shape: (K—1)xHxW x/
/* Shape: (K—1)xHXW x/
*/

/* Shape: KxHxW x/

/* Shape: KxHXW x/

*/
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Method AbsRel| &1 1T OPWJ
Ours £ 0.123 0.856  0.043
Ours w/o fine-tuning 0.121 0.859 0.040
Ours 0.119 0.865  0.038
Ours with DepthCrafter 0.112 0.884 0.062
DepthCrafter [? ] 0.110 0.881 0.111

Table 1. Additional Ablation Study on KITTI depth estima-
tion. Our model outperforms both variants (Model with L1 and
Model w/o fine-tuning), and when trained on DepthCrafter frames
(Model with DepthCrafter), achieves comparable performance to
DepthCrafter itself.

4. Additional Ablation Studies

We extend our ablation studies beyond the main paper
by comparing our model with additional variants: Model
with L1 replaces Lo with £q for the affine-invariant rela-
tive loss in the depth model; Model w/o fine-tuning main-
tains a fixed refinement network from the backbone model
while training only the temporal layers. Additionally, we
evaluate an enhanced version utilizing “oracle” knowledge:
Model with DepthCrafter incorporates a single frame from

DepthCrafter [? ] prediction per iteration as regularization
guidance.

As shown in Table 1, our model demonstrates superior
performance compared to the first two variants, validating
the effectiveness of both our architectural and loss func-
tion designs. The Model with DepthCrafter achieves better
results that comparable to DepthCrafter itself, suggesting
potential for future improvements through enhanced image
priors.
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