
Hierarchical Compact Clustering Attention (COCA) for Unsupervised
Object-Centric Learning

Supplementary Material

We provide a complexity analysis of our method in Sec-
tion 6. Subsequently, we present architectural details in
Section 7, organized similarly to Section 3 of the main pa-
per. Implementation details for COCA-Net and the base-
lines are provided in Section 8. Additional results, includ-
ing initial experiments on real-world datasets 9.1, additional
quantitative 9.2 and qualitative 9.4 results are presented
throughout Section 9. Extensions of the results from our
ablation studies are also included in Section 9.3.

6. Complexity Analysis

Suppose that COCA-Net is to process a feature image con-
sisting of N →N pixels. At each layer, this feature image is
partitioned into U→U non-overlapping windows. The com-
plexity burden of a COCA layer resides on the generation
of affinity masks and their compactness measurement. In
the worst case, COCA generates an affinity mask per node,
which introduces O(U2·U2) operations for the overall affin-
ity masks generation process. In the first layer, we have a
total of N

U · N
U = N2

U2 windows, hence the complexity is
O(U2 ·N2) for affinity masks generation. Our compactness
measurement involves finding the node pair with minimum
density in each affinity mask (see Eq. 3). The complex-
ity associated with this operation increases above affinity
mask generation, resulting in a complexity of O(U2 · U3).
Therefore, the first layer of COCA has a complexity of
O(U3 ·N2). At the second layer, we repeat the same parti-
tioning strategy to generate affinity masks and measure their
compactness. Hence, we again need O(U2 ·U3) operations
within a window and we have N

U2 · N
U2 = N2

U4 of these win-
dows at the second layer. Therefore, the overall complexity
for this layer is O(U ·N2). Similarly at the third layer, we
have a complexity of O(N

2

U) and so on.
In total, we have logU N layers, where N is a power

of U . Assuming that U is kept constant and small, e.g.,
U = 4, throughout the hierarchy, we have O(N2) complex-
ity for each layer. Altogether, these logU N layers add up to
O(N2 · logN) complexity. Comparing to our baselines, the
complexity of SA (slot attention) model [38] can be consid-
ered as O(N2). SA conducts its query normalized cross at-
tention operation on the full resolution feature image, which
has a complexity of O(N2). On the contrary, instead of op-
erating on this large N →N image directly, COCA-Net op-
erates on U → U windows and handles N2

U2 of windows in
parallel. This structure makes COCA-Net inherently suit-
able for parallel implementation, as the operations within

each window are independent. It should be noted that the
number of elements that COCA-Net processes decreases by
a factor of U2 at each layer, hence it has the potential to be
scaled up to deeper hierarchies and address object discovery
in higher resolution images.

7. Architectural Details
7.1. Pixel Feature Encoder
We use a simple backbone to initialize pixel features that
encode both appearance and positional information. Specif-
ically, the input image is first processed through a sin-
gle convolutional layer that preserves resolution to gener-
ate appearance-based features. Positional information for
each pixel is then incorporated through a positional encod-
ing scheme borrowed from [38], which normalizes the ini-
tial pixel coordinates in four cardinal directions and learns
a projection that maps these 4-dimensional position vec-
tors to the output feature dimensions of the convolutional
layer. After summing the positional embedding with the
convolutional features of the pixels, we apply a GroupNorm
normalization across features and finally use a Multi-Layer
Perceptron (MLP) with a single hidden layer to fuse the
position and appearance information. The resulting tensor
forms the initial image features X0 ↑ Rh0→w0→d0 , that we
feed into our COCA-Net hierarchy at layer l = 1.

7.2. COCA Layer (Section 3.1)
COCA layer can be viewed as a clustering variant of ViT-
22B. It begins with a stack of original ViT-22B layers to
refine the features of input nodes and then continues as a
clustering variant of ViT-22B. While the overall structure
of COCA resembles a ViT-22B, it differs significantly.

Rather than relating two distinct projections—query and
key projections to compute attention weights as in the orig-
inal self-attention formulation—we project the representa-
tions of input nodes onto the same high-dimensional space
to compute affinities, e.g, using only query projection. In
addition, we use these affinity masks to identify clusters
among input nodes and apply feature pooling based on the
masks of these clusters, unlike ViT-22B, which maintains
the same number of nodes from input to output across its
layers.

Apart from these fundamental differences, most of the
remaining architecture resembles a ViT-22B, as also illus-
trated in Figure 2b, we also learn a parallel FFN, a values
projection, an output projection and employ pre-norm skip

connection from the features that are just partitioned into
non-overlapping windows.

7.2.1. Feature Refiner ViT-22B (Section 3.1.1)
A single ViT-22B layer [13] in COCA adopts Multi-Head
Self-Attention (MHSA) [46] in parallel with the Feed For-
ward Network (FFN) in a Pre-Norm skip connection con-
figuration. For the details, reader can refer to the original
paper [13]. In COCA, the only modification to the original
recipe is that we leverage GroupNorm operations over Lay-
erNorm, where the former is often preferred over the latter
in computer vision architectures.

The number of ViT-22B layers in the feature refinement
stack of a single COCA layer may vary depending on the
COCA layer’s position in the hierarchy. Specifically, we
adopt an increasing number of ViT-22B layers as we move
up through the hierarchy. For instance, the first COCA layer
contains a single ViT-22B layer in its feature refinement
stack, whereas the second COCA layer includes two ViT-
22B layers, and so on.

The spatial extent of the ViT-22B layers’ operations also
evolves throughout the hierarchy. In the earlier layers, the
attention context is constrained to smaller windows (e.g., a
kernel size of 3 → 3), enabling feature refinement to focus
on localized neighborhoods. Conversely, in the final layers,
the attention context expands to a global scale, facilitating
the integration of broader contextual information. Through-
out this process, the stack of ViT-22B layers preserves the
cardinality of the input node set; that is, a query is gener-
ated for every node, and an appropriate attention context is
constructed within the spatial neighborhood for each query.

7.2.2. Partitioning Hierarchy (Section 3.1.2)
A visual illustration of the non-overlapping windows parti-
tioning strategy is shared in Figure 4. After feature refine-
ment, at each layer l, COCA contains an input node set with
h
↑
l↓1 → w

↑
l↓1 → kl↓1 elements. COCA partitions this input

node set into non-overlapping windows, where each win-
dow has hl → wl → kl↓1 nodes and there are a total of t2l
of such windows. In other words, input nodes are divided
into tl groups along both spatial axes, i.e., hl = h

↑
l↓1/tl and

wl = w
↑
l↓1/tl

1. Note that k0 = 1 and h
↑
0 = w

↑
0 are equal

to input image resolution.
With this partitioning strategy, COCA operates on a to-

tal of nl = hl → wl → kl↓1 input nodes in each window,
then proceeds with affinity masks generation, compactness
scoring and sequential clustering. After clustering is com-
pleted, COCA has produced an output clusters set compris-
ing 1→ 1→kl elements. Thus, effectively collapsing spatial
dimensions of the each window to obtain kl output clusters
per window. This means that, for the next COCA layer at

1For notational simplicity, we assume that the input image is square
rather than rectangle, thus we do not need thl and twl

layer l + 1, the input node set will contain tl → tl → kl ele-
ments, i.e., h↑

l = tl and w
↑
l = tl. This COCA layer behaves

in the exact same manner, first partitions this input set of
h
↑
l → w

↑
l → kl elements into t

2
l+1 windows, where each win-

dow contains hl+1 → wl+1 → kl nodes.

7.2.3. Affinity Masks Generation (Section 3.1.3)
Inspired by ViT-22B, we employ pre-norm skip connections
within a COCA layer, hence, the input refined and parti-
tioned features tensor X̂l ↑ Rnl→dl is used for skip connec-
tion with pooling after clustering is completed. Next, we
apply the GroupNorm normalization to this features tensor
and then use it as input to three learnable projections, two
linear and one non-linear; queries projection Q

l ↑ Rdl→dl ,
values projection V

l ↑ Rdl→dl and the parallel multi-layer
perceptron MLP

l
1 ↑ Rdl→dl , MLP

l
2 ↑ Rdl→dl :

X̂l
ij = GroupNormj

(
X̂l

ij

)
(6a)

Q̂
l
i = X̂

l
iQ

l (6b)

V̂
l
i = X̂

l
iV

l (6c)

!̂
l
i = (GELU(X̂l

iMLP
l
1))MLP

l
2 (6d)

where GroupNormj indicates that normalization is per-
formed across the last axis of the features tensor. We use the
query projected features as our common high-dimensional
space to compute affinities on, whereas the value projected
features and the features embedded by the parallel MLP will
be used after generating cluster assignments (See Fig. 2b).

In order to compute affinities between each pair of nodes
within a window, we apply GroupNorm normalization to
query projected features:

Yl
ij = GroupNormj(Q̂

l
ij) (7)

where Y
l ↑ Rnl→dl denotes the projected and normalized

feature vectors of all nodes. Following ViT-22B, we do not
learn any parameters for the normalization operations in-
volved throughout COCA layer. After all node features are
projected to the same high-dimensional space and normal-
ized, to produce the affinity masks, we measure Euclidean
distances between features of each node pair, as given in Eq.
1 of the main paper.

This naive computation of El ↑ Rnl→nl uses “all-to-all”
affinities to generate candidate masks, however, to improve
efficiency, we can optionally reduce the density of the affin-
ity masks using a spatially dilated sampling strategy, pro-
ducing sparser masks with size ul → nl where ul << nl.
As also mentioned in the main paper, we use soft-argmin
to convert these distances to dynamic and adaptive affini-
ties and employ min-max scaling to map these affinities to
a proper range, i.e. in [0, 1] for compactness computation

Figure 4. Visualization of the Non-Overlapping partitioning strategy.

and SBC clustering:

!̃l
ij = soft-argminj

(
El
ij

)
(8a)

!l
ij =

!̃l
ij ↓minj(!̃l

ij)

maxj(!̃l
ij)↓minj(!̃l

ij)
(8b)

7.2.4. Compactness Scoring (Section 3.1.4)
Recall that a single affinity mask ”

l
i, can be considered as a

flattened two dimensional grid of affinities that constitute a
non-uniform density shape and that we utilize five physical
attributes for each node throughout the hierarchy, i.e., area
A

l ↑ Rnl→1, mass M
l ↑ Rnl→1, density D

l ↑ Rnl→1,
moment of inertia I

l ↑ Rnl→1 and mean position in the
original image resolution P

l ↑ Rnl→2. The positions of
each input node to the first layer P1

i are initialized with the
corresponding pixel coordinates, while the area A1

i , mass
M1

i , and density D1
i of nodes are set to ones. In line with

[52], the moment of inertia I1i for each pixel is set to 1/6.
As noted in Section 3.1.4, we compute the intermediate

attributes by first broadcasting then computing an element-
wise product with the affinity masks ”l ↑ Rnl→nl :

Ã
l = 1

nl(Al)↭ ↔”
l (9a)

D̃
l = 1

nl(Dl)↭ ↔”
l (9b)

Ĩ
l = 1

nl(Il)↭ ↔”
l (9c)

M̃
l = Ã

l ↔ D̃
l (9d)

where 1
nl is a column vector of ones of size nl, ↔ denotes

the Hadamard product and Ã
l
, D̃

l
, Ĩ

l
, M̃

l ↑ Rnl→nl . No-
tably, the mass attribute is effectively scaled with the square
of the affinities (See Eq. 9b). Empirically, we found that
this formulation discourages uncertain affinities in output
cluster masks (e.g., an affinity of 0.4 is scaled to 0.16),

while affinity values close to 1 remain only modestly af-
fected. After intermediate attributes computation, we com-
pute the compactness scores C

l ↑ Rnl of affinity masks
using Eq. 3 in the main paper.

7.2.5. Sequential Clustering (Section 3.1.5)
A single cluster mask generation scheme in a COCA layer
was discussed in detail in Section 3.1.5 of the main paper.
Here, with Algorithm 1, we provide the pseudo-code for the
overall compactness-based sequential clustering algorithm.

Algorithm 1: Sequential Clustering
Input: Compactness Scores Cl ↑ Rnl , Affinity

Masks ”l ↑ Rnl→nl

Output: Cluster Masks #l ↑ Rkl→nl

1 Initialise: Cluster Masks #l = ⊋, Scope Z
l = 1

nl

2 while not stopping condition(Zl) do
3 C

l = C
l ↔ Z

l

4 ω = argmaxi(C
l
i)

5 #
l
.append(”l

ω ↔ Z
l)

6 Z
l = Z

l ↔ (1↓#
l
↓1)

7 end
8 #

l
.append(Zl)

Note that in line 2 of Alg.1, the ‘stopping condition’ for
the original COCA-Net is met when the maximum number
of objects in the dataset has been generated. For COCA-
Net-Dyna, this condition is satisfied when a stopping con-
dition is met, e.g., the sum of the scope variable drops below
2.5% of its total size. In line 3, we first erode the compact-
ness scores of nodes with an element-wise multiplication
with the current scope. Next, in line 4, we find the most
compact node among the remaining ones. With line 5, we
first fetch the affinity mask that belongs to the most com-

Table 4. Hyper-parameters for Pixel Feature Encoder Backbone across six datasets

Dataset Channels Pos. Emb. Channels MLP Out Channels Kernel Size Stride Padding

Tetrominoes 32 32 64 3→ 3 1→ 1 1→ 1
Multi-dSprites 64 64 64 3→ 3 1→ 1 1→ 1
ShapeStacks 64 64 64 3→ 3 1→ 1 1→ 1
ObjectsRoom 64 64 64 3→ 3 1→ 1 1→ 1

CLEVR6 96 96 96 5→ 5 1→ 1 2→ 2
CLEVRTex 128 128 96 5→ 5 1→ 1 2→ 2

Table 5. Hyper-parameters for Spatial Broadcast Decoder employed in COCA-Net, across six datasets

Dataset Dataset Resolution Broadcast Resolution Channels Kernel Sizes Strides Paddings Output Paddings

Tetrominoes 32→ 32 32→ 32 [32, 32, 32, 4] [5, 5, 5, 3] [1, 1, 1, 1] [2, 2, 2, 1] [0, 0, 0, 0]
Multi-dSprites 64→ 64 64→ 64 [32, 32, 32, 4] [5, 5, 5, 3] [1, 1, 1, 1] [2, 2, 2, 1] [0, 0, 0, 0]
ShapeStacks 64→ 64 64→ 64 [32, 32, 32, 4] [5, 5, 5, 3] [1, 1, 1, 1] [2, 2, 2, 1] [0, 0, 0, 0]
ObjectsRoom 64→ 64 64→ 64 [32, 32, 32, 4] [5, 5, 5, 3] [1, 1, 1, 1] [2, 2, 2, 1] [0, 0, 0, 0]

CLEVR6 128→ 128 8→ 8 [48, 48, 48, 48, 48, 4] [5, 5, 5, 5, 5, 3] [2, 2, 2, 2, 1, 1] [2, 2, 2, 2, 2, 1] [1, 1, 1, 1, 0, 0]
CLEVRTex 128→ 128 8→ 8 [64, 64, 64, 64, 64, 4] [5, 5, 5, 5, 5, 3] [2, 2, 2, 2, 1, 1] [2, 2, 2, 2, 2, 1] [1, 1, 1, 1, 0, 0]

pact node, conceal it with the current scope and then add it
to the list of generated cluster masks. We then update our
scope, with line 6, to discard the nodes that are explained in
this iteration. After the stopping condition is met, and the
loop is finished, we finally add the remaining scope to our
cluster masks list and complete the algorithm.

7.2.6. Pool, Aggregate and Skip-Connect (Section 3.1.6)
Pool and Aggregate The output cluster masks generated
at layer l, #l ↑ Rkl→nl , provide the COCA layer with
the necessary assignments between input nodes and out-
put clusters. Hence, each COCA layer utilizes these output
cluster masks to pool attributes from input nodes and con-
struct output cluster attributes. Specifically, we use #l to
pool a feature vector and five physical attributes per output
cluster as:

X̂
l
i =

#
l
iX̂

l + (#l
iV̂

l)Ol +#
l
i!̂

l

∑
j ”

l
ij

(10a)

Il+1
i = #

l
iI

l (10b)

Al+1
i = #

l
iA

l (10c)

Ml+1
i = #

l
iM

l (10d)

Dl+1
i = Ml+1

i /Al+1
i (10e)

P
l+1
i =

#
l
iP

l

∑
j ”

l
ij

(10f)

where O
l ↑ Rdl→dl represents the output projection, as il-

lustrated in Figure 2b, similar to the one used in ViT-22B
layer. Note that X̂l

i still contains the layer index l since fi-
nal features of the output clusters will be produced after the
inter-layer skip connection operation that will be detailed
next.

Inter-layer Skip Connections To enhance unsupervised
hierarchical feature learning, we leverage inter-layer skip
connections starting from the second layer and applied at
each layer until the hierarchy is completed. Specifically, in
order to incorporate the information from node features at
layer l ↓ 2 into cluster features at layer l, we first merge
the cluster masks that are generated between these two lay-
ers, namely masks at layer l; #l ↑ Rt2l →kl→nl and masks
at layer l ↓ 1; #

l↓1 ↑ Rt2l→1→kl→1→nl→1 . The masks
from the preceding layer, l ↓ 1, are initially un-flattened,
reshaped, and partitioned into non-overlapping windows,
with each window sized to match the configuration of the
current layer l. Simultaneously, the masks from the cur-
rent layer l, undergo a process of un-flattening and reshap-
ing to align appropriately. These operations yield the in-
termediate masks, #̃l ↑ Rt2l →(hlwl)→kl→kl→1 and #̃

l↓1 ↑
Rt2l →(hlwl)→kl→1→(hl→1wl→1kl→2), ready for merging:

#̃
(l↓1)↔l = #̃

l
#̃

l↓1 (11)

where #̃
(l↓1)↔l can be represented as #̃

(l↓1)↔l ↑
Rt2l →kl→(hlwlnl→1) after few reshape and transpose opera-
tions.

To complete the inter-layer skip connections from layer
l ↓ 2 to l, we first skip connect the output cluster features
from layer l↓2; X̂l↓2 ↑ Rt2l→2→kl→2→dl→2 and apply appro-
priate partitioning– two times to match layer l– and reshap-
ing operations to arrive at X̃l↓2 ↑ Rt2l →(hlwlnl→1)→dl→2 .
Note that we keep the feature dimensions of nodes con-
sistent throughout the hierarchy, similar to ViT-22B and
shared in Section 8, thus we have dl↓2 = dl. In addition,
note that the output cluster features from layer l = 0 is
simply input pixel features generated by the backbone and
h0 = 1, w0 = 1. Having generated the necessary merged

Table 6. Hyper-parameters for COCA-Net encoder across six datasets. Here, Q Kernel, Q Stride and Q Pad denote the parameters of unfolding operation
applied on the queries of ViT-22B layer. Similarly, K Kernel, K Stride and K Pad stand for unfolding parameters for keys.

Dataset COCA-Net ViT-22B Stack

Name L dl hl, wl ωl kl # of Layers Q Kernel Q Stride Q Pad K Kernel K Stride K Pad

Tetrominoes 2 [64, 64] [[4, 4], [8, 8]] [1.00, 2.00] [3, 4] [2, 2] [4, 8] [4, 1] [0, 0] [4, 8] [4, 1] [0, 0]
Multi-dSprites 2 [64, 64] [[8, 8], [8, 8]] [1.00, 1.25] [4, 6] [3, 3] [8, 8] [8, 1] [0, 0] [8, 8] [8, 1] [0, 0]
ShapeStacks 2 [64, 64] [[8, 8], [8, 8]] [0.75, 1.00] [4, 7] [3, 3] [8, 8] [8, 1] [0, 0] [8, 8] [8, 1] [0, 0]
ObjectsRoom 2 [64, 64] [[8, 8], [8, 8]] [1.00, 1.50] [4, 7] [3, 3] [8, 8] [8, 1] [0, 0] [8, 8] [8, 1] [0, 0]

CLEVR6 3 [96, 96, 96] [[4, 4], [4, 4], [8, 8]] [1.0, 0.5, 1.0] [2, 4, 7] [1, 2, 3] [4, 4, 8] [4, 4, 1] [0, 0, 0] [4, 4, 8] [4, 4, 1] [0, 0, 0]
CLEVRTex 3 [96, 96, 96] [[4, 4], [4, 4], [8, 8]] [2.0, 1.0, 0.5] [2, 4, 11] [1, 2, 5] [1, 1, 1] [1, 1, 1] [0, 0, 0] [3, 5, 8] [1, 1, 1] [1, 2, 0]

masks and reshaped node features, we compute the skip
connection from layer l ↓ 2 to layer l as:

X̃
(l↓2)↔l =

#̃
(l↓1)↔l

X̃
l↓2

∑
j ”

(l↓1)↔l
ij

(12)

where X̃
(l↓2)↔l ↑ Rt2l →kl→dl . Finally, we apply Group-

Norm normalization to X̃
(l↓2)↔l, pass it through an FFN

and sum it with the cluster features obtained at layer l (from
Eq. 10a), hence complete cluster feature aggregation from
layer l to l + 1.

7.3. Dendrogram Generation by Merging Cluster
Masks

To construct our dendrogram, which represents the object
masks eventually generated by the encoder sub-network,
we resort to mask merging, similar to the one described
in the previous section. Here we progressively merge
cluster masks obtained at each level l of the hierarchy,
l = 1, ..., L. Specifically, in order to merge the cluster
masks that are generated during layer l; #l ↑ Rt2l →kl→nl

and merged masks up until layer l ↓ 1; #
1↔(l↓1) ↑

Rt2l→1→kl→1→(
∏l→1

j=1 hjwj), the merged cluster masks from the
earlier layer l↓ 1 is first un-flattened, reshaped and then di-
vided into non-overlapping windows, with a window size
that matches the one at layer l. Meanwhile, the masks from
the current layer l is also un-flattened and reshaped in an
appropriate way. These operations yield the reshaped out-
put cluster mask from layer l as #̃l ↑ Rt2l →(hlwl)→kl→kl→1

whereas the reshaped merged masks in layer l ↓ 1 be-
come #̃

1↔(l↓1) ↑ Rt2l →(hlwl)→kl→1→(
∏l→1

j=1 hjwj). Now
both masks contain the appropriate dimensions to carry out
the merging operation as:

#̃
1↔l = #̃

l
#̃

1↔(l↓1) (13)

where #̃
1↔l ↑ Rt2l →(hlwl)→kl→(

∏l→1
j=1 hjwj). After appro-

priate post processing, this merged cluster masks has the
dimensions: #1↔l ↑ Rt2l →kl→(

∏l
j=1 hjwj).

8. Implementation Details
For all experiments included in this work, we build on the
comprehensive OCL library that is provided by [15]. This
OCL library includes the six datasets that we share results
on, in addition to code scripts for training, testing and eval-
uation. Details are included in [15]. We extend this library
by adding the implementations of our proposed architec-
ture COCA-Net and three state-of-the-art methods, which
are also our baselines: GEN-v2 [18], INVSA [5] and BO-
QSA [28]. To add these baselines to our library, we rely on
the official implementation of each baseline and adapt these
implementations to work within the OCL library. For a fair
comparison, we use a Spatial Broadcast Decoder version for
each method.

We train all methods, COCA-Net and the baselines, three
times using three random seeds. These three seeds are once
generated at random before all experiments and then fixed
for all the methods. Following the training and evaluation
criteria laid out in [15], we train all methods on the same
training and validation splits of each dataset, reserving 2000
test images per dataset for evaluation. In each dataset, the
maximum number of objects and background segments is
used as the number of output slots generated for all meth-
ods.

8.1. Training the COCA-Net
To optimize the image reconstruction objective on all
six datasets, COCA-Net uses the Adam optimizer, em-
ploys learning rate linear warm-up and exponential decay
scheduling, just as described in the original SA paper [38].
We set the learning rate as 0.0003 and adopt weight de-
cay regularization with the coefficient 0.00001. We train
COCA-Net for 500K iterations for each dataset, similar to
SA.

For all experiments of the COCA-Net, we use data aug-
mentation as to “pad and random crop” input images. This
augmentation first pads the image with a small number of
repeated pixels (e.g., three) on each edge and randomly
crops this padded image with a window that has the same
resolution as the original image. The motivation behind this
particular augmentation strategy is to present each COCA

Figure 5. Qualitative results obtained for real-world datasets. Slot masks predicted by COCA-Net Encoder are shared for Birds (left) and
Flowers (right).

layer with a randomly shifted non-overlapping partitions,
effectively increasing the window variability that COCA-
Net learns from.

Tables 4 and 5 list the hyper-parameters used across
all six datasets for the Pixel Feature Encoder Backbone
and the Spatial Broadcast Decoder, respectively. Table 6
presents the hyper-parameters employed for COCA-Net on
each dataset.

8.2. Training the Baseline Models
For all baselines, we use the default configurations and
hyper-parameters that are laid out in their original papers.
Unlike some of our baselines, we train all methods to pro-
duce output object masks that match the ground-truth max-
imum number of objects in a dataset. In addition, due to
computational constraints, we fix the batch size as 64 for all
methods.

9. Additional Results
9.1. Initial Experiments on Real-World Datasets;

Birds and Flowers
We evaluated COCA-Net on Birds2 and Flowers3 (fol-
lowing BOQSA’s protocol) using the SLATE4 architecture
which leverages a transformer decoder but no pretrained
backbone. Entire architecture is trained from scratch.
Both datasets contain real-world images with composition-
ality (objects contain a spectrum of colors and deformable
shapes). Table 7 shows COCA-Net is on par or better
than BOQSA across IoU and Dice metrics. Figure 5 dis-
plays qualitative results, with COCA-Net achieving robust

2Welinder, P. et al. “Caltech-UCSD Birds 200.” 2010.
3Nilsback, M. and A. Zisserman. “Delving into the Whorl of Flower

Segmentation.” BMVC 2007.
4Singh, G. et al. “Illiterate DALL-E Learns to Compose.” ICLR 2022.

segmentation masks for both foreground objects and back-
ground segments. Since these are our initial experiments
with COCA-Net integrated into the SLATE architecture, we
believe that the performance can be further boosted with
more elaborate hyperparameter tuning.

9.2. Additional Quantitative Results
Here, we present Table 8, an extension of Table 1 that was
introduced in the main paper. Table 8 provides additional
quantitative results of COCA-Net and its baselines obtained
on the Tetrominoes and Multi-dSprites datasets.

9.3. Ablation Studies
We now present additional quantitative results to comple-
ment those in Table 3 of the main paper. Table 9 extends
our comparison between COCA-Net and its random anchor
node selection variant, COCA-Net-RAS. Further results for
COCA-Net and COCA-Net-Dyna are provided in Table 10.

9.4. Additional Qualitative Results
We share the supplementary qualitative results of COCA-
Net, starting from Figure 6 to Figure 11 for all six datasets.
In each figure, we share a sample batch of images from the
corresponding dataset and include COCA-Net’s reconstruc-
tions of these images next to it. In addition, we visualize
the segmentation masks that COCA-Net produces in its en-
coder and decoder sub-networks.

Table 7. Quantitative Results for COCA-Net and BOQSA on Birds and Flowers datasets. Background segments included, single seed set to BOQSA’s
open-source implementation.

Flowers Birds

Model IoU↑ Dice↑ IoU↑ Dice↑

BOQSA 0.6477 0.7603 0.5565 0.7032
COCA-Net (ours) 0.6482 0.7612 0.5778 0.7238

Table 8. Supplementary unsupervised scene segmentation results of three baseline models and proposed COCA-Net on Tetrominoes and Multi-dSprites
datasets, based on nine performance evaluation metrics, assessed across four different configurations. Scores are reported as mean ± standard deviation for
3 seeds.

DEC-FG Only DEC-BG Included ENC-FG Only ENC-BG Included

Name ARI↑ mSC↑ ARI↑ mSC↑ ARI↑ mSC↑ ARI↑ mSC↑ MSE↓

Tetrominoes

GEN-v2 [18] 0.33±0.47 0.17±0.10 0.03±0.04 0.27±0.03 0.13±0.18 0.13±0.05 0.02±0.02 0.24±0.02 0.004±0.000
INV-SA [5] 0.98±0.01 0.97±0.00 0.97±0.00 0.98±0.00 0.38±0.08 0.59±0.05 0.61±0.04 0.65±0.04 0.001±0.000
BOQ-SA [28] 0.99±0.01 0.31±0.00 0.11±0.01 0.33±0.01 0.60±0.03 0.42±0.01 0.29±0.02 0.47±0.00 0.000±0.000
COCA-Net (ours) 0.99±0.01 0.98±0.01 0.99±0.01 0.99±0.01 0.74±0.04 0.70±0.07 0.71±0.09 0.75±0.07 0.001±0.000

Multi-dSprites

GEN-v2 [18] 0.80±0.03 0.58±0.04 0.71±0.02 0.66±0.03 0.60±0.02 0.15±0.02 0.04±0.01 0.22±0.01 0.007±0.000
INV-SA[5] 0.90±0.00 0.84±0.01 0.71±0.35 0.84±0.05 0.68±0.04 0.47±0.00 0.41±0.26 0.53±0.06 0.001±0.000
BOQ-SA [28] 0.89±0.00 0.65±0.07 0.42±0.17 0.65±0.10 0.75±0.01 0.55±0.01 0.34±0.06 0.56±0.02 0.001±0.000
COCA-Net (ours) 0.95±0.00 0.91±0.01 0.84±0.19 0.91±0.03 0.96±0.01 0.95±0.01 0.98±0.00 0.96±0.00 0.002±0.000

Table 9. Extension of Table 3 from the main paper, comparing the unsupervised scene segmentation performance of COCA-Net and COCA-Net-RAS on
two datasets. The comparison is based on nine performance evaluation metrics assessed across four different configurations, with scores reported for the
same single seed.

DEC-FG Only DEC-BG Included ENC-FG Only ENC-BG Included

Name ARI↑ mSC↑ ARI↑ mSC↑ ARI↑ mSC↑ ARI↑ mSC↑ MSE↓

ObjectsRoom

COCA-Net-RAS 0.832 0.739 0.561 0.581 0.763 0.277 0.469 0.368 0.001
COCA-Net 0.894 0.832 0.960 0.889 0.879 0.823 0.952 0.881 0.001

ShapeStacks

COCA-Net-RAS 0.834 0.735 0.267 0.728 0.747 0.385 0.157 0.419 0.005
COCA-Net 0.916 0.857 0.230 0.782 0.843 0.865 0.209 0.772 0.004

Table 10. Extension of Table 3 from the main paper, comparing the unsupervised scene segmentation performance of COCA-Net and COCA-Net-Dyna on
two datasets. The comparison is based on nine performance evaluation metrics assessed across four different configurations. All scores are based on results
obtained using the same random seed. The average number of slots used is provided in the second column. Note that for the CLEVR dataset, COCA-Net is
trained and evaluated on CLEVR6, whereas COCA-Net-Dyna is trained on CLEVR6 but evaluated on CLEVR10.

DEC-FG Only DEC-BG Included ENC-FG Only ENC-BG Included

Name Avg. Slots ARI↑ mSC↑ ARI↑ mSC↑ ARI↑ mSC↑ ARI↑ mSC↑ MSE↓

CLEVR

COCA-Net 11 0.982 0.881 0.929 0.900 0.975 0.756 0.849 0.795 0.000
COCA-Net-Dyna 7.49 0.978 0.840 0.911 0.859 0.966 0.741 0.846 0.773 0.001

ShapeStacks

COCA-Net 7 0.916 0.857 0.230 0.782 0.843 0.865 0.209 0.772 0.004
COCA-Net-Dyna 5.35 0.896 0.818 0.232 0.754 0.827 0.823 0.210 0.746 0.005

Figure 6. Qualitative results of COCA-Net on Tetrominoes dataset. Accompanying each input image, we visualize COCA-Net’s recon-
struction, segmentation masks generated by its encoder sub-network, as well as segmentation masks predicted by the decoder sub-network.

Figure 7. Qualitative results of COCA-Net on Multi-dSprites dataset. Accompanying each input image, COCA-Net’s reconstruction,
segmentation masks generated by its encoder sub-network, as well as segmentation masks predicted by the decoder sub-network are
visualized.

Figure 8. Qualitative results of COCA-Net on Shapestacks dataset. With each input image, we visualize COCA-Net’s reconstruction,
segmentation masks generated by its encoder sub-network, as well as segmentation masks predicted by the decoder sub-network.

Figure 9. Qualitative results of COCA-Net on ObjectRoom dataset. With each input image, we visualize COCA-Net’s reconstruction,
segmentation masks generated by its encoder sub-network, as well as segmentation masks predicted by the decoder sub-network.

Figure 10. Qualitative results of COCA-Net on CLEVR6 dataset. With each input image, we visualize COCA-Net’s reconstruction,
segmentation masks generated by its encoder sub-network, as well as segmentation masks predicted by the decoder sub-network.

Figure 11. Qualitative results of COCA-Net on CLEVRTex dataset. With each input image, we visualize COCA-Net’s reconstruction,
segmentation masks generated by its encoder sub-network, as well as segmentation masks predicted by the decoder sub-network.

	Introduction
	Related Work
	Unsupervised Object Discovery
	Clustering Methods

	Method
	COCA Layer
	Feature Refinement
	Operating on Non-Overlapping Windows
	Generating Candidate Affinity Masks
	Compactness Scoring
	Sequentially Discovering Object Centroids
	Pool, Aggregate and Skip Connect

	COCA-Net

	Experiments and Results
	Baselines and Datasets
	Metrics and Evaluation Configurations
	Results
	Ablation Studies

	Conclusion
	Complexity Analysis
	Architectural Details
	Pixel Feature Encoder
	COCA Layer (Section 3.1)
	Feature Refiner ViT-22B (Section 3.1.1)
	Partitioning Hierarchy (Section 3.1.2)
	Affinity Masks Generation (Section 3.1.3)
	Compactness Scoring (Section 3.1.4)
	Sequential Clustering (Section 3.1.5)
	Pool, Aggregate and Skip-Connect (Section 3.1.6)

	Dendrogram Generation by Merging Cluster Masks

	Implementation Details
	Training the COCA-Net
	Training the Baseline Models

	Additional Results
	Initial Experiments on Real-World Datasets; Birds and Flowers
	Additional Quantitative Results
	Ablation Studies
	Additional Qualitative Results

