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Supplementary Material

A. Training Details
We finetune the LLaMA 1-based Vicuna 1.3 model with
LoRA [1]. We use the HuggingFace Transformers and
PEFT libraries, along with DeepSpeed ZeRO-2 [5]. In all
experiments, we use a lora r of 128, a lora alpha of
256, a LoRA learning rate of 2e-05, an input linear pro-
jector learning rate of 2e-05, a learning rate of 0.0002
for the CLIP and numeric heads, and a cosine learning-rate
schedule. All models are trained with a batch size of 32 for
100,000 steps with bfloat16 mixed-precision training.
We use the CLIP encoder from 1, the DINOv2 encoder from
2, and the BioCLIP encoder from 3. The weight of the
rotation-matrix MSE is 1, the cosine-similarity loss applied
on the embedding 10, and the embedding norm 0.001.

B. Object-Level Evaluation
We additionally perform an object-level evaluation on the
synthetic in-distribution testing data. To do so, we match
ground-truth objects to predictions by the nearest distance
between them. Results are reported in Tab. S.1. We ob-
serve that the text-based model, while performing worst of
the models in estimating assets of the correct type/category,
scores highest on layout metrics. We suggest that the addi-

1https://huggingface.co/laion/CLIP- convnext_
xxlarge-laion2B-s34B-b82K-augreg-soup

2https://huggingface.co/facebook/dinov2-giant
3https://huggingface.co/imageomics/bioclip
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Figure S.1. Crop Retrieval. Nearest assets retrieved by CLIP
embeddings of crops. The most-salient objects were hand cropped.
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Figure S.2. Scene Retrieval. Training images were retrieved by
closest scene-level CLIP similarity for queried testing images.

tional conditioning the model has during training (i.e., the
multiple asset name tokens) reduces train-time ambiguity,
allowing it to learn to estimate with greater positional pre-
cision, at the cost of semantic similarity. However, we note
that while shape-estimation performance appears compara-
ble in-distribution between the CLIP-based model and the
IG-LLM baseline, the accuracy is skewed: evaluating at five
objects the balanced accuracy of IG-LLM is 52% while that
of the CLIP variant is 80%.

While our investigation was focused on holistic com-
positional scene reconstruction, for which to our knowl-
edge only a true comparison against IG-LLM can be made
in a straightforward way, we opt to also evaluate against
YOLOX-6D-Pose [4], a recent state-of-the-art single-shot
6D-pose-estimation method, on the object-based portion of
our task. We train the extra-large version of YOLOX-6D-
Pose for 30 epochs using all recommended data augmen-
tations and the RAW train set, and evaluate the model on
the same test set as used above. However, we observe that
it fails to capture the task, identifying objects, but with ap-
pearances that are not semantically appropriate. We record
results in Tab. S.1, and find that it falls excessively behind
the other methods. We suggest that the issue observed is
similar in nature to that of the training of the text-based
model, but that the model is worse-off because there is no
sequence to be conditioned on during training.

C. CLEVR-CoGenT

We evaluate the ability of the CLIP-augmented model to
generalize compositionally. To do so, we employ the
CLEVR [2] dataset. CLEVR is a procedurally generated
benchmark of renderings of primitive objects with various
discrete attribute combinations. It contains a subset, known
as CLEVR-CoGenT, where all cubes in training images are
gray, blue, brown, or yellow, and all cylinders red, green,
purple, or cyan. During testing, these combinations are
flipped. See IG-LLM [3] for additional details on the base
setup.

We train our model on a simplified format, where the
textual color and shape attributes are replaced by a sin-
gle [APP] token. The model is supervised via the same
losses as described in the methods section, but without a
loss on rotations, which are not applicable to the evaluation.
We train on four-thousand images and forty-thousand steps,
matching the evaluation as performed in IG-LLM against
NS-VQA [6], but decrease the effective batch size to eight.

The CLIP-augmented model achieves greater shape-
estimation performance than NS-VQA in the OOD setting,

https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup
https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup
https://huggingface.co/facebook/dinov2-giant
https://huggingface.co/imageomics/bioclip


↓Pos. L2 ↓Geod. ↓Ht. MSE ↑Type Acc. ↓Pixel MAE ↑CLIP Sim.

5 Obj.
CLIP 3.150 0.072 8.243 0.844 1759.847 0.873
Text 2.810 0.067 6.883 0.836 1551.264 0.862
BioCLIP 3.518 0.070 8.022 0.856 1934.479 0.852
DINOv2 3.130 0.067 7.791 0.856 1815.325 0.867
YOLOX-6D-Pose 5.472 1.270 22.185 0.519 N/A 0.764
10 Obj.
CLIP 4.285 0.098 7.825 0.839 1195.519 0.858
Text 3.703 0.089 6.640 0.825 1062.849 0.846
BioCLIP 4.685 0.096 7.772 0.847 1320.637 0.838
DINOv2 4.183 0.098 7.567 0.846 1248.744 0.851
YOLOX-6D-Pose 5.139 1.232 19.282 0.566 N/A 0.763
15 Obj.
CLIP 5.143 0.117 8.150 0.823 985.282 0.846
Text 4.429 0.110 7.143 0.808 881.454 0.833
BioCLIP 5.640 0.117 8.629 0.817 1116.113 0.824
DINOv2 5.016 0.117 8.118 0.825 1025.072 0.837
YOLOX-6D-Pose 5.079 1.205 17.377 0.589 N/A 0.762

Table S.1. Object-Level Evaluation. We additionally report quantitative in-distribution results at an object level. To compute each metric,
ground-truth objects are matched to the nearest prediction. Pos. L2 represents Euclidean distance, Geod. stands for geodesic distance
applied on the estimated rotations, Ht. MSE is measured on estimated object height, Pixel MAE is the mean-absolute error between
predictions of pixel count, and CLIP Sim. is the asset-wise distance computed on embeddings of asset images. Results are recorded for the
first five, first ten, and first fifteen ground-truth objects. CLIP similarity is shown separately because it is included in the training objective
of the CLIP-based model.

ID OOD
CLIP IG-LLM NS-VQA CLIP IG-LLM NS-VQA

↓L2 0.19 0.21 0.18 0.20 0.17 0.18
↑Size 99.63 99.71 100.00 99.53 99.80 100.00
↑Color 87.00 99.58 100.00 83.25 98.14 99.95
↑Shape 99.25 99.51 100.00 43.15 93.14 33.88

Table S.2. CLEVR-CoGenT Results.

but that it lags behind IG-LLM (Tab. S.2). We hypothesize
that the CLIP-projection head is over-parametrized relative
to the number of unique embeddings. We compute the av-
erage cosine similarity between embeddings produced from
CLEVR shapes as 0.81, which contrasts to the mean simi-
larity value of 0.59 of RAW assets. See a computed simi-
larity matrix in Fig. S.3.

D. Data-Efficiency Evaluation

In Tab. S.3 we evaluate the data efficiency of the framework,
training on 10,000, 100,000, and 1,000,000 samples. We
notice consistent performance gains as the amount of data
increases, indicating that model performance could likely
be increased were the amount of training data further in-
creased.

↓LPIPS ↑ SCLIP ↑ SBioCLIP ↑ SDINOv2

10k 0.829 0.698 0.327 0.786
100k 0.697 0.794 0.482 0.834
1M 0.598 0.815 0.539 0.858

Table S.3. Data Efficiency. We observe a consistent increase in
model performance as the number of training samples is increased,
indicating that the benefit of adding additional training data may
not have saturated.

E. Asset Separability

In Fig. S.4 we show retrieval samples using ground-truth
embeddings for each of the visual encoders. The ‘input’
comes from a held-out query set and the retrieved assets
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Figure S.3. CLEVR-CoGenT Embedding Similarity.

are from the set of assets used in the training samples. The
retrievals in the figure represent an upper bound on retrieval
performance as the model is trained with these embeddings
as targets.

In Fig. S.5 we show a scatter plot of the first two PCA
components of the CLIP embeddings of a set of trees. The
relative grouping of the projections suggests that CLIP em-
beddings can be used to distinguish between asset instances.

F. Crop Retrieval
We show also asset retrievals based on cropped images.
However, while the baselines might be adapted as layout
estimators, it is still necessary to disentangle occlusions
within and transform out environmental conditions, learn-
ing an invariance to lighting and occlusion (Fig. S.1).

G. Scene Retrieval
We show train-set images retrieved by CLIP similarity to
test images in Fig. S.2. Identifying matches by image-level
cosine similarity, we compute an LPIPS of 0.65, a CLIP
similarity of 0.94, a DINOv2 similarity of 0.86, and a Bio-
CLIP similarity of 0.58.

H. Asset Orientability
Preliminary to our investigation, we measure the ability of
the visual encoders to orient the assets. Within each asset,
we measure the pairwise cosine distance between each as-
set and each of its 72 rotations per five degrees, and take the
mean across assets. Visualizations of this distance can be
seen in Fig. S.6. The plots illustrate that only birds, carni-
vores, and herbivores are orientable, and that BioCLIP best
distinguishes between orientations of the same asset. This
matches our intuition that BioCLIP may be best-fitted as

the target to our retrieval task since it is finetuned on taxo-
nomic data to distinguish between species, but is not gener-
ally aligned with quantitative reconstruction results.

I. Additional Dataset Samples
We provide an additional 100 random dataset samples in
Fig. S.7.
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Figure S.4. Retrieval Samples. Database asset-retrieval samples from a held-out set of queries. Retrievals are from ground-truth embed-
dings and represent an upper bound on applied retrieval ability for each particular embedding type, as the embeddings are used as the target
during training. Asset types from left to right: Top: tree, bush, boulder. Bottom: bird, carnivore, herbivore.



Figure S.5. Asset-Space Visualization. Visualization of the first two PCA components of the CLIP embeddings for a set of tree assets.
Scatter dots with the same color represent five-degree rotations of a particular asset.
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Carnivore
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Figure S.6. Asset Orientability. Mean cosine distance between each pair of orientations, across assets. Greater values indicate that
the visual encoder produces embeddings that better distinguish between assets at those pairs of orientations. We observe that only birds,
carnivores, and herbivores are well oriented by the embeddings, that BioCLIP distinguishes most between orientations of the same asset,
and that the differences appear small between all immediate pairs of rotations of each asset.



Figure S.7. Additional Dataset Samples.
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