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In this appendix, we provide comprehensive implementa-
tion details and more analysis experiments. Towards repro-
ducible research, we will release our complete codebase and
pretrained weights. The appendix is organized as follows:

• Section A: Limitations
• Section B: Implementation Details
◦ Datasets (Sec. B.1)
◦ Architecture details (Sec. B.2)
◦ Training details (Sec. B.3)
◦ Human evaluation details (Sec. B.4, Fig. 1)
◦ Miscellaneous details (Sec. B.5)

• Section C: Experiments
◦ Extended comparisons (Sec. C.1, Table 1)
◦ Extended analysis (Sec. C.2, Table 2-4, Fig. 2-5)
◦ Efficiency analysis (Sec. C.3, Table 5, Table 6)

A. Limitations

While the steerability metric quantifies whether the target
concept is obtained in the intervened image, it does not
quantify if other concepts (outside the known concepts) have
changed. For example, an intervention from “not smiling”
to “smiling” may lead to a smiling image with different hair
color. This cannot be easily identified with an automated
metric, and it is challenging and expensive to design an
unbiased human evaluation given its subjective nature. It
will be interesting to address this in future work.

B. Implementation Details

B.1. Datasets

For the CelebA dataset, we follow CBGM [3] and use 8
balanced concepts for the balanced concept regime. We
determine these concepts based on the fraction of number
of images that contain a particular concept w.r.t. number of
images that do not contain that concept. The 8 concepts for
CelebA are “smiling”, “male”, “heavy makeup”, “mouth
open”, “attractive”, “wearing lipstick”, “high cheekbones”,

*Equal contribution

and “wavy hair”. For CelebA-HQ, we have the same 8 con-
cepts with the exception of “wavy hair”, which is replaced by
“arched eyebrows”. For CUB dataset, we use the 10 most bal-
anced concepts: “small size (5 to 9 inches)”, “perching-like
shape”, “solid breast pattern”, “black bill color”, “bill length
shorter than head”, “black wing color”, “solid belly pattern”,
“all purpose bill shape”, “black upperparts color”, and “white
underparts color”, following CBGM [3]. For the steerability
metric, we consider 16 and 20 target concepts for CelebA
and CUB respectively since they are binary concepts.

B.2. Architecture details

For base generative models with vector latents or small spa-
tial latents like StyleGAN2 or DDPM, we use a 4-layer MLP
(with batch norm and leaky ReLU) for both CB-AE encoder
E and decoder D. For models with larger spatial latents
like GAN or PGAN, we use 4 convolution (and transposed
convolution) layers with batch norm and leaky ReLU for
the CB-AE encoder E (and decoder D). CC has the same
architecture as the CB-AE encoder E.

B.3. Training details

For GANs, we use the training procedure as detailed in
the main paper. For the DDPM diffusion model, we use
saved generated images instead of generating the images at
training time since DDPM generation is relatively slower
than GANs. Further, we follow the diffusion model noising
procedure where, at each training iteration, we choose a
random timestep t and add the corresponding level of noise
to the generated image before passing it through first part of
the generative model g1 (UNet encoder for DDPM). Since
the CB-AE/CC would be used at different steps of denoising,
it is trained using noised latents (instead of only clean latents
from clean images). For GANs, g2 produces an image while
DDPM’s g2 predicts the estimated noise. So, we use the
initial clean image to obtain the pseudo-label from M instead
of the output of g2. Apart from this, we follow the same
training procedure as discussed in the main paper. While we
use the noising techniques from DDPM, the training losses
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Figure 1. User interface shown to Amazon Mechanical Turk users.
We ask users to click on images which match the displayed concept.

Table 1. Per-concept steerability comparison on CelebA dataset.
Results for baseline intervention methods are from CBGM [3].
Note that average results in the main paper are over 16 target
concepts, but here we compare with the available CBGM results.

Concept High Cheekbones Male Mouth Open Smiling Wavy Hair

Baseline Intervention Methods
CGAN [4] 5.8 6.0 6.1 3.6 13.5
ACGAN [5] 11.8 9.3 13.5 14.3 8.4
CB-GAN [3] 9.8 53.7 8.2 25.8 30.5

Our Methods
CB-AE-GAN 48.1 35.0 51.3 64.5 27.6
CB-AE-GAN+opt-int 66.0 72.3 81.3 67.3 38.1
CC-GAN+opt-int 50.9 54.8 78.5 53.8 23.4

Baseline Intervention Methods
CF-DDPM [2] 8.3 10.2 7.2 7.1 3.8
CB-DDPM [3] 11.7 14.8 13.9 15.1 10.3

Our Methods
CB-AE-DDPM 15.7 39.6 34.9 29.8 21.0
CB-AE-DDPM+opt-int 51.3 51.4 73.5 58.8 45.4
CC-DDPM+opt-int 61.9 42.6 63.3 64.0 65.9

of DDPM are not used and only the CB-AE/CC is trained
with our proposed losses.

While in original DDPM training, t is chosen from 0
(clean image) to 999 (complete noise), we restrict the choice
of t from 0 to 400, similar to [1]. This is because the CB-AE
has to predict the concepts and in practice, the generated
images are very noisy at t > 400.

Based on this, at inference time, we use the CB-AE only
for t < 400 and use the base model for t > 400. We also
use the 50-step DDIM sampler [7] at inference time instead
of the DDPM sampler since it is much faster with similar
image quality. Note that DDIM converts the 1000 steps into
50 steps but retains the range of t from 0 to 999.

B.4. Human evaluation details

For our user study on Amazon Mechanical Turk to validate
the automated evaluation of concept accuracy and steerabil-
ity, we display 10 images at a time and ask the user to click
on images that match a displayed concept c+i , as shown in

Table 2. Ablation study on CB-AE training objectives for the
supervised classifier pseudo-label setting for CelebA-HQ pretrained
StyleGAN2. Concept loss Lc and latent reconstruction loss Lr1 are
not ablated since they are essential to concept prediction and AE
reconstruction. Lr2 ,Li1 ,Li2 indicate image reconstruction loss,
intervened concept loss, and intervened cyclic loss respectively
from Eq. 1, 3 (main paper).

Row
#

Lr2 Li1 Li2
Trained with M=Supervised classifiers

Conc. Acc. (%) Steerability (%) FID (↓)

1 ✗ ✗ ✗ 85.36 33.41 15.18
2 ✓ ✗ ✗ 83.40 38.68 11.27
3 ✓ ✓ ✗ 83.16 38.84 12.72
4 ✓ ✗ ✓ 86.52 36.95 18.57
5 ✓ ✓ ✓ 86.04 40.27 9.52

Table 3. Steerability comparison when scaling image resolution
for our methods with PGAN and CelebA-HQ dataset.

Image Resolution CB-AE CB-AE+opt-int CC+opt-int

256×256 29.31 32.10 47.29
512×512 26.48 34.92 36.87

Fig. 1. To ensure the quality of user responses, we require
users to be in the United States, have > 98% approval rate,
and > 10000 previously approved responses. For each set of
10 images, a user is paid $0.05.

B.5. Miscellaneous details

We implement our framework in PyTorch [6]. For all exper-
iments, we use 10 CPU cores, 90 GB RAM, and a single
Nvidia Tesla V100 GPU with 32 GB VRAM.

C. Experiments

C.1. Extended comparisons

We present extended per-concept steerability comparisons
with CBGM [3] and other baseline intervention methods in
Table 1. We compare the steerability on CelebA for the 5
concepts (out of 8) which are provided in the CBGM paper
and find consistent improvements across all concepts.

C.2. Extended analysis

Ablation study. In the main paper, we performed the abla-
tion study on CB-AE training objectives for the more chal-
lenging CLIP-zero-shot pseudo-label setting. In Table 2,
we perform the same ablation study when using supervised
classifiers as the pseudo-label source M . Similar to the re-
sults in the main paper, using the image reconstruction loss
Lr2 leads to lower concept accuracy, higher steerability and
better image quality (row #2 vs. #1, Table 2). Additionally
using the intervened concept loss Li1 improves the steerabil-
ity and image quality but reduces the concept accuracy (row
#3 vs. #1, Table 2). Whereas using the intervened cyclic
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Figure 2. A, B. Sensitivity analysis of optimization-based interventions with CB-AE for CelebA-HQ, StyleGAN2 w.r.t. ℓ∞-norm bound ϵ
and number of iterations used in the optimization. C. Sensitivity analysis of CB-AE location in GAN. Note that orange circles represent
steerability, green triangles represent FID, and purple squares represent concept accuracy.

Table 4. Sensitivity of CB-AE to number of concepts for CelebA-
HQ-StyleGAN2 using TIP-few-shot for pseudo-labels. Evaluation
is done only on 8 shared concepts for a fair comparison.

Trained with
M=TIP-fs-128

Conc. Acc.
(%)

Steerability (%)

CB-AE CB-AE w/ opt-int

8 concepts 76.08 21.51 38.73
40 concepts 75.75 22.17 39.94

loss Li2 with the image reconstruction loss Lr2 improves
the concept accuracy at the expense of image quality and
steerability (row #4 vs. #1, Table 2). Finally, using both of
the intervention losses achieves a better tradeoff between the
three metrics (row #5 vs. #3, #4, Table 2).
Scaling image resolution. Based on Table 2 and 4 (main pa-
per), our methods achieve good performance on PGAN and
DDPM when the image resolution is scaled from 64×64 to
256×256. We further validate this with CelebA-HQ PGAN
trained at 512×512 in Table 3. While the steerability is
relatively lower than at 256×256, we still achieve fairly
good steerability, i.e. successful interventions with the same
training time.
Sensitivity to intervention hyperparameters. We analyze
the sensitivity to optimization-based intervention hyperpa-
rameters in Fig. 2A, B. Since we used the iterative random-
ized fast gradient sign method [8], the two hyperparameters
involved are the number of iterations and the ℓ∞-norm bound
ϵ (maximum allowable perturbation). We find that as ϵ is
increased, the steerability also increases but with a drop in
image quality since the FID increases. Hence, we choose
a small ϵ = 0.1 for most of our experiments such that we
obtain a good tradeoff between image quality and steerabil-
ity. Further, we observe that steerability and image quality
remain similar when the number of iterations are reduced
from 50 to 10 iterations. However, we use 50 iterations in
our experiments to allow the optimization to converge for
samples that are more difficult to intervene.
Sensitivity to CB-AE location. We vary the CB-AE location

Neuron 18

Neuron 21

Figure 3. Top-10 images activating a particular neuron from the
unsupervised concept embedding for CelebA-HQ StyleGAN2 CB-
AE. We observe ‘earrings’ (top) and ‘sunglasses’ (bottom) concepts
which were not present in the predefined concept set.

in CelebA-pretrained DCGAN and report the steerability and
concept accuracy in Fig. 2C. We observed that CB-AE closer
to generator output hurts steerability (decreased to 27.1%) as
modified latent has less influence on the output, but increased
steerability up to 47.3% near the middle. On the other hand,
concept accuracy remains reasonable across all locations.
Unsupervised concept embedding analysis. For CB-AE
trained with CelebA-HQ-pretrained StyleGAN2, we gener-
ated 5k images and collected top-10 images for each dimen-
sion in the unsupervised concept embedding being highly
activated. Based on the common attributes in the top-10
images, we identified ‘sunglasses’ and ‘earrings’ (not in
predefined concepts) as shown in Fig. 3.
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Figure 4. Concept intervention examples for CB-AE and CB-AE with optimization-based interventions (opt-int) for CelebA-HQ-pretrained
DDPM. Some cases where either or both of our methods failed are highlighted in purple.

Table 5. Inference time analysis for CB-AE with CelebA-HQ-
pretrained StyleGAN2. Here, opt-int-k indicates optimization-
based interventions with k iterations. Inference time (in millisec-
onds) is computed with batch size 64 on a single V100 GPU, re-
peated 1000 times for mean and standard deviation.

Inference Time (ms)

Base model 170.02 ± 0.45
CB-AE reconstr. 170.70 ± 0.53
CB-AE interv. 170.27 ± 2.26
CB-AE+opt-int-10 181.68 ± 2.98
CB-AE+opt-int-50 226.01 ± 1.05

Qualitative evaluation. In Fig. 4, we show concept interven-
tion examples of our CB-AE and CB-AE with optimization-
based interventions for a CelebA-HQ-pretrained DDPM dif-
fusion model. Unlike with StyleGAN examples (Fig. 4, 5,
main paper), we find that optimization-based interventions
produce relatively lower quality images compared to CB-AE
interventions. We also highlight some cases where either
or both of our methods failed. In these cases, we find that
some other concepts like hair style change marginally or the
desired concept does not change enough.

Concept interpolation. To demonstrate that our training
objectives incorporate meaningful knowledge in the CB-AE,
we generate images using interpolation (and extrapolation)
between predicted and intervened concept vectors, as shown
in Fig. 5. Concretely, for a randomly sampled noise vector
z, we can compute the concept vector c = E(g1(z)) using
the CB-AE encoder E and the first part of the generator
g1. Then, given a target concept, we compute an intervened
concept vector cintervened as described in the CB-AE Objective
3 (Sec. 3.1, main paper). The interpolated concept vector
can be computed as ĉintervened = (1−α)c+αcintervened where
α ∈ [0, 1] (and extrapolation for α > 1). Then, an image
can be generated using the interpolated concept vector as
x̂intervened = g2(D(ĉintervened)) using the CB-AE decoder D
and g2.

Overall, we observe that the CB-AE can produce smooth
transitions in the image space from the original to intervened
concept vectors as well as extrapolate further. However, in
some of the extrapolation cases, we find changes in other
concepts like hair color or skin color apart from the target
concept. While it is generally undesirable for concept inter-
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smiling → not smiling

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
original intervenedinterpolating concept vectors extrapolating

male → female

mouth closed → mouth open

Figure 5. Concept vector interpolation. We interpolate between the concept vector c from the CB-AE and the intervened concept vector
cintervened for generating images, i.e. ĉintervened = (1− α)c+ αcintervened where α ∈ [0, 1]. The interpolated vector ĉintervened is passed through
the CB-AE decoder D and the remaining generator g2 to obtain the displayed images. We also show examples with extrapolation for
α = 1.2, 1.4.
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Table 6. Trainable parameters analysis for CB-AE and CC with
CelebA-HQ-pretrained StyleGAN2 w.r.t. CBGM. Reduction indi-
cates % reduction in trainable parameters compared to CBGM.

Method Trainable Parameters Reduction (%)

CBGM [3] 24.77M -
CB-AE (Ours) 1.64M 93.37
CC (Ours) 0.79M 96.77

ventions, this can be a potential tool for dataset creators or
generative model developers to identify potential biases or
spurious correlations between concepts.

C.3. Efficiency analysis

In Table 5, we compare the inference time of our methods
with the base model. We compute the inference times for CB-
AE trained with CelebA-HQ-pretrained StyleGAN2 using
batch size 64 on a single V100 GPU. We repeat the inference
1000 times and report the mean and standard deviation, and
find that using the CB-AE with the base model (in recon-
struction mode, without interventions) and for concept inter-
ventions only causes a marginal increase in inference time.
Given the number of iterations involved in optimization-
based interventions, there is a relatively larger increase in
inference time. However, as shown in Fig. 2, our method
is effective even with 10 iterations, which adds only ∼11
milliseconds of inference time to that of the base model.

We also compare the number of trainable parameters
in our CB-AE and CC compared to CBGM in Table 6.
Due to our efficient and novel autoencoder setup, we find
93.37% and 96.77% reduction in trainable parameters for
StyleGAN2 compared to CBGM [3].
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