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This supplementary presents the details which could not
be included in the main paper due to space constraints:

1. AdvPatchXAI on the Standard Datasets in
Prototype Literature

Since our proposed model is based on prototypes, building
upon the prototype-based approach described in the main
paper, we evaluate our model’s performance on CUB-200-
2011 [8], and Stanford Cars [3], standard benchmarks in
prototype learning. We compare our results with several
current state-of-the-art prototype-based models. The fol-
lowing metrics are used for evaluation.

e Top-1 Acc:

Number of correct predictions

Top-1 Ace = Total Number of predictions

¢ Global Size: Global size presents the number of proto-
types in the model with at least one non-zero weight.

* Local size: The local size counts all present relevant pro-
totypes for any class. For a local explanation, we count
all relevant prototypes with a similarity > 0.1 for a local
explanation.

As shown in Table 1, our proposed AdvPatchXAI model
utilizes significantly fewer prototypes compared to PIPNet
with a ConvNeXt backbone. Specifically, the global size of
AdvPatchXAI (AdvPatchXAI-C) employs 31 and 32 fewer
prototypes than PIPNet-C on the CUB and CARS datasets,
respectively, while still maintaining competitive classifica-
tion accuracy.

2. AdaptiveAttacks

It is to note that the proposed algorithm has been found ro-
bust and generalized in handling unseen physical adversar-
ial attack patches and patches perturbed with natural cor-
ruption. However, to further strengthen the effectiveness of

IThere is a significant discrepancy of 5.2% between our proposed
AdvPatchXAI-R and PIP-Net R. Furthermore, upon reproducing the re-
sults of PIP-Net R on the CUB dataset using the code implementation of
authors, we achieved a performance of 76.1%, which is 1.1% lower than
that of our proposed model.

Table 1. Performance comparison in object recognition of differ-
ent methods on CUB and CARS datasets.

Dataset Method TOP-1 Acc T Global Size | Local Size |

AdvPatchXAI-C 84.5 464 10 (4)
AdvPatchXAI-R 77.2 673 13 (4)
PIP-Net C [4] 84.3 495 10 (4)
CUB PIP-Net R [4] 82.0' 731 12 (5)
ProtoPNet [2] 79.2 2000 2000
ProtoTree [5] 82.2 202 8.3
ProtoPShare [7] 74.7 400 400
AdvPatchXAI-C 88.3 483 9(3)
AdvPatchXAI-R 85.7 570 8(3)
PIP-Net C [4] 88.2 515 9(4)
PIP-Net R [4] 86.5 669 11(4)
CARS ProtoPNet [2] 86.1 1960 1960
ProtoTree [5] 86.6 195 8.5
ProtoPShare [7] 86.4 480 480

Table 2. Adaptive attack robustness of the proposed algorithm

AdvPatchXAI-R (training patch 9). For completeness, we want

to mention that the performance on other patches is at least 88%.
PatchO Patch1 Patch2 Patch4 Patch6 Patch7 Patch9

Gray-box 95.12 95.25 94.87 95.25 93.17 94.68 95.25
White-box  93.75 93.81 93.31 93.68 91.25 92.93 93.81

the proposed defense algorithm, we have evaluated its re-
siliency against adaptive attacks in various forms: (i) gray-
box: where the attacker has complete access to the defense
model except the color channel information used as input
and (ii) white-box: where the attacker has full access to
the model including color channel. Following the standard
protocols, we have applied the BPDA & Auto attacks [1]
following benchmark attack parameter settings to fool the
proposed defense algorithm. The results reported in Table
2 demonstrate the resiliency of the proposed attack in han-
dling adaptive adversaries. We want to highlight that the
proposed defense has been trained on the unseen patches
and even found to be generalized when we combined the
adaptive adversary with corruption.
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Figure 1. Baseline comparison of AdvPatchXAI with recent
prototype-based model PIP-Net with several backbones R, ViT,
and M representing ResNet50, Vision Transformer, and Mo-
bileNet, respectively. Here, the proposed model is trained on
the COCO patched train dataset and evaluated on the COCO test
patched dataset in silent (unseen patch) settings and reported mean
accuracy.

3. Adversarial Patch Detection

In this section, we extend the presentation of our results by
including both mean accuracy and standard deviation (SD).
While the main paper emphasizes mean accuracy to sum-
marize the central tendency of our data, we also provide
the SD to quantify variability. This measure is crucial for
illustrating the dispersion of data points around the mean,
offering insights into the consistency and reliability of our
findings across different patches.

Table 3 and Table 4 present the results of AdvPatchXAI
on COCO subsets under silent and noisy evaluation settings,
respectively. Similarly, Table 5 and Table 6 show the re-
sults on the ImageNet subset under the same conditions.
Our analysis reveals that while AdvPatchXAI with back-
bones such as ConvNeXt (C), ResNet (R), and MobileNet
(M) exhibits high standard deviations in many cases, Ad-
vPatchXAI with the Vision Transformer (ViT) shows rela-
tively small SD values, except for Patch-5 and Patch-6. This
indicates the robustness of our proposed algorithm with the
ViT backbone. Additionally, it is noteworthy that in 10 out
of 16 evaluations with Patch-4, low SD values further sup-
port the effectiveness of Patch-4 in conjunction with our
proposed algorithm. These findings demonstrate the reli-
ability and robustness of AdvPatchXAl, particularly with
the ViT backbone, across different patches and evaluation
settings.

3.1. Comparison & Discussion on Defense

The global size in the context of the AdvPatchXAI model
refers to the total number of prototypes utilized within the
model for classification tasks. This number is critical as it
impacts both the model’s interpretability and efficiency. In
our research, the global size is defined as the number of

AdvPatchXAl-R

AdvPatchXAl - ViT

Figure 2. Samples of the prototypes available in AdvPatchXAI-R
and AdvPatchXAI-ViT after fully training on the most effective
patch Patch-4 for adversarial patch detection.
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Figure 3. Explanation of proposed AdvPatchXAI with only a few
prototypes for the correct class. Here AdvPatchXAI-ViT trained
on Patch-4 and evaluated on Patch-0. AdvPatchXAI learns part-
prototypes visuaalized as patches from the training data, and lo-
calizes similar image patches in an unseen input image.
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prototypes in the model with at least one non-zero weight,



Table 3. Adversarial patch detection accuracy of the proposed AdvPatchXAI with different backbone on COCO (seen dataset) subset
in silent (unseen patch without any noise) setting. The results are reported as mean along with their standard deviation (SD). Patch-{0-
9}\{1} indicates models are trained on Patch-1 and tested on all other patches except Patch-1. Here, R, M, ViT, and C represent
ResNet50, MobileNet, Vision Transformer, and ConvNeXt backbones, respectively. The best mean and SD values are highlighted and
underlined across each network.

Method Train — Patch-0 Patch-1 Patch-2 Patch-3 Patch-4 Patch-5 Patch-6 Patch-7 Patch-8 Patch-9
Test —  Patch-{1-9}  Patch-{0-9}\{1}  Patch-{0-9}\{2}  Patch-{0-9}\{3} Patch-{0-9}\{4}  Patch-{0-9}\{5} Patch-{0-9}\{6} Patch-{0-9}\{7}  Patch-{0-9}\{8}  Patch-{0-8}
Mean |
Mean 94.09 95.57 84.69 83.30 97.99 79.65 85.53 96.91 94.76 99.33
AdvPaichXAL-R SD 05.20 09.31 1475 14.64 02.92 16.53 13.37 04.84 07.27 00.63
Mean 94.17 97.45 77.33 64.88 98.47 72.28 93.90 98.61 92,90 97.24
AdvPaichXAL-M SD 08.51 05.57 18.91 15.14 00.63 13.89 08.20 02.09 10.79 04.06
) Mean 95.84 95.19 93.20 81.74 96.42 67.27 89.08 93.90 89.00 94.32
AdvPatchXALVIT oy 01.54 02.87 05.15 1112 00.10 14.46 11.28 02.38 08.77 01.22
Mean 90.08 85.29 86.08 75.94 96.27 82.42 78.63 87.18 92.73 95.28
AdvPaichXAL-C SD 10.58 14.96 15.87 19.87 04.93 15.12 13.60 13.84 07.50 06.92

Table 4. Adversarial patch detection accuracy and standard deviation (SD) on COCO subsets in an noisy (unseen patch and unseen noise)
evaluation setting. This evaluates the ’dual’ resiliency of the detectors when unseen patches perturbed with natural noises are classified.
The best mean and SD values are highlighted and underlined across each network. Patch-{0-9}\{1} indicates models are trained on
Patch-1 and tested on all other patches except Patch-1.

Method Train — Patch-0 Patch-1 Patch-2 Patch-3 Patch-4 Patch-5 Patch-6 Patch-7 Patch-8 Patch-9
Test —+  Patch-{1-9}  Patch-{0-9}\{1}  Patch-{0-9}\{2} Patch-{0-9}\{3} Patch-{0-9}\{4} Patch-{0-9}\{5} Patch-{0-9}\{6} Patch-{0-9}\{7} Patch-{0-9}\{8} Patch-{0-8}
Mean |
Mean 85.81 88.86 78.07 72.01 96.09 69.05 78.95 94.59 83.79 95.92
AdvPachXALR SD 12.19 16.11 19.10 18.95 04.18 16.54 18.21 08.13 06.47 02.79
Mean 76.09 70.82 56.91 50.24 89.63 51.34 70.45 83.65 71.13 68.11
AdvPatchXAI-M SD 19.51 13.06 08.31 00.60 08.49 07.40 14.36 15.04 13.76 14.38
. Mean 9231 92.61 88.91 78.91 92.95 64.57 85.74 90.52 80.56 93.13
AdvPatchXALVIT gy 02.01 05.11 06.51 11.92 00.72 14.34 13.47 03.75 08.83 02.98
Mean 79.16 79.88 74.62 64.69 86.57 59.72 72.74 71.09 76.41 84.06
AdvPatchXAL-C SD 16.38 15.94 20.14 14.66 11.34 14.54 16.82 17.88 18.32 14.79

Table 5. Adversarial patch detection accuracy of the proposed AdvPatchXAlI with different backbone on ImageNet (unseen dataset) subset
in Silent (unseen patch without any noise), Noisy (unseen patch+noise). The results are reported as mean along with standard deviation
(SD). Patch-{0-9}\ {1} indicates models are trained on Patch-1 and tested on all other patches except Patch-1. Here, R, M, ViT, and C
represent ResNet50, MobileNet, Vision Transformer, and ConvNeXt backbones, respectively. The best mean values are highlighted across
each network.

Method Train — Patch-0 Patch-1 Patch-2 Patch-3 Patch-4 Patch-5 Patch-6 Patch-7 Patch-8 Patch-9
etho Test —  Patch-{1-9}  Patch-{0-9}\{1}  Patch-{0-9}\{2}  Patch-{0-9}\{3}  Patch-{0-9}\{4} Patch-{0-9}\{5} Patch-{0-9}\{6} Patch-{0-9}\{7} Patch-{0-9}\{8}  Patch-{0-8}
Mean |

Mean 92.96 95.12 84.49 82.56 98.17 79.40 84.68 97.18 95.60 98.94
AdvPaichXAL-R SD 06.02 09.80 14.25 14.88 02.16 16.67 14.01 04.47 06.18 00.67
AdvPachxALm Mean 93.68 95.28 77.30 64.13 95.71 70.72 91.93 96.81 91.90 95.92
SD 08.25 06.49 1847 14.44 00.67 14.41 09.38 02.10 11.70 04.59
. Mean 94.31 92.67 92.03 81.37 92.94 66.41 86.71 91.77 87.37 90.94
AdvPatchXALVIT gy 01.61 03.11 05.53 10.63 0026 13.90 11.79 02.45 07.99 01.91
Mean 89.41 85.26 85.12 75.91 96.23 81.21 77.30 86.67 91.53 94.65
AdvPatchXAL-C SD 10.99 14.61 15.37 19.75 05.12 15.15 14.38 14.21 08.20 07.49

Table 6. Adversarial patch detection accuracy of the proposed AdvPatchX Al with different backbone on ImageNet subset (unseen dataset)
under noisy (unseen patch and unseen noise) setting. The results are reported as mean and standard deviation (SD). Patch-{0-9}\{1}
indicates models are trained on Patch-1 and tested on all other patches except Patch-1. The best mean and SD values are highlighted and
underlined across each network.

Method Train — Patch-0 Patch-1 Patch-2 Patch-3 Patch-4 Patch-5 Patch-6 Patch-7 Patch-8 Patch-9
Test —  Patch-{1-9}  Patch-{0-9}\{1}  Patch-{0-9}\{2}  Patch-{0-9}\{3} Patch-{0-9}\{4} Patch-{0-9}\{5} Patch-{0-9}\{6} Patch-{0-9}\{7}  Patch-{0-9}\{8}  Patch-{0-8}
Mean |
Mean 84.39 88.51 77.81 71.42 95.67 68.34 78.30 93.72 78.88 94.76
AdvPaichXALR SD 12.57 15.89 18.75 19.28 03.85 16.42 18.37 07.66 05.41 02.82
Mean 75.10 70.16 56.88 50.22 87.74 5115 69.73 82.00 68.55 67.21
AdvPaichXAL-M SD 19.30 13.25 08.17 00.51 08.56 07.16 14.53 14.66 12,97 13.88
) Mean 90.18 90.14 87.98 78.88 89.19 64.22 83.73 87.19 78.16 90.04
AdvPatchXALVIT oy 02.31 05.32 06.49 11.16 01.12 14.16 1335 04.02 08.31 03.59
Mean 78.14 79.55 73.29 63.66 85.20 59.13 71.54 70.16 75.21 8341

AdvPaichXAL-C SD 16.79 15.82 20.36 14.27 11.85 14.43 17.08 17.70 17.78 15.27




Table 7. Global size presents the total number of prototypes of different methods (AdvPatchXAI and PIP-Net) with various backbones R,
M, ViT, C represents ReNet50, MobileNet, Vision Transformer, and ConvNeXT respectively. All the models are trained on the COCO

subset across patches.

Method Backbone Patch-0 Patch-1  Patch-2  Patch-3  Patch-4  Patch-5 Patch-6  Patch-7  Patch-8  Patch-9
R 263 220 182 209 232 213 241 233 250 210
ViT 187 168 203 166 203 144 183 194 192 190
AdvPatchXAL 82 55 79 87 65 85 52 88 83 65
C 295 291 229 269 293 320 273 316 269 299
370 284 251 252 347 265 315 309 279 269
PIP-Net ViT 195 151 161 152 161 153 161 170 176 156
e M 67 61 100 91 101 81 68 85 99 113
C 397 459 348 301 353 363 367 373 274 364
Table 8. Mean IOU for patch detection using Faster R-CNN on 3.2. Patch Detection

the proposed COCO patched dataset.

Metric Test —  Patch-0  Patch-1  Patch-2  Patch-3  Patch-4
Train |

Mean IOU  Patch-0  97.51 95.01 93.86 95.38 95.14

Mean IOU  Patch-1 92.92 97.77 95.03 95.63 96.03

which contributes to the decision-making process. Table 7
shows the total number of prototypes with at least one non-
zero weight present in the model after full training. Ini-
tially, before training, the total number of prototypes (D)
in ResNet50, MobileNet, ConvNeXt, and ViT were 2048,
1280, 768, and 768, respectively. The significant drop in
global size showcases the better interpretability and effi-
ciency of our proposed AdvPatchXAl.

However, as Table 7 demonstrates that our proposed
AdvPatchXAI with ResNet (R), MobileNet (M), and Con-
vNeXt (C) backbones contains fewer prototypes while pro-
viding better performance as shown in Figure 1 compared
to PIP-Net. For instance, the proposed AdvPatchXAI with
backbone R, ViT, and M outperforms PIP-Net with the
same backbone by 4.73%, 0.28%, and 6.9%, respectively,
showcasing the robustness of our model. Some sample
of the prototypes available in the AdvPatchXAI-ViT and
AdvPatchXAI-R corresponding to Patch-4 are shown in
Figure 2. More explanation and impact of noise on Adv-
PatchXAI can be followed by Figure 3. We are not lim-
ited to only one metric; we have evaluated the robustness
by using AUC-ROC to verify the robustness of our pro-
posed AdvPatchXAI. The average AUC across all unseen
patches on COCO patched dataset of AdvPatchXAI-C is
95.91%, compared to 89.76% for PIP-Net-C, indicating a
6.15% improvement. The AUC of AdvPatchXAI-ViT is
66.95%, compared to 57.92% for PIP-Net-ViT, reflecting a
9.03% improvement.

Apart from classifying an image into a clean or adversarial
image, we have performed a preliminary study to demon-
strate whether the added patches can be detected in seen
and unseen settings. For that, we have trained an object de-
tection model namely Faster R-CNN [6] on COCO patched
train images for Patch-0 and Patch-1 and tested on COCO
patched test images for the patches 0-5. We have not used
clean images for training and testing in this case, i.e., only
1200 images are used for training, and 800 images are used
for testing for a particular patch. The result shown in Ta-
ble 8 achieves more than 90% mean IOU for each patch. In
terms of, mean average precession (mAP); in each patch,
the model yields 99% mAP score showcases the potential
integration of object detector in our model as part of our
future work.
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