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All figures and tables in supplementary are labeled with the
prefix S. The supplementary material is structured as fol-
lows:
1. BlurKernelNet architecture and non-dependence on ker-

nel size.
2. Effect of different regularizers/loss functions
3. Comparisons with baselines
4. Effect of kernel size
5. Ray sampling strategy
6. Dataset

S1. BlurKernelNet
S1.1. Architecture

The BlurKernelNet (Fig.S1) design is motivated by the de-
pendence of blur on the motion and depth of a particular
foreground pixel. BlurKernelNet takes a 4D input (v(t) ∈
R3 concatenated with depth dtr ∈ R) and outputs weights
w ∈ R2m+1, assuming (2m+1) kernel size. The output h1,
h2 of hidden layers with Exponential Linear Unit (ELU)[3]
as activation are 128-dimensional vectors. The output layer
activation is softmax to ensure

∑
j

wj = 1 and wj ∈ [0, 1]

Figure S1. Block diagram of BlurKernelNet.

S1.2. Non-dependence of weights on kernel size

The weight contribution of each kernel location depends on
motion and depth, rather than the kernel size which is sel-
dom known apriori. In Fig. S2, we demonstrate that the
weights estimated by BlurKernelNet are consistently dis-
tributed as the weight values are about the same at any ker-
nel location for any given kernel size. This behavior sug-
gests coherence within the estimated 3D radiance field and
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Figure S2. Weights vs. kernel size: The weight distribution is
independent of kernel size.

motion. The central position in the weight distribution cor-
responds to the observed blurry foreground pixel, while the
weights on either side correspond to the respective kernel
locations away from the foreground pixel.

S2. Effect of Regularizers/Loss functions
We study each loss combination (Sec. 5 on ablations in the
main paper) by analyzing their effect on the rendered novel
view quality (photometry) and on the 3D motion profile.

S2.1. Effect on Rendered Novel Views

In the main paper in Table 2, we presented quantitative re-
sults, where it was observed that there is gain in dynamic
region using the final loss L (Eqn. 12 in main paper) as
compared to Lphoto + Lkernel + L2dv. In Fig. S3, we illus-
trate the qualitative effect of each loss combination.
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Lphoto + Lkernel Lphoto + Lkernel + L3dv Lphoto + Lkernel + L2dv Final loss L

Figure S3. Qualitative analysis of different loss combinations on a test view at a single time instant for Lychee(row 1), Cube (row 2),
Monkey (row 3) and Sphere (row 4). Lphoto + Lkernel produces blurry image, Lphoto + Lkernel + L3dv produces oversharp and distorted
image due to high 3D motion. Lphoto + Lkernel + L2dv and the final loss L synthesize almost indistinguishable images. For further
refinement, we incorporate additional motion analysis to guide the selection of optimal loss combinations, ensuring improved alignment
and consistency to make DynaMoDe-NeRF motion-aware.

While we observe an almost indistinguishable difference in
the rendered novel view visual quality, in addition we found
that introducing to Lphoto + Lkernel + L2dv in the final loss
L brings consistency in the 3D motion profile.

S2.2. Effect on 3D Motion Profile

Though the loss combination Lphoto + Lkernel + L2dv syn-
thesizes acceptable sharp novel views, we aim to maintain
consistency in the 3D motion. We analyze the effect of dif-
ferent losses on 3D motion and report 3D motion profile
similarity with ground truth (GT) motion in Table S1. We
also analyze the qualitative similarity of the estimate motion
with the GT motion for different loss combinations in Fig.
S5. Note that the final loss L consistently outperforms all
other loss combinations in terms of speed profile similarity.
Additionally, it achieves comparable cosine similarity (CS)

Loss Speed CS 3D Trajectory CS
Lychee Cube Monkey Sphere Lychee Cube Monkey Sphere

Lphoto + Lkernel 0.913 0.910 0.930 0.932 0.9790 0.9656 0.9844 0.4394
Lphoto + Lkernel + L2dv 0.999 0.997 0.992 0.993 0.9980 0.9989 0.9938 0.6673
Lphoto + Lkernel + L3dv 0.945 0.959 0.938 0.896 0.9956 0.9969 0.7752 0.6095

L 1.000 0.999 0.995 0.999 0.9963 0.9998 0.9898 0.8158

Table S1. Effect of loss on motion profile similarity with GT mo-
tion: The cosine similarity of the estimated motion is consistently
better across scenes using L. ( L3dv = L3dd + L3dm)

values for the 3D trajectory profile while surpassing the per-
formance of Lphoto +Lkernel +L2dv on complex trajectories.

S3. Comparisons

For the synthetic dataset, we designated one view as the
test view and synthesized its blurry version to evaluate ren-
dered quality against both sharp and blurred GT images.In
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Figure S4. Comparison of baselines for novel view synthesis for the same test view and time instant. Our method outperforms all
prior works to illustrate state of the art performance. Note that DyBluRF [14] produces a slightly misaligned novel view similar to the
misalignment observed with the Cube dataset (see Fig. 4 in the main paper). Video results are provided in the accompanying .zip file.

Fig. S4, we show novel view synthesis from an unseen
view at a particular time instant. We consistently outper-
formed HexPlane [1] and MixVoxel [15] across all scenes.
DynaMode-NeRF consistently outperforms all other ap-
proaches. DyBluRF [14] rendered distorted and misaligned
views. Deblur-NeRF [10] and DP-NeRF [9], which are

trained for a specific time instant, fail to handle significant
blur as observed in the Lychee scene. These methods pro-
duce comparable results for the Monkey scene but generate
outputs similar to the ground-truth (GT) blurred image for
the Sphere scene. Video results for 4 synthetic and 1 real
scene are provided in the accompanying .zip file.



(a) Loss vs. Speed: Lychee (b) Loss vs. Speed: Cube (c) Loss vs. Speed: Monkey (d) Loss vs. Speed: Sphere

(e) Loss vs. 3D Trajectory: Lychee (f) Loss vs. 3D Trajectory: Cube (g) Loss vs. 3D Trajectory: Monkey (h) Loss vs. 3D Trajectory: Sphere

Figure S5. Effect of different losses on 3D motion profiles:The GT trajectory was defined in Blender [4] coordinate system, while the
estimated trajectory was obtained in COLMAP coordinate system during pose estimation for each view. To ensure fair comparison, we
aligned the ground truth (GT) trajectory with the estimated trajectory. The cosine similarity was calculated to assess their alignment.

S4. Effect of kernel size
We tabulate the average photometric metrics and the 3D
motion cosine similarity (CS) values for different kernel
sizes in Table S2. Kernel size 7 consistently achieves the
highest PSNR across all kernels while delivering compara-
ble SSIM and LPIPS values relative to other kernel sizes.
Therefore, we have chosen 7 as our final kernel size.

S5. Ray Sampling Strategy
In each iteration, we fix the batch size B = 2048. Of
this, 25% of the rays are randomly selected from the fore-
ground (moving rigid object) and the remaining 75% are
from the background. In experiments with real data, when
the foreground occupies less than 25% of the frame due to
its smaller size, we select more than 75% of the rays from
the background. If the real data also contains humans, then
we consider them as part of the background and select 25%
of the background rays from the human-occupied regions.
This ray sampling strategy is driven by the intuition that,
in each iteration, the network optimizes all parameters and
unknowns, ensuring that smaller foreground regions are not
overlooked.

S6. Dataset
In image deblurring literature, it is common to syn-
thesize realistic blurry images by averaging consecutive
frames of a high-frame-rate video to simulate real-world,
depth-dependent blurring [11–13, 16]. State-of-the-art
approaches, such as [2, 5, 6, 18], use these frame-
averaged synthetic datasets instead of blur-kernel synthe-
sized datasets which often fail to capture real-world blur
accurately. Following this practice, we also average 5 to 7

consecutive frames to generate object motion blur that takes
into account the 3D nature of the object, its motion and
the camera view. The number of averaging frames is se-
lected based on the authenticity of the visual inspection of
the averaged frame.The Lychee, Cube, Monkey, and Sphere
datasets consist 20, 15, 12, and 8 videos, respectively. For
each dataset, one video is reserved for testing/inference,
while the remaining videos are used for training. Note that
for the test view, we also synthesize a blurry video to com-
pare our deblurred result against both the blurry video and
the corresponding sharp video.
Training: We have trained all the models with Nvidia
RTX3090 GPU for 300000 iterations for all the scenes.



Kernel Size Background Foreground Overall 3D Motion Profile (CS) Similarity
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS Speed Trajectory

5 35.958 0.947 0.024 26.620 0.748 0.01 34.075 0.937 0.026 0.998 0.950
7 36.030 0.947 0.026 28.081 0.810 0.01 34.701 0.938 0.027 0.998 0.950
9 35.953 0.947 0.023 27.697 0.803 0.01 35.125 0.939 0.025 0.997 0.961

11 35.847 0.947 0.023 27.872 0.809 0.01 34.486 0.939 0.025 0.997 0.887
13 35.521 0.949 0.025 27.948 0.796 0.01 34.271 0.938 0.027 0.988 0.918
15 35.662 0.945 0.026 27.924 0.807 0.01 34.351 0.937 0.027 0.981 0.915

Table S2. Average performance metrics for different kernel sizes in terms of PSNR, SSIM, and LPIPS[8] values for Background (static
region), Foreground (rigid moving object), and Overall (entire image consisting of both foreground and background).
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