
Supplementary Material: Annotation Ambiguity Aware Semi-Supervised
Medical Image Segmentation

Suruchi Kumari Pravendra Singh*

Indian Institute of Technology Roorkee
{suruchi k@cs.iitr.ac.in, pravendra.singh@cs.iitr.ac.in}

1. Architecture Design Analysis
To demonstrate the impact of the framework, an analysis
is presented using different architectures. In architecture a,
only the original encoder Eb

θ and decoder Db
θ are utilized

to process both labeled and unlabeled data. Initially, the
pseudo-label set is generated from the decoder Db

θ and is
used to facilitate learning from unlabeled data. The same
pseudo-label set is also employed in the posterior network
to build a shared latent space. Similarly, for architecture
b, Eb

θ and Db
θ are utilized; additionally, the decoder Db

ϕ

is included. Here, Db
θ is trained solely on labeled data.

The pseudo-label set generated by Db
θ is combined with the

pseudo-label set from Db
ϕ and provided to the posterior net-

work. However, to train Db
ϕ on unlabeled data, it only uti-

lizes the pseudo-labels generated by Db
θ. For architecture c,

Eb
θ , Db

ϕ, and Db
ξ are used. Two pseudo-label sets are gener-

ated from both decoders and provided to the posterior net-
work. Furthermore, cross-supervision is enabled by training
Db

ϕ and Db
ξ on each other’s pseudo-labels for the unlabeled

data, ensuring mutual refinement and consistency between
the decoders. A comparison of all three architectures with
our framework is shown in Table 1.

Architecture GED ↓ Dicesoft ↑
a 0.3089 81.56
b 0.2967 82.33
c 0.2541 84.13

Ours 0.2444 85.87

Table 1. Comparison of different architectures on the ISIC dataset
with 20 % labeled and 80 % unlabeled data.

2. Additional Implementation Details
For weak augmentation, we followed the approach de-
scribed in [3] for data pre-processing and applied standard
flip and rotation operations to augment the samples for both
datasets. For strong augmentation, we applied techniques
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such as Gaussian noise, brightness adjustment, contrast en-
hancement, and salt-and-pepper noise to simulate diverse
conditions and introduce random pixel-level perturbations.

Our method consists of a total of 31.60 million parame-
ters. While the training process involves all three decoders,
Db

θ, Db
ϕ, and Db

ξ, once the training phase is complete. Dur-
ing the testing phase, only the decoder Db

ϕ, the encoder Eb
θ ,

and the prior network Eprior
θ are utilized to generate final

predictions. A testing time of 0.0110 seconds per image
ensures practical applicability in real-world scenarios.

3. Impact of Strong Augmentations and De-
coder Pruning on Model Performance

In this section, we analyze the impact of using strong aug-
mentations alongside randomly pruned decoders on the fi-
nal performance. Strong augmentations introduce data per-
turbations, while the random pruning of decoders adds di-
versity for unlabeled data by enabling varied feature rep-
resentations. To evaluate the effect of these components
(Table 2), we first present results where cross-decoder su-
pervision occurs between Db

ϕ and Db
ξ without pruning or

strong augmentations, referred to as CDS-I. Next, we apply
strong augmentations to the unlabeled data, pass it through
Db

ξ, and perform cross-supervision between the decoders,
naming this module CDS-II. Finally, our complete archi-
tecture, which incorporates both strong augmentations and
random pruning to enhance feature diversity, is referred to
as CDS.

Architecture GED ↓ Dicesoft ↑
CDS-I 0.2832 83.55
CDS-II 0.2742 84.08
CDS 0.2444 85.87

Table 2. Ablation study on showing the contribution of strong
augmentation and pruned decoders in the final performance on the
ISIC dataset with 20 % labeled and 80 % unlabeled data.
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Figure 1. Comparison of segmentation results of our proposed AmbiSSL framework on the ISIC dataset with human annotators.

4. Visualization Results
The visualization results of the AmbiSSL framework for
the ISIC dataset are presented in Figure 1. These results
demonstrate its ability to produce diverse predictions that
align with those of human annotators.

5. Additional Experiments
To further showcase the efficacy of our method, we evalu-
ate it on the Gleason19 dataset [1]. The dataset consists of
333 Tissue Microarrays (TMAs) of prostate cancer, anno-
tated by six different pathologists, and contains four classes.
Among these, 244 images are publicly available with labels,
as the test annotations from the challenge are not provided.
Following the original dataset protocol [1], we resize all im-
ages to 1024 × 1024 pixels and create four cross-validation
splits. With only 10% labeled data, our method achieves the
lowest GED (0.341) and the highest Dice scores compared
to other baselines (Table 3), demonstrating its effectiveness
in utilizing unlabeled data for improved segmentation.

Method Ratio Diversity Performance Personalized Performance (%)
Labeled Unlabeled GED ↓ Dicesoft ↑ Dicemax ↑ Dicematch ↑

Upper Bound 244(100%)0 0.325 82.67 84.78 84.21

Pionono [2] 25(10%) 0 0.451 73.26 74.54 73.86
Baseline I

25 (10%) 219 (90%)

0.402 75.22 76.13 75.89
Baseline II 0.381 77.78 78.65 78.21
Baseline III 0.372 76.64 78.23 77.71

Ours 0.341 80.22 81.78 81.34

Table 3. Performance of our proposed framework on the Glea-
son19 dataset with 10% labeled data, rest is utilized as unlabeled
data.
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