
HMAR
Supplementary Material

Contents
A. Extended Related Work 12

B. Efficient Attention Computation 12
B.1. Long Sequences in Next-Scale Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
B.2. Attention Pattern Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
B.3. Attention Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
B.4. Efficient Attention Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C. Training Dynamics 15
C.1. Learning Difficulty Across Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.2. Loss Weighting Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.3. Loss Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

D. Masking/ Parallel Sampling 17
D.1. Error Accumulation in Parallel Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
D.2. Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
D.3. Masked Finetuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
D.4. Masked Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E. Discussion on Multi-Scale VQ-VAE Tokenizer 18
E.1. Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
E.2. Codebook Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

F. Additional Qualitative Results 20
F.1 . Qualitative Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
F.2 . Class Conditional ImageNet 256x256 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
F.3 . Class Conditional ImageNet 512x512 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



A. Extended Related Work
We highlight the key trade-offs between diffusion models,
autoregressive image generation, masked generative models,
and Visual Auto-Regressive Modeling (VAR), which represents
the latest evolution in efficient autoregressive generation. We
conclude by discussing efficient attention implementations.

Diffusion Models are the dominant class of generative
models for image synthesis. Introduced by [40] and further de-
veloped by [19], these models learn to reverse a gradual noising
process, enabling high-quality image generation. Subsequent
works have improved their efficiency [12, 27, 41], extended
them to conditional generation [12], and applied them to various
domains including text-to-image synthesis [34, 37]. Diffusion
models are preferred over previous image generation methods
[16, 21, 35] due to their superior image quality, diversity, and
training stability, despite higher computational costs.

Autoregressive Image Generation models offer an alterna-
tive approach to image synthesis, drawing inspiration from the
remarkable success of next-token prediction in natural language
processing [4, 33, 47]. These models generate images sequen-
tially, predicting each new token based on all previous ones, typ-
ically following a raster scan pattern. Early works [38, 48, 49]
operated directly in pixel space but faced significant compu-
tational challenges. More recent approaches have improved
efficiency by using Vector Quantized VAEs [14, 22, 50] to com-
press images into discrete tokens for autoregressive generation,
inspiring works like Parti [53] and LlamaGen [42]. While these
models benefit from conceptual simplicity and potential transfer
learning from language models, they still face challenges in
generation speed and quality compared to diffusion models.

Masked Generative Models provide an alternative approach
to improve the sampling speed of autoregressive models. These
models generate images using a masked prediction objective
similar to BERT [3, 11, 18]. By predicting multiple masked
tokens in parallel, these models achieve faster generation speeds
compared to next-token autoregressive image models. The
inherent independence assumption between masked tokens
during parallel prediction can lead to inconsistencies or artifacts
in the generated images. This approach has been explored in
various recent works [6, 7, 23, 52], and a unifying framework
for these models is presented in MAR [24], categorizing them
as Masked Autoregressive models.

Visual Auto-Regressive Modeling (VAR) [45] enhances the
efficiency and quality of autoregressive image generation. Its
versatility is demonstrated by successful adaptations for various
tasks, including text-to-image generation [17, 28, 51, 54],
controllable image generation [26], depth estimation [15], and
video generation [20]. Furthermore, VAR has been effectively
integrated with other techniques, such as residual diffusion
[43] for improved image quality, speculative decoding [8, 44],
foldable tokens [25] for enhanced efficiency, solidifying its
position as a powerful backbone for autoregressive image
generation. However, these models still suffer from quality,

efficiency, and flexibility issues.
Efficient Attention Implementations like FlashAttention

[9, 10, 39] allow to compute self-attention efficiently on
GPU but only support a limited number of attention patterns.
Xformer’s Memory Efficient Attention [31] supports a wider
range of attention patterns but provides memory optimization
with limited speedup. Recent work, FlexAttention [30] supports
a wider range of attention patterns while providing speedup.
However, FlexAttention currently only supports sequence
lengths that are multiples of 128, is not optimized for H100
GPUs [30], and finally its flexibility comes at a 10% to 20%
performance cost [30].

B. Efficient Attention Computation
We demonstrate how next-scale prediction is adversely affected
by longer sequences in comparison to AR models, and how
increasing the number of sampling steps results in even longer
sequences relative to HMAR. Furthermore, we analyze the at-
tention patterns in VAR and HMAR, highlighting why HMAR
performs effectively when conditioned solely on the previous
scale. Finally, we present microbenchmarks to evaluate the per-
formance of attention computation using our optimized kernels.

B.1. Long Sequences in Next-Scale Prediction

256x256 512x512 1024x1024
Resolution

0.0K

2.0K

4.0K

6.0K

8.0K

Se
qu

en
ce

 L
en

gt
h

VAR
AR

Figure 7. Sequence Length vs Resolution for next-scale (VAR) and
next-token (AR) prediction. Next-scale prediction requires longer
sequences compared to next-token prediction.

Fig. 7 compares the sequence lengths in the next-scale prediction
of VAR and next-token autoregressive image generation algo-
rithms like VQ-GAN [14] and LlamaGen[42]. As we grow to
higher resolutions, the context length grows making it expensive
to train VAR models compared to next-token prediction models.
Fig. 5 illustrates the positive impact of increased sampling steps
through masking on generation quality. While beneficial, achiev-
ing this with (VAR) presents several drawbacks. Each addi-
tional sampling step requires a correspondingly longer sequence



10 11 12 13 14 15 16
Number of Sampling Steps

0.7K

0.8K

0.9K

1.0K

1.1K

1.2K

1.3K

1.4K

1.5K
Se

qu
en

ce
 L

en
gt

h
VAR
HMAR

Figure 8. Impact of Additional Sampling Steps on Sequence
Length: In VAR compared to HMAR, each additional sampling step
leads to longer sequence lengths. We show comparisons for 256×256

length, as shown in Fig. 8. This increased sequence length has
consequences for VAR training, leading to higher computational
costs, longer inference times, and greater memory requirements.
Our Hierarchical Masked Autoregressive (HMAR) formulation,
in contrast, allows for a flexible increase in the number of sam-
pling steps without necessitating any changes to the sequence
length. Furthermore, VAR models are inherently limited in
their maximum number of sampling steps by the number of
available scales. As a concrete example, a 16×16 latent space
restricts VAR to a maximum of 16 sampling steps. HMAR over-
comes this limitation, enabling up to 256 sampling steps without
requiring the re-masking of previously unmasked tokens. If re-
masking is allowed, HMAR can theoretically accommodate an
arbitrary number of sampling steps.

B.2. Attention Pattern Analysis
The attention patterns visualized in Fig. 9 reveal that tokens
primarily attend to their local neighborhoods. This localized
attention behavior provides strong empirical support for our
hypothesis regarding next-scale prediction, demonstrating that
the most relevant information for predicting the next scale is pre-
dominantly contained in the immediately preceding resolution
level. This finding led us to streamline our model by replacing
the full prefix conditioning mechanism with a simpler approach,
where each scale only depends on its direct predecessor, notably
preserving the model’s predictive performance while achieving
significant computational efficiency gains.

B.3. Attention Patterns
We provide an illustration of the attention masks utilized in VAR
and HMAR in Fig. 10 to highlight their distinct mechanisms.
VAR employs a block-causal attention mask, which allows each
scale to attend not only to itself but also to all preceding scales.
This design ensures a comprehensive flow of information across
scales, facilitating a more global understanding of the data. In

0 5 10 15 20 25

0
2
4
6
8

10
12
14

Scale 4 x 4

0.1

0.2

0.3

0.4

0 10 20 30 40 50

0

5

10

15

20

Scale 5 x 5

0.1

0.2

0.3

0.4

0 20 40 60 80

0

5

10

15

20

25

30

35

Scale 6 x 6

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100120140

0

10

20

30

40

50

60

Scale 8 x 8

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250

0

20

40

60

80

Scale 10 x 10

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600

0

50

100

150

200

250

Scale 16 x 16

0.1

0.2

0.3

0.4

0.5

0.6

(a) Normalized Attention Scores VAR

0 2 4 6 8 10 12 14

0
2
4
6
8

10
12
14

Scale 4 x 4

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

0

5

10

15

20

Scale 5 x 5

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

Scale 6 x 6

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

0

10

20

30

40

50

60

Scale 8 x 8

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80

0

20

40

60

80

Scale 10 x 10

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250

0

50

100

150

200

250

Scale 16 x 16

0.2

0.4

0.6

0.8

(b) Normalized Attention Scores in our HMAR

Figure 9. Comparing Attention Patterns in VAR and HMAR

Figure 10. Attention masks in VAR and HMAR: Block-diagonal
pattern in HMAR (right) enables more sparsity compared to the
block-causal pattern in VAR(left).

contrast, HMAR adopts a block-diagonal attention mask, where
each scale is restricted to attending only to the immediately
preceding scale in order to generate the next one. This results
in a more localized and computationally efficient attention
mechanism. As shown in Fig. 10, the block-diagonal mask is
significantly sparser compared to the block-causal mask. This
sparsity can be leveraged to achieve faster attention computation,
particularly as the degree of sparsity increases with image
resolution. Consequently, this approach becomes even more
efficient for attention computation at higher resolutions.



d-16 d-20 d-24 d-30 d-36
Model

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
(m

s)

0.12 0.15 0.17 0.21 0.25

0.66
0.75

0.89

1.10

1.29
Attention FWD 256x256 (Batch Size 16)

Triton (Our Block Diagonal Kernel)
PyTorch (Block Causal)

d-16 d-20 d-24 d-30 d-36
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e 
(m

s)

0.59 0.73 0.87
1.07

1.28

1.84

2.22

2.67

3.28

3.94
Attention BWD 256x256 (Batch Size 16)

Triton (Our Block Diagonal Kernel)
PyTorch (Block Causal)

d-16 d-20 d-24 d-30 d-36
Model

0

2

4

6

8

10

12

14

Ti
m

e 
(m

s)

0.77 0.95 1.14 1.41 1.70

6.14

7.53

8.95

11.16

13.40
Attention FWD 512x512 (Batch Size 16)

Triton (Our Block Diagonal Kernel)
PyTorch (Block Causal)

d-16 d-20 d-24 d-30 d-36
Model

0

5

10

15

20

25

30

35

Ti
m

e 
(m

s)
3.32 4.13 4.93

6.14
7.34

15.00

18.83

22.33

27.89

33.36
Attention BWD 512x512 (Batch Size 16)

Triton (Our Block Diagonal Kernel)
PyTorch (Block Causal)

d-16 d-20 d-24 d-30 d-36
Model

0

50

100

150

200

250

300

350

Ti
m

e 
(m

s)

10.03 12.49 14.92 18.61 22.32

158.61

197.67

236.79

293.96

354.39
Attention FWD 1024x1024 (Batch Size 16)

Triton (Our Block Diagonal Kernel)
PyTorch (Block Causal)

d-16 d-20 d-24 d-30 d-36
Model

0

100

200

300

400

500

Ti
m

e 
(m

s)

39.22 48.94 58.66 73.23 87.86

251.30

313.55

376.63

468.94

563.00
Attention BWD 1024x1024 (Batch Size 16)

Triton (Our Block Diagonal Kernel)
PyTorch (Block Causal)

Figure 11. Comparison of forward and backward pass speeds between our block sparse attention kernel in (HMAR) and the PyTorch
block-causal attention in (VAR) across different image resolutions (256×256, 512×512, and 1024×1024). Tests were performed on an A100
80GB GPU with batch size 16 and model dimension 64. Our implementation shows significant speedups, achieving up to 15.8× faster forward
pass and 6.4× faster backward pass at 1024×1024 resolution.

B.4. Efficient Attention Performance

We benchmark the performance of our block sparse attention
kernel used in HMAR against the block-causal attention in
VAR. For the block-causal attention, we compare against
the memory-efficient attention implementation that supports
different attention masks via torch.sdpa. The benchmark-
ing is conducted across various image resolutions, utilizing
a single A100 80GB GPU and results are averaged over 25
repetitions. Results are shown in Fig. 11. At each resolution,
we evaluate both the forward and backward passes, ensuring
a comprehensive analysis of performance. The benchmarks

are conducted with a batch size (bs) of 16 and a model
dimension (d) of 64. For each corresponding model, such as
d-24 or d-20, the number of attention heads matches the model
dimension—for instance, the d-24 model has 24 attention heads.

On the forward pass, our efficient implementation is up to
5.2× faster at 256×256, 7.9× faster at 512×512, and 15.8×
faster at 1024× 1024. On the backward pass, our efficient
implementation is up to 3.1× faster at 256×256, 4.6× faster
at 512×512, and 6.4× faster at 1024×1024, demonstrating
significant performance improvements of our implementation
across various resolutions.



C. Training Dynamics
In this section, we delve into how each scale contributes to visual
quality and how to focus the model’s capacity during training
on the most important scales that matter for visual quality.

C.1. Learning Difficulty Across Scales

0 2 4 6 8 10 12 14 16
Scale

5.0

5.5

6.0

6.5

7.0

M
in

im
um

 Te
st

 L
os

s

350M 1B 2B

Figure 12. Minimum Test Loss Across Scales

We use the minimum test loss at each scale as a proxy for learn-
ing difficulty. We find that this has an approximately log-normal
pattern (Fig. 12), suggesting that scales in the middle are more
challenging to learn compared to those at the beginning and end.

C.2. Loss Weighting Ablation

2 4 6 8 10 12 14 16
k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

w(
k)

Unweighted
Linear
Square Root
Equal
Log Normal
Exp. decay

Figure 13. Different Loss Weighting Functions

We ablate the impact of loss weighting on image quality. For
each function (Fig. 13), we train a 310M parameter model
for approximately 150K steps and evaluate the FID, Inception
Score, Precision, and Recall. Results in Table. 4 demonstrate
that loss weighting can significantly influence the quality, with
the log-normal weighting yielding the best performance.

C.3. Loss Analysis
Unlike autoregressive language models, where total loss cor-
relates with downstream performance, we find this relationship
doesn’t hold in our setting. Due to the disproportionate number

Loss Weighting Ablation on ImageNet-256×256

Function FID ↓ IS ↑ Prec ↑ Rec ↑
Unweighted 3.89 283.3 0.86 0.48

Equal 3.64 296.5 0.85 0.50

Linear 3.72 301.9 0.86 0.50

Sqrt. 3.79 306.6 0.86 0.50

Exp. decay 3.72 281.1 0.84 0.50

Log-normal 3.59 307.4 0.85 0.50

Table 4. Loss Reweighting Ablation on ImageNet-256 × 256.
(cfg=1.5, top-k=900, top-p=0.96) We show the impact of the choice of
loss weighting on image quality. A log-normal weighting that mirrors
the distribution of learning difficulty yields the best performance.

of tokens in later scales, the total loss is heavily influenced by
performance on high-frequency details that are often impercep-
tible to human observers. As shown in Fig. 16, models with
better performance in early and middle scales achieve superior
FID and Inception Scores, despite potentially higher total losses.

0 25k 50k 75k 100k 125k 150k
Steps

6.50

6.75

7.00

7.25

7.50

7.75

8.00

8.25

To
ta

l L
os

s

Unweighted
Linear
Square Root
Equal
Log Normal
Exp. decay

Figure 14. Total Loss for Different Weighting Functions

0 25k 50k 75k 100k 125k 150k
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta

l A
cc

ur
ac

y

Unweighted
Linear
Square Root
Equal
Log Normal
Exp. decay

Figure 15. Total Accuracy for Different Weighting Functions



0 25k 50k 75k 100k 125k 150k
Steps

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Lo
ss

1x1

0 25k 50k 75k 100k 125k 150k
Steps

6.0

6.5

7.0

7.5

8.0

Lo
ss

2x2

0 25k 50k 75k 100k 125k 150k
Steps

6.50

6.75

7.00

7.25

7.50

7.75

8.00

8.25

Lo
ss

3x3

0 25k 50k 75k 100k 125k 150k
Steps

7.0

7.2

7.4

7.6

7.8

8.0

8.2

Lo
ss

4x4

0 25k 50k 75k 100k 125k 150k
Steps

7.0

7.2

7.4

7.6

7.8

8.0

8.2

Lo
ss

5x5

0 25k 50k 75k 100k 125k 150k
Steps

7.2

7.4

7.6

7.8

8.0

8.2

Lo
ss

6x6

0 25k 50k 75k 100k 125k 150k
Steps

7.4

7.6

7.8

8.0

8.2

Lo
ss

8x8

0 25k 50k 75k 100k 125k 150k
Steps

7.0

7.2

7.4

7.6

7.8

8.0

8.2

Lo
ss

10x10

0 25k 50k 75k 100k 125k 150k
Steps

6.8

7.0

7.2

7.4

7.6

7.8

8.0

8.2

Lo
ss

13x13

0 25k 50k 75k 100k 125k 150k
Steps

6.0

6.5

7.0

7.5

8.0

Lo
ss

16x16

0 25k 50k 75k 100k 125k 150k
Steps

0

2

4

6

8

10

Ac
cu

ra
cy

1x1

0 25k 50k 75k 100k 125k 150k
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ac
cu

ra
cy

2x2

0 25k 50k 75k 100k 125k 150k
Steps

0.0

0.5

1.0

1.5

2.0

2.5

Ac
cu

ra
cy

3x3

0 25k 50k 75k 100k 125k 150k
Steps

0.0

0.5

1.0

1.5

2.0

2.5

Ac
cu

ra
cy

4x4

0 25k 50k 75k 100k 125k 150k
Steps

0.0

0.5

1.0

1.5

2.0

2.5

Ac
cu

ra
cy

5x5

0 25k 50k 75k 100k 125k 150k
Steps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Ac

cu
ra

cy
6x6

0 25k 50k 75k 100k 125k 150k
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ac
cu

ra
cy

8x8

0 25k 50k 75k 100k 125k 150k
Steps

0.0

0.5

1.0

1.5

2.0

Ac
cu

ra
cy

10x10

0 25k 50k 75k 100k 125k 150k
Steps

0.0

0.5

1.0

1.5

2.0

2.5

Ac
cu

ra
cy

13x13

0 25k 50k 75k 100k 125k 150k
Steps

0

1

2

3

4

Ac
cu

ra
cy

16x16

Unweighted Linear Square Root Equal Log Normal Exp. decay

Figure 16. Scale-wise Decomposition of Loss and Accuracy. We analyze the impact of loss weighting across scales on generated image quality.
By decomposing both loss and accuracy metrics scale-by-scale, we reveal a key insight: prioritizing performance in early and intermediate scales,
rather than simply minimizing total loss, leads to improved perceptual quality. This is evidenced by the correlation between strong early/mid-scale
performance and superior FID and Inception Scores, as detailed in Table 4. This suggests that while later scales contribute significantly to the
overall loss due to their higher token count, they are less critical for generating high-fidelity images.



D. Masking/ Parallel Sampling

In this section, we start by demonstrating how parallel sampling
in VAR can result in error accumulation during the image
generation process. We then delve into our masked image
reconstruction objective and discuss masked sampling. Finally,
we present ablations to illustrate how intra-scale masking
improves the generation quality.

D.1. Error Accumulation in Parallel Sampling

Figure 17. Error Accumulation in Next-Scale Prediction: Teacher
forcing experiment showing error propagation across scales. The top
rows show image generation starting from the ground truth at earlier
scales, showing lower quality. The bottom rows show image generation
starting from later scales, leading to improved quality, indicating error
accumulation from earlier scales impacts quality. Model: VAR-d16.

We illustrate error propagation in image generation using a
VAR-d16 model through a teacher-forcing experiment. Ground
truth tokens are provided at each scale, and the model generates
the rest of the image beginning from that scale. As shown in
Fig. 17, starting from earlier scales results in poorer quality,
while later scales yield better images. This suggests that to
get good image quality, it is important to get the earlier scales
correctly. We hypothesize that errors introduced during parallel
token sampling at earlier scales propagate during the generation
process and impact the overall image quality.

D.2. Image Reconstruction

Figure 18. Image Reconstruction in VQ-VAE, VAR and HMAR

Fig. 18 compares image generation in HMAR and VAR. Our
HMAR model can reconstruct images to a quality comparable
to the Multi-Scale VQ-VAE. We mask out 50% of all levels
in the image and use HMAR to predict the masked tokens, then
combine these tokens across all scales to form a complete image.
In contrast, we also demonstrate VAR’s image reconstruction.
For each image, we provide the ground truth at each level, as
done during VAR training, and allow the VAR model to predict
the next scale.

D.3. Masked Finetuning
We find masked prediction significantly easier to learn than
next-scale prediction, reaching accuracies of 65+% compared to
just 5% in next-scale prediction (Fig. 22), allowing for efficient
fine-tuning of a masked prediction layer atop a pre-trained
next-scale model. Unlike in next-scale prediction, where we
reweight the loss by each scale, we find that for masked predic-
tion, the task is easier to learn, and as such, reweighting the loss
to prioritize certain scales can actually hurt performance. We
use 25% to 40% of the pre-training iterations when fine-tuning.
In our experiments, we fine-tune specific layers while freezing
others, but alternative PEFT methods like LORA could also be
used effectively to reduce the number of parameters used. Di-
rectly pre-training with both next-scale and masked-prediction
objectives is another exciting direction to explore.



Figure 19. Multi-Scale VQ-VAE [45] Reconstructions: We show some failure cases for the Multi-Scale VQ-VAE [45]. While it can capture
general image structures, it struggles to reconstruct fine-grained details, particularly in complex elements such as text and facial features.

D.4. Masked Sampling

We run a hyperparameter search to choose the sampling steps
and report quantitative metrics in Table 1 with 14 steps because
this yields the best performance. In particular, additional
sampling steps at the earlier scales have the highest impact on
quantitative metrics. We find that additional sampling steps
beyond the first five scales do not improve quantitative metrics
but can improve finer details in the image (Fig. 5). We show
how adding one additional sampling step to each scale in
HMAR-d16 impacts the FID in Fig. 20.

0 1 2 3 4 5 6
Additional Masked Sampling Steps

3.0

3.1

3.2

3.3

3.4

FI
D-

50
K

Figure 20. Impact of Extra Masked Sampling Steps on FID for
HMAR-d16. Increasing the number of sampling steps at earlier scales
leads to better FID.

We use classifier-free guidance when sampling and show its
effect on FID and Inception score in Fig. 21.

E. Discussion on Multi-Scale VQ-VAE Tokenizer

We adopt the Multi-scale VQ-VAE tokenizer from VAR [45].
In this section, we provide more details and highlight some of
its limitations and possible ways to improve it.

0 2 4
CFG

2

4

6

8

10

12

FI
D

0 2 4
CFG

100

200

300

400

In
ce

pt
io

n 
Sc

or
e

HMAR-d16 HMAR-d20 HMAR-d24 HMAR-d30

Figure 21. Classifier-free guidance impact on FID and Inception Score

E.1. Image Reconstruction
We provide PSNR and rFID values for the tokenizer at different
image resolutions in Table 5. In Fig. 19, we show the tokenizer’s

Resolution rFID PSNR (dB)
256×256 0.92 20.69
512×512 0.66 21.74

Table 5. PSNR and rFID values for different image resolutions

inability to capture fine-grained details within images. Recent
works like HART [43] propose a hybrid tokenization scheme, in-
corporating continuous tokens to better represent high-frequency
details. These contributions are complementary to our work.

E.2. Codebook Utilization
In Fig. 23, we analyze the distribution of codebook usage across
different scales. The overall codebook usage appears relatively
uniform; however, early scales, which capture coarse structural
features, exhibit highly skewed distributions, with only a small
subset of codebook entries being used. In contrast, later scales
that capture fine-grained details demonstrate a more uniform
distribution of code usage. Future tokenizer designs could
benefit from an asymmetric approach: smaller, specialized
codebooks for early scales to efficiently capture essential
structural features and larger, more diverse codebooks for later
scales to accommodate the broader range of local details.



50k 100k 150k
Steps

0

10

20

30

40

50

60

Ac
cu

ra
cy

3x3

50k 100k 150k
Steps

0

10

20

30

40

50

Ac
cu

ra
cy

4x4

50k 100k 150k
Steps

0

10

20

30

40

50

Ac
cu

ra
cy

5x5

50k 100k 150k
Steps

0

10

20

30

40

Ac
cu

ra
cy

6x6

50k 100k 150k
Steps

0

5

10

15

20

25

Ac
cu

ra
cy

8x8

50k 100k 150k
Steps

0

10

20

30

40

50

Ac
cu

ra
cy

10x10

50k 100k 150k
Steps

0

10

20

30

40

50

60

Ac
cu

ra
cy

13x13

50k 100k 150k
Steps

0

5

10

15

20

25

30

Ac
cu

ra
cy

16x16

Next Scale Prediction Masked Prediction

Figure 22. Comparison of Accuracy Between Next-Scale Prediction and Masked Prediction Across Scales. Masked prediction on residuals
is a considerably simpler task to learn compared to next-scale prediction.

0 2000 4000
Sorted Codebook Index

0

5

10

15

Fr
eq

ue
nc

y 
(×

10
0)

1x1

0 2000 4000
Sorted Codebook Index

0

5

10

15

Fr
eq

ue
nc

y 
(×

10
0)

2x2

0 2000 4000
Sorted Codebook Index

0

5

10

15

Fr
eq

ue
nc

y 
(×

10
0)

3x3

0 2000 4000
Sorted Codebook Index

0

5

10

15

20

Fr
eq

ue
nc

y 
(×

10
0)

4x4

0 2000 4000
Sorted Codebook Index

0

5

10

15

Fr
eq

ue
nc

y 
(×

10
0)

5x5

0 2000 4000
Sorted Codebook Index

0

5

10

15

20

Fr
eq

ue
nc

y 
(×

10
0)

6x6

0 2000 4000
Sorted Codebook Index

0

10

20

30

Fr
eq

ue
nc

y 
(×

10
0)

8x8

0 2000 4000
Sorted Codebook Index

0

20

40

60

Fr
eq

ue
nc

y 
(×

10
0)

10x10

0 2000 4000
Sorted Codebook Index

0

50

100

Fr
eq

ue
nc

y 
(×

10
0)

13x13

0 2000 4000
Sorted Codebook Index

0

20

40

60

80

Fr
eq

ue
nc

y 
(×

10
0)

16x16

0 2000 4000
Sorted Codebook Index

0

100

200

Fr
eq

ue
nc

y 
(×

10
0)

Total Across All Scales

1 2 3 4 5 6 8 101316
Scale

0

25

50

75

100

Ut
iliz

at
io

n 
(%

)

Codebook Utilization by Scale

Figure 23. Analysis of Codebook Usage Patterns Across Scales. We observe distinct patterns in how codebook entries are utilized: early scales show
highly skewed distributions with only a small subset of codes being frequently accessed, indicating potential redundancy, while later scales demonstrate
more uniform usage patterns. The codebook utilization rate progressively increases from less than 50% in early scales to nearly 100% by scale 4.



F. Additional Qualitative Results
F.1. Qualitative Comparisons

MaskGIT DiT VAR HMAR

Figure 24. Qualitative Comparisons on ImageNet 256×256



F.2. Class Conditional ImageNet 256x256 Samples

Class ID 162, Beagle Class ID 145, Penguin

Class ID 417, Balloon Class ID 437, Beacon

Class ID 975, Lakeside Class ID 285, Egyptian Cat

Figure 25. Additional Class-Conditional Image Generation Samples on ImageNet 256×256



Class ID 323, Monarch Class ID 350, Ibex

Class ID 269, Timber Wolf Class ID 984, Rapeseed

Class ID 148, Killer Whale Class ID 296, Ice Bear

Figure 26. Additional Class-Conditional Image Generation Samples on ImageNet 256×256



F.3. Class Conditional ImageNet 512x512 Samples

Class ID 3, Shark Class ID 22, Bald Eagle

Class ID 108, Sea Anemone Class ID 388, Giant Panda

Class ID 355, Llama

Figure 27. Additional Class-Conditional Image Generation Samples on ImageNet 512×512


	Appendices
	Extended Related Work
	Efficient Attention Computation
	Long Sequences in Next-Scale Prediction
	Attention Pattern Analysis
	Attention Patterns
	Efficient Attention Performance

	Training Dynamics
	Learning Difficulty Across Scales
	Loss Weighting Ablation
	Loss Analysis

	Masking/ Parallel Sampling
	Error Accumulation in Parallel Sampling
	Image Reconstruction
	Masked Finetuning
	Masked Sampling

	Discussion on Multi-Scale VQ-VAE Tokenizer
	Image Reconstruction
	Codebook Utilization

	Additional Qualitative Results
	Qualitative Comparisons
	Class Conditional ImageNet 256x256 Samples
	Class Conditional ImageNet 512x512 Samples


