MoDec-GS: Global-to-Local Motion Decomposition and Temporal Interval
Adjustment for Compact Dynamic 3D Gaussian Splatting

Supplementary Material

A. Project Page and Demo Video

Please refer to our project page: https://kaist—
viclab.github.io/MoDecGS-site/. The project
page provides a summarized description of our method,
an interactive visual comparison demo, and demo videos.
In the demo video (https://youtu.be/5L6gzc5—
cw8), we demonstrated subjective quality comparisons for
HyperNeRF’s interp-cut-lemon, interp-torchocolate, misc-
espresso, misc-tampling, vrig-peel-banana. We compared
four framworks which are SC-GS [21], Deformable 3DGS
[63], 4DGS [60], and MoDec-GS (Ours). The videos are
concatenated in a 2x2 or 4x1 format depending on the
shape of the video. Additionally, the code will be released
through a GitHub repository: https://github.com/
skwak—-kaist/MoDec—-GS.

B. Implementation Details

MoDec-GS is implemented using PyTorch and built
upon 4DGS [60] and Scaffold-GS [40] codebases. Simi-
lar to 4DGS [60] we adopt a hexplane-based deformation
method to represent video content, while using an anchor-
based representation [40] for the canonical 3D Gaussians.
The key hyperparameters for the anchor repesentation in-
clude n_offset=20, voxel_size=0.01, feat_.dim=32, and ap-
pearance_dim=16, with no feature bank utilized. Iterations
are set as follows: 3,000 for the Global stage, and between
20,000 and 60,000 for the Local stage depending on the se-
quence length. The global and local hexplanes are set to
[32,32,32,10] and [64, 64,64, 100] with a two-level multi-
resolution, respectively, for all test cases. The parameters
for TIA are as follows: T2 is set to 500, T4 is set to
10,000 or 20,000 depending on the total number of itera-
tions, and T, is set to 1,000, also depending on the it-
erations. 7qya is set to either 1.0 or 1.5, and the stpa is
chosen within the range of 0.01 to 0.1. For the compar-
ison methods, Deformable-3DGS and SC-GS were com-
pared in the same local experimental environment and re-
trained on all datasets. For the Deformable-3DGS, the op-
tion for 6-degrees of freedom deformation is turned on for
better rendering quality. We set the number of node and the
dimension of hyper coordinates for the SC-GS at 2048 and
8, respectively. No mask images for background separation
were used.

C. Preliminaries
C.1. Anchor-based representation

Lu et al. [40] proposed Scaffold-GS, a structured
anchor-based 3DGS representation approach, designed to
improve efficiency, robustness and scalability in novel view
synthesis. Unlike traditional 3DGS, which often results
in redundant Gaussians due to excessive fitting to training
views, this approach introduces a hierarchical and struc-
tured representation. The method begins by initializing
a sparse set of anchor points from Structure-from-Motion
(SfM) points and distributing neural Gaussians around these
anchors. As shown in Fig. 6, each anchor point is associate
with learnable offsets and a scaling factor, allowing local
Gaussians to be dynamically placed and adapted to vary-
ing viewpoints. Therefore, instead of allowing Gaussians to
drift freely like in 3DGS [26], Scaffold-GS constrains their
placement using anchor points. Given an anchor at position
T, the position of k£ derived Gaussians are computed as:

{‘LL(),"' aﬂk—l}:zv‘k{OOa'.' 70]6—1}'11)3 (15)

where O; are learnable offsets and [, is a scaling factor.
Their opacity values «, colors ¢, and other attributes are
decoded through MLPs based on the local context feature
and view-dependent information:

{QOa e 7ak—1} - Foc(f’ua 51)07 d'uc)a (16)

where §,¢ and d,,. represent the distance and direction from
the camera to the anchor. The attributes of these Gaussians
- position, opaicty, color and scale - are predicted on-the-
fly based on local context feature assigned on the anchor
and the viewing direction. This view-adaptive mechanism
prevents excessive redundancy and enhances robustness to
complex scene structures. To further refine the representa-
tion, Scaffold-GS employs a growing and pruning strategy.
Growing introduces new anchors in underrepresented areas
where the gradient magnitude of neural Gaussians exceeds a
predefined threshold. Pruning removes anchors that consis-
tently produce low-opacity Gaussians, ensuring an efficient
representation. At inference time, only Gaussians within
the view frustum and with significant opacity contribute to
rendering, maintaining real-time performance.

C.2. HexPlane-based deformation encoder

In this work, we employ the HexPlane which is widely
adopted for the deformation fields in dynamic scene repre-

https://kaist-viclab.github.io/MoDecGS-site/
https://kaist-viclab.github.io/MoDecGS-site/
https://youtu.be/5L6gzc5-cw8
https://youtu.be/5L6gzc5-cw8
https://github.com/skwak-kaist/MoDec-GS
https://github.com/skwak-kaist/MoDec-GS

Neural Gaussian derivation

Yy e
7 ﬁ A Forbverdue) ~ F, —~a€R
- . v o 0f(Ty) .
oy LIPS | o Gotedocr =By c e
\ el N .
SftM —> Sparsevoxel ye 1w\£?(€) G Bucrdoe) ~ By — sER
point cloud grid \ Anchor point |
\ 4 N -
\ /,f”(llv'/' 0,':(7'0) (fw 6170 dvc) iy Fq —qE€ R*
1 & »
\

view frustum

Scaling factor 1,(T,) € R®

Learnable offset 0} (T,) € R™*3
Local context feature f, (T) € R3?

&

[

Camera center — distance 8uc = |l — x|,

Xy—Xc
Toxell;

direction &w =

Feature bank U forr for}
Integrated anchor feature
/" fo=w-f+w-f, +wa fp,

— {w,wy, w,}

Figure 6. Overview of the anchor-based 3DGS representation process [40].

sentations [14, 60]. The spatio-temporal flow can be pre-
dicted by inputting the feature vector that corresponds to
each spatio-temporal coordinate (x,y, z,t), the resulting
hexplane feature vector H; can be expressed as follows:

Hy(z,y,2,t) = U H f(z,y,2,1);,

seS peP

a7

where f(x,y,z,t)S denote the interpolated feature corre-
sponding to the queried four-dimensional coordinate, p and
s are the indices for the two-dimensional planes and the grid
scales, respectively.

D. Concurrent Works

Very recently, some concurrent works [5, 17], have been
proposed. Cho et al. [5] proposed a framework for ex-
tending 3D scaffolds into 4D space, aiming to efficiently
represent 4D Gaussians through the introduction of neural
velocity-based time-variant Gaussians and temporal opac-
ity. Another work, Relay-GS [17], proposed a frame-
work for effectively handling large-scale complex motion
by modeling motion within temporal segments. It utilizes a
learnable mask to separate the dynamic foreground and em-
ploys pre-generated pseudo-views, where semi-transparent
Gaussians—Relay Gaussians—are placed along the trajec-
tory. Both studies propose compact and efficient dynamic
Gaussian representations for real-world scenes. However,
they share a common limitation: neither can handle casual
monocular data, which is closer to real-world settings.

E. Comparison to NeRF-extension Methods

Recent trends in NVS are driven by 3DGS [26] and
its extensions [21, 28, 38, 56, 60, 63]. However, NeRF-
based methods that utilize differentiable volume rendering

are still being actively researched and demonstrate strong
performance in terms of visual quality [14, 27, 36, 39, 45].
Although our primary target application focuses on being
compact without losing real-time rendering capabilities, we
also provide a comparison with NeRF-based approaches for
reference information using results taken from [60]. Tab. 4
presents the comparison results. In the table, the numbers
for [11, 19, 26, 48, 49] are sourced from [60] and those
of the other are generated in our local environment. We
confirmed that the performances of 4DGS reported in [60]
is nearly reproduced in our side, and note that there are
differences of GPU environment ([60]: RTX 3090, Ours:
RTX A6000 - due to the time limitation, the speed com-
parison measured on the same machine has not prepared,
but it is generally known that RTX A6000 is slower than
RTX 3090. We plan to fairly measure the training time and
rendering speed on the same GPU in the future). Through
the comparison, we confirmed that our method achieved the
lowest storage requirement at only 52% of the second-best
[11], while maintaining the highest visual quality scores and
high-speed rendering performance exceeding 20 fps. Ad-
ditionally, to visualize the comparison results with other
frameworks, we present a performance comparison graph,
as shown in Fig. 7 where the x-axis represents render-
ing speed (FPS), the y-axis denotes PSNR, and the bubble
size (MB) indicates the model’s storage size. Our method
achieves an exceptionally small storage size while main-
taining the highest level of visual quality performance.

F. Detailed Experimental Results
F.1. Datasets and metrics

In this paper, the following three datasets are used:
iPhone [16], HyperNeRF [49], and Nvidia [64]. All datasets

Methods PSNR(dB)T MS-SSIM1 | Training timesJ. | Run times(FPS)t Storage(MB)J
Nerfies [48] 222 0.803 ~ hours <1 -
HyperNeRF [49] 22.4 0.814 32 hours <1 -
TiNeuVox-B [11] 243 0.836 30 mins 1 48
FFDNeRF [19] 24.2 0.842 - 0.05 440
V4D [15] 24.8 0.832 5.5 hours 0.29 377
3DGS [26] 19.7 0.680 40 mins 55 52
4DGS [60] 25.0 0.838 1.2 hour 249 61
MoDec-GS (Ours) 25.0 0.836 1.2 hour 23.8 28

Table 4. Performance comparison with a NeRF-extension framework, including training and rendering speed. Averaged over
536x960 HyperNeRF’s vrig datasets [49]. The performance numbers of [11, 19, 26, 48, 49] are sourced from [60]. The training times and
run times reported in [60] were measured on an NVIDIA RTX 3090 GPU, while our framework was tested on an RTX A6000 GPU. Please
note that the A6000 GPU has approximately 20 % lower memory bandwidth compared to that of the RTX 3090.

25
Q
Q \\\
) \ \\ N TiNeuVox
\\ N [Siggraph Asia’22]
N N\ V4D
- \\ [TVCG23]
m 23 \
S - FFDNeRF
o [ICCV23]
7
P2
Model storage size (MB) |
2 iy
(2550 | 75 100 125

1 10

MoDec-GS

(Ours) °
4DGS

[CVPR’24]

Deformable 3DGS
[CVPR’24]

SC-GS

[CVPR’24]

20 30

Rendering speed (FPS) 1

Figure 7. Performance comparison visualization graph. The x-axis represents rendering speed (FPS)?, and the y-axis indicates PSNR*.
Each framework is depicted as a bubble, with the size of the bubble representing the model storage size (MB)J..

were downloaded from their official repositories, and the
COLMAP [53] data for iPhone and HyperNeRF datasets
were directly generated using the script provided in [60]
by ourselves. Note that the script is designed to subsam-
ple frames to ensure that the number of frames does not
exceed 200 when obtaining the initial point cloud. For
COLMAP inputs, we used the 2x version of the sequences
for each dataset. Specifically, 360x480 for the iPhone
dataset and 536x960 for the HyperNeRF dataset. For the
Nvidia dataset, multi-view video frames were sampled se-
quentially at one frame per timestamp, resulting in a total
of 192 monocular frames. To define the test frames, every

8th frame was excluded from the training views. This is
one of the settings provided in [60], resulting in a total of
168 training views and 24 test views meaning the temporal
interpolation, which is more challenging setting. Through
validation on this setting of NVIDIA dataset, which features
long-range time duration and high resolution (around FHD
to 2K), we aimed to effectively verify the storage reduction
capabilities of our model. Regarding the metrics, PSNR,
SSIM [59], and LPIPS [65] metrics are calculated using
the functions in [60], while masked metrics for the iPhone
dataset are obtained by the functions and covisible masks
provided by DyCheck [16]. For tOF [7], module form Teco-

GAN [6] is utilized. For model storage, it is calculated as
the sum of the sizes of a single global CS ply, two deforma-
tion fields, per-attribute MLPs, and the canonical time list.
Note that H, is shared across temporal intervals, meaning
that only a single pair of Hg and H, exists.

F.2. Detailed results

The full quantitative results on three datasets are pre-
sented in Tab 9. Our method achieves the best or second-
best visual quality performance in almost all sequences
while using significantly less storage. Regarding the av-
erage performance of HyperNeRF, not only in the interp
results which are reported in the main paper, but also in
misc and vrig, our method shows the highest PSNR/tOF and
second-best SSIM performance, while using about 40% less
storage compared to the second-best model from a storage
perspective [60].

F.3. Generalization to additional datasets

We further evaluated our method’s robustness using the
D-NeRF [50] and PanopticSports [23] datasets, each rep-
resenting synthetic and real-world complex motion charac-
teristics, respectively. For D-NeRF, we referenced the re-
sults form Compact Dynamic 3DGS (C. D. 3DGS) [25].
For PanopticSports, the results are adopted from TC-3DGS
[22]. As confirmed by the experimental results, our method
demonstrate considerble rendering quality while maintain-
ing low storage requirements, in both synthetic scenes and
real-world complex motions.

Methods ‘ PSNR(dB)t MS-SSIMT LPIPS] ‘ Storage(MB)J.
TiNeuVox-S [11] 30.75 0.96 0.07 8
TiNeuVox-B [11] 32.67 0.97 0.04 48

V4D [15] 33.72 0.98 0.02 1200
C.D.3DGS [25] 32.19 0.97 0.04 159
MoDec-GS (Ours) 33.25 0.99 0.02 8

Table 5. Performance comparison on D-NeRF dataset. The
results were averaged over all sequences in the dataset, and the
values for the comparison method were taken from [25].

Methods PSNR(dB)} SSIM{ LPIPS| | Storage(MB)|
Dynamic 3DGS [41] | 28.70 091 0.17 2008
STG [32] 20.45 079 0.10 19
4DGS [60] 27.22 091 0.10 63
TC-3DGS [22] 27.81 089 020 49
MoDec-GS (Ours) 27.96 095 013 \ 34

Table 6. Performance comparison on PanopticSports dataset.
Results for the comparison method were sourced from [22].

G. Ablation Studies
G.1. Rendering Overhead by 2-stage Deformation

As shown in Tab. 4, our method experiences only a
marginal drop in FPS compared to 4DGS [60], while main-
taining real-time rendering capability. To further clarify the
computational overhead introduced by the 2-stage deforma-
tion, we compared the rendering speed when using only a
1-stage deformation in our method. This corresponds to (b)
in the ablation studies of Tab. 3. As in Tab. 4, the rendering
speed comparison was conducted on the HyperNeRF’s vrig
dataset, and the results are presented in Tab. 7.

Method ‘ Rendering speed (FPS)
Ours (1-stage) 24.7
Ours (2-stage) 23.8

Table 7. Rendering speed comparison between 1-stage and 2-
stage deformation of our method.

G.2. Hyperparameter studies

We conducted an ablation study to assess the robustness
of our framework and analyze the impact of hyperparam-
eter variations. To align with the results in Tab. 3, we
performed experiments by varying several key parameters
on the iPhone [16] dataset. We conducted variation experi-
ments on the local hexplane H, size, voxel size ¢, and the
number of Gaussians per grid cell Ny, as shown in Tab. 8.
The default settings are shown in the middle column of the
table. We observed that a trade-off between quality and stor-
age depending on the HexPlane/voxel grid resolution and
the number of Gaussians per grid cell Nyge;. The current
setting provides a well-balanced compromise between these
factors.

G.3. Visualization of GLMD

Our MoDec-GS is characterized by its ability to decom-
pose global and local motion through a 2-stage deforma-
tion process. This technique, called GLMD, enables effec-
tive representation of complex motions even with a limited-
size hexplane. To verify whether GLMD operates as our
design intention, we visualize the individual rendering re-
sults of Global CS, Local CS, and the final deformed frame,
which is shown in Fig. 9. For the cut-lemon scene in Hy-
perNeRF, we rendered the Global CS directly, as shown in
the topmost image. After the Global CS is deformed into
each Local CS through GAD, we rendered each Local CS
as shown in the central image and then measured the opti-
cal flow [55] between the two. As we can see in the ren-
dered Local CS and the optical flow, it can be observed that
a global motion with an overall similar direction is repre-
sented according to the movement of the knife cutting the

Params Variation A Default Variation B

PSNRT SSIM?T LPIPS| ‘ Storage] | PSNRT SSIM{ LPIPS| ‘ Storage] | PSNRT SSIMtT LPIPS| ‘ Storage
Hyp, size [32,32,32,50] (64,64, 64,100] (128,128,128, 150]

14.28 0.330 0.476 ‘ 16.23 14.60 0.480 0.443 ‘ 18.37 14.61 0.489 0.416 ‘ 29.65
Voxel size 0.1 0.01 0.001

13.93 0.332 0.528 ‘ 17.46 14.60 0.480 0.443 ‘ 18.37 14.45 0.475 0.429 ‘ 23.12

Noffsel 5 10 20
13.80 0.322 0.513 ‘ 15.15 14.60 0.480 0.443 ‘ 18.37 14.54 0.486 0.422 ‘ 23.00

Table 8. Hyper-parameter variation experiments on the local hexplane size, voxel size, and the number of Gaussians per grid cell. The
default settings used in the main paper’s experiments are shown in the middle column.

Masking

-0

Total motion

™

Global motion
Masked OF: 0.453

Local motion
Masked OF: 0.196

Figure 8. Masked optical flow analysis for GLMD.

lemon. Based on the optical flow color map, we visual-
ized this by overlaying arrows on the rendered patch. The
Local CS is then deformed into individual frames through
LGD. We also rendered the frames at a fixed camera po-
sition during this process and observed the optical flow.
As aresult, various directional components of local motion
were observed, which were also overlaid as arrows on the
rendered patch. Through this detailed and intuitive visual-
ization, we confirmed that the proposed GLMD effectively
captures both global and local motions. Thanks to this ca-
pability, it achieves high scene representation for complex
motions even with a smaller model size.

G.4. Analysis of Complex Motion through GLMD

In our work, global motion refers to rigid transforma-
tions within a time interval, while local motion captures
non-rigid deformations between consecutive time steps.
Complex motion is defined as a combination of these two
types of motion. These characteristics can be observed in
Fig. G.3. To further investigate this, we measured the av-
erage normalized optical flow magnitudes within an object
mask [51] for global motion modeled by GAD, and local
motion modeled by LGD. The results are shown in Fig .
8. As seen in the figure, GAD is primarily associated with
object-centric rigid transformations, exhibiting a higher op-
tical flow magnitude in the object mask regions on aver-
age. In contrast, LGD distributes the optical flow magnitude
across the entire scene with relatively smaller values.

H. Limitations and Future Works

Fig. 10 illustrates a failure case on the HyperNeRF-
broom dataset. In the challenging context of monocular
video, representing thin and highly detailed textured objects
using a finite number of 3D Gaussians remains a limitation.

Consequently, neither the comparison methods [21, 60, 63]
nor ours are able to effectively learn the scene.

To address this issue, previous studies have explored in-
tegrating traditional graphics techniques such as texture and
alpha mapping into 3DGS [3], utilizing generalized expo-
nential functions instead of 3D Gaussians [20], or incorpo-
rating hierarchical pyramid features to enhance detail rep-
resentation [13]. As part of future work, we aim to en-
hance the Gaussian primitives used in MoDec-GS by build-
ing upon these prior studies, enabling robust expressivity
even in scenes with intricate and highly detailed textures.

(a) iPhone dataset

Method ‘ Apple Block Paper-windmill Space-out
SC-GS [21] 14.96/0.692/0.508 /0.704 173.3 13.98/0.548/0.483/0.931 115.7 14.87/0.221/0.432/0.473 4463 14.79/0.511/0.440/0.411 114.2
Deformable 3DGS [63] | 15.61/0.696/0.367/0.523 87.71 14.87/0.559/0.390/0.924 118.9 14.89/0.213/0.341/0.519 160.2 14.59/0.510/0.450/0.562 42.01
4DGS [60] 15.41/0.691/0.524/0.591 61.52 13.89/0.550/0.539/1.095 63.52 14.44/0.201/0.445/0.375 123.9 14.29/0.515/0.473/0.331 52.02
MoDec-GS (Ours) 16.48/0.699/0.402/0.459 23.78 15.57/0.590/0.478/0.852 13.65 14.92/0.220/0.377/0.357 17.08 14.65/0.522/0.467/0.310 18.24
‘ Spin Teddy Wheel Average
SC-GS [21] 14.32/0.407/0.445/1.191 219.1 12.51/0.516/0.562/1.095 318.7 11.90/0.354/0.484/1.623 239.2 | 13.90/0.464/0.479/0.923 232.4
Deformable 3DGS [63] | 13.10/0.392/0.490/1.482 133.9 11.20/0.508/0.573/1.460 117.1 11.79/0.345/0.394/1.732 106.1 | 13.72/0.461/0.430/1.029 109.4
4DGS [60] 14.89/0.413/0.441/1.362 71.80 12.31/0.509/0.605/1.156 80.44 10.83/0.339/0.538/2.007 96.50 | 13.72/0.460/0.509/0.988 78.54
MoDec-GS (Ours) 15.53/0.433/0.366/1.265 26.84 12.56/0.521/0.598/1.056 12.28 12.44/0.374/0.413/1.561 16.68 | 14.60/0.480/0.443/0.837 18.37
(b) Hypernerf dataset
interp - Aleks-teapot interp - Chickchiken interp - Cut-lemon interp - Hand
SC-GS [21] 24.86/0.854/0.186/5.406 426.0 26.05/0.781/0.239/4.176 101.2 29.63/0.862/0.182/2.469 130.8 28.97/0.859/0.192/4.206 404.3
Deformable 3DGS [63] | 20.13/0.625/0.479/11.00 108.0 25.89/0.782/0.272/4.539 50.77 28.61/0.792/0.269/3.936 82.65 28.91/0.855/0.191/4.574 144.6
4DGS [60] 26.99/0.853/0.193/3.309 105.6 26.88/0.797/0.336/7.036 50.34 30.17/0.776/0.325/5.598 56.05 29.87/0.847/0.223/4.928 85.26
MoDec-GS (Ours) 26.72/0.871/0.162/3.074 55.69 26.65/0.793/0.271/4.884 31.17 31.08/0.878/0.161/2.462 25.40 29.65/0.867/0.187/4.355 73.60
‘ interp - Slice-banana interp - Torchocolate misc - Americano misc - Cross-hands
SC-GS [21] 24.57/0.641/70.323/7.697 76.15 27.62/0.893/0.155/2.640 217.0 | 30.84/0.928/0.101/3.055 271.4 28.78/0.844/0.198/2.209 222.1
Deformable 3DGS [63] | 24.74/0.647/0.380/8.594 52.10 27.47/0.890/0.171/2.924 84.52 | 30.87/0.929/0.094/2.896 141.6 27.70/0.813/0.246/2.683 142.8
4DGS [60] 25.27/0.676/0.428 /11.10 47.45 25.44/0.829/0.301/6.784 91.10 | 31.30/0.917/0.137/3.706 85.72 28.06/0.763/0.350/6.644 62.10
MoDec-GS (Ours) 24.70/0.653/0.428 /8.729 31.74 27.86/0.896/0.136/2.657 27.34 | 30.55/0.932/0.100/2.934 43.99 28.39/0.821/0.253/4.545 23.97
‘ misc - Espresso misc - Keyboard misc - Oven-mitts misc - Split-cookie
SC-GS [21] 26.52/0.910/0.167 /5162 160.4 28.47/0.904/0.129/3.980 229.4 27.54/0.830/0.182/3.483 88.63 33.01/0.940/0.087/2.529 255.1
Deformable 3DGS [63] | 25.47/0.899/0.179/5.513 60.93 28.15/0.900/0.137/4.190 97.77 27.51/0.832/0.175/3.396 39.83 32.63/0.937/0.087/2.417 107.9
4DGS [60] 25.82/0.899/0.191/5.732 7293 28.64/0.895/0.177/4.762 62.57 27.99/0.801/0.316/6.241 45.73 32.64/0.919/0.147/3.362 67.00
MoDec-GS (Ours) 26.16/0.905/0.170/5.808 25.06 28.68/0.906/0.136/4.230 25.63 27.78/0.820/0.220/4.630 20.03 32.84/0.935/0.093/2.400 45.88
‘ misc - Tamping vrig - 3dprinter vrig - Broom vrig - Chicken
SC-GS [21] 23.10/0.781/0.326 / 6.352 259.4 | 18.79/0.613/0.269/15.17 101.7 18.66/0.269/0.505/14.12 122.6 21.85/0.616/0.257/11.83 111.2
Deformable 3DGS [63] | 23.95/0.804/0.331/6.409 17.92 | 20.33/0.666/0.306/14.11 40.33 21.00/0.306/0.646/13.12 181.8 22.66/0.642/0.276/11.12 63.25
4DGS [60] 24.15/0.801/0.342/6.656 78.26 | 21.97/0.704/0.328 /14.92 55.82 21.85/0.365/0.559/9.279 51.13 28.53/0.807/0.295/8.137 46.11
MoDec-GS (Ours) 24.33/0.809/0.339/6.329 24.77 | 22.00/0.706 / 0.265 / 13.06 26.60 21.04/0.303/0.666/13.50 30.83 28.77/0.834/0.197/4.936 23.22
‘ vrig - Peel-banana Average - interp Average - misc Average - vrig
SC-GS [21] 25.49/0.806/0.215/4.568 519.9 | 26.95/0.815/0.213/4.432 226.0 28.32/0.876/0.170/3.824 2123 21.19/0.575/0.311/11.42 231.9
Deformable 3DGS [63] | 26.93/0.851/0.193/4.386 268.0 | 25.96/0.766/0.294 /5.929 87.13 28.04/0.873/0.178/3.929 86.97 22.72/0.616/0.355/10.68 138.3
4DGS [60] 27.66/0.847/0.206/4.179 93.02 | 27.44/0.797/0.302/6.459 72.65 28.37/0.857/0.237/5.301 67.76 25.00/0.680/0.347/9.131 61.52
MoDec-GS (Ours) 28.25/0.873/0.171/3.801 29.80 | 27.78/0.827/0.219/4.360 40.82 28.39/0.875/0.187/4.411 29.90 25.01/0.679/0.324/8.827 27.61
‘ (c) Nvidia monocular
Method ‘ Balloon1 Balloon2 Jumping dynamicFace
4DGS [60] 25.46/0.856/0.198/ - 67.43 | 27.12/0.842/0.151/ - 58.36 | 22.43/0.842/0.264/ - 46.19 | 27.32/0.935/0.121/ - 123.8
MoDec-GS (Ours) 26.35/0.884/0.173/ - 38.67 | 27.18/0.875/0.101/ - 41.37 | 23.14/0.858/0.226 / - 29.09 | 29.65/0.955/0.094/ - 46.57
Playground Skating Truck Umbrella
4DGS [60] 22.17/0.743/0.215/ - 81.94 | 28.94/0.932/0.195/ - 42.08 | 28.28/0.889/0.234/ - 53.69 | 24.80/0.714/0.297/ - 65.96
MoDec-GS (Ours) 23.35/0.817/0.149/ - 49.41 | 29.31/0.942/0.155/ - 2527 | 29.21/0.911/0.184/ - 37.68 | 25.04/0.762/0.223/ - 49.08

Table 9. Quantitative results comparison on (a) iPhone [16], (b) HyperNeRF [49], (c) Nvidia [64] datasets. Red and blue denote the
best and second best performances, respectively. Each block element of 5-performance denotes (PSNR(dB)1 / SSIMT [59] / LPIPS| [65]
/tOF] [7] Storage(MB)]). For iPhone dataset, the masked metrics are used. For Nvidia monocular dataset, tOF values are not computed
since the test views are sparsely distributed along the temporal axis.

Global
Canonical
Scaffold-GS

Render

Rendered Global CS
Optical flow color map /]K

Global Anchor Deformation (GAD) _’—\
Local -
Canonical ’

Scaffold-GS (17

Rendered Local CS #8 .

N

)

|

uonow [eqo|o aimded

— Optical flow =

-y - ~

JON JON ‘

Local Gaussian Deformation (LGD) Local Gaussian Deformation (LGD)

Y

N2

uonow [e207 aimde)

v,

Local CS #1 Local CS #1 Local CS #1
— Frame #0 — Frame #1 — Frame #2

Figure 9. Visualization of GLMD. For cut-lemon scene in HyperNeRF [49] dataset, the rendered patch of Global CS, Local CS, and each
time stamp are presented for a fixed camera viewpoint. We also illustrate the optical flow color map between those patches to observe
the captured motion at each deformation stage. At GAD stage, deformation in mainly found near objects with dominant motion (e.g.,
the lemon and knife), and the overall color trends are similar, indicating a similar global motion direction. In contrast, at the LGD stage,
motion is observed across the entire scene, with relatively more diverse range of motion directions.

Ground Truth SC-GS Deformable 3DGS 4DGS Ours

Figure 10. Failure case: HyperNeRF-broom. In the face of challenges in reconstructing dynamic scenes from monocular video, there
are limitations in adequately representing thin and highly intricate textured objects.

