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TCFG: Tangential Damping Classifier-free Guidance

Supplementary Material

9. Computational Efficiency of SVD in Our
Method

Our method requires performing SVD with only two com-
ponents: the unconditional score and the conditional score.
As a result, the computational time required for this opera-
tion is negligible. Tab. 4 illustrates the additional time in-
troduced by the SVD calculation.

The computational cost varies depending on the image
resolution, as higher resolutions require larger dimensional
SVD computations. For instance, the time required for
SVD in SDv3 with a 1024 resolution is greater than that for
SDv1.5 with a 256 resolution. However, even in the case of
SDv3, the time taken remains under 0.1 seconds per image,
accounting for less than a 0.01

For memory usage, even with SD v3 (the largest latent
dimensions), the additional memory was only 18.48 MB.
In Figures 2, 3, and 4 of Section Intuition, we highlight
that SVD requires only two tensors. Our design choice
(full matrices=False during SVD) further optimizes mem-
ory, resulting in memory complexity: Memoryreduced ≈
O(m + n). Since n = 2, memory usage scales linearly
with the latent dimension m.

10. Toy Example Experiment Setup
In the toy example experiment, we utilized the two
moons dataset from scikit-learn. The two moons were
conditioned on labels 0 and 1, while label 2 was used for
the unconditional setting. The setup followed the standard
DDPM configuration with 100 timesteps for training. The
noise schedule employed a linear beta schedule with βmin =
0.0001 and βmax = 0.02 . The network consisted of two lin-
ear layers, trained using the Adam optimizer with a learning
rate of 0.001 for 5,000 iterations.

11. Verifying Cosine Similarity Across Singu-
lar Vectors

Fig. 3 demonstrates that the cosine similarity between the
singular vectors of the unconditional and conditional scores
is significantly high for indices close to 0. However, the
order of indices may differ between the unconditional and
conditional scores. To ensure that the results in Figure 3 are
not influenced by differing index orders, we conducted the
experiment shown in Fig. 11.

In this experiment, we measured the cosine similarity
of all 17,000 singular vectors based on the text conditional
score, ensuring that each singular vector was used only once
by selecting and plotting the highest similarity value for

NFE
Execution
Time (s)

Time
Difference (s)

Percentage
Difference (%)

SD v1.5 50 2.556 - -
SD v1.5 + ours 2.577 0.021 + 0.008

SDXL 50 13.176 - -
SDXL + ours 13.221 0.045 + 0.003

SD v3 40 19.473 - -
SD v3 + ours 19.558 0.085 + 0.004

Table 4. Comparison of execution times for standard diffusion
models and our method across different resolutions and models.
The additional time introduced by our method is negligible, with
percentage differences remaining below 0.01% in all cases.

t=0

index 1~10

Figure 11. Cosine similarity between singular vectors of uncondi-
tional and conditional scores. We measured the cosine similarity
of all 17,000 singular vectors based on the text conditional score
order, ensuring that each singular vector was used only once by
selecting and plotting the highest similarity value for each singu-
lar vector without duplication.

each singular vector without duplication. The results con-
sistently show that high similarity is observed only for lower
indices, corroborating the findings of the original experi-
ment. This confirms that the observed pattern is not due to
the order of indices but rather reflects the fact that singu-
lar vectors corresponding to high singular values are indeed
similar.

12. Compatibility of Our Method with Other
Techniques

Our method modifies unconditional scores using text con-
ditions, making it compatible with other approaches. For
instance, in SAG [13], the unconditional score is derived
by blurring the attention map. We applied our projection



FID CLIPScore
SDXL turbo 21.47 0.31
SDXL turbo + ours 20.36 0.32
InstaFlow 16.76 0.30
InstaFlow + ours 16.19 0.30
PixArt-Σ 22.53 0.32
PixArt-Σ + ours 20.19 0.32

Table 5. Performance comparison of our method applied to SDXL
Turbo, InstaFlow, and PixArt-Σ. FID scores decrease while CLIP-
Score remains the same or improves, confirming the broad applica-
bility of our method across different generation models, including
high-resolution models.

Model Scheduler CFG scale Sampling steps etc
SD v1.4 PNDMScheduler 7.5 50 SAG scale: 0.75
SD v1.5 PNDMScheduler 7.5 50 PAG scale: 3.0
SDXL EulerDiscreteScheduler 5.0 50 CFG++ scale: 0.6
SD v3 FlowMatchEulerDiscreteScheduler 7.0 28

SDXL Turbo EulerAncestralDiscreteScheduler 2.0 1
InstaFlow PNDMScheduler 7.5 1
PixArt-Σ DPMSolverMultistepScheduler 4.5 20

Table 6. Experimental details.

method to the unconditional score used in SAG, and Fig. 12
demonstrates improved results when combined with our
method.

In PAG [2], an additional score is used alongside CFG,
where the self-attention map is set to identity. We observed
that projecting the perturbed-attention guidance score in
PAG did not yield significant improvements, likely because
this score differs fundamentally from the CFG uncondi-
tional score. Instead, we projected the unconditional score
used in PAG’s CFG computation using TCFG, resulting
in enhanced image details and structure. Please refer to
Fig. 12.

CFG++ [4] proposes an interpolation-based CFG com-
putation method instead of extrapolation. When we applied
our projection to the unconditional score used in CFG++, as
shown in Fig. 13, the results improved further. These find-
ings highlight the versatility of our method and its ability to
enhance other existing techniques.

13. Experimental details.
We provide details on the sampler, guidance scale, sampling
steps, and additional existing baselines’ hyperparameters in
Tab. 6.

14. Additional Results: Few-Step and High-
Resolution Image Generation

We further report the application of our method to few-step
generation models and high-resolution image generation.
Tab. 5 presents the results when our method is applied to
SDXL Turbo (a one-step generation model) and InstaFlow
(also a one-step generation model). In both cases, FID
scores improve, while CLIPScore remains the same or im-

1 if self.do_classifier_free_guidance:
2 noise_pred_uncond, noise_pred_text =

noise_pred.chunk(2)
3

4 all_noise = torch.stack((noise_pred_text,
noise_pred_uncond), dim=1).to(dtype=torch
.float32)

5 all_noise = all_noise.reshape(all_noise.size
(0), all_noise.size(1), -1)

6

7 U, S, Vh = torch.linalg.svd(all_noise,
full_matrices=False)

8 Vh = Vh.to(all_noise.device)
9 Vh_modified = Vh.clone().to(all_noise.device)

10 Vh_modified[:,1] = 0
11 noise_null_flat = noise_pred_uncond.reshape(

noise_pred_uncond.size(0), 1, -1).to(
dtype=torch.float32)

12 noise_null_flat = noise_null_flat.to(Vh.
device)

13 x_Vh = torch.matmul(noise_null_flat, Vh.
transpose(-2, -1))

14 x_Vh_V = torch.matmul(x_Vh, Vh_modified)
15 noise_pred_uncond = x_Vh_V.reshape(*

noise_pred_uncond.shape).to(
noise_pred_text.dtype).to(noise_pred_text
.device)

16 noise_pred = noise_pred_uncond + self.
guidance_scale * (noise_pred_text -
noise_pred_uncond)

Listing 1. Code for TCFG with the Hugging Face code style.

proves, demonstrating that our method performs effectively
not only in many-step models but also across all models uti-
lizing CFG. Notably, for SDXL Turbo, the CFG scale was
set to a very low value of 1.3.

Additionally, Tab. 5 highlights the performance of our
method in PixArt-Σ, a high-resolution text-to-image gen-
eration model. Similar improvements are observed, with
a reduction in FID scores and maintenance of CLIPScore.
Fig. 14 showcases the visual results of PixArt-Σ, further
validating the effectiveness of our approach.



SDv1.5 + SAG SDv1.5 + SAG + ours SDv1.5 + PAG SDv1.5 + PAG + ours

Figure 12. We observed that incorporating our method with SAG and PAG approaches improved the image structure, details, and overall
color quality.
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Figure 13. We observed that incorporating our method with CFG++ approaches improved the image structure, details, and overall color
quality.
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Figure 14. Visual examples generated by PixArt-Σ with our method, demonstrating improved image quality in terms of structure, details,
and overall aesthetics
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