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6. Further implementation details

In this section, we provide further branch-specific imple-

mentation details, about the real-world setting.

e 2D Branch: Same configuration as in [15], with visual
augmentations only.

* 3D Branch: The input frontal projection is resized to
(368 x 1248) and min-max normalized using global
dataset-wide minimum and maximum values. The 3D
student model receives sequences of images augmented
using data-jittering with a probability 0.4, while the
teacher model receives the original projected image. For
the scene completion task, 20% of the projected points
are dropped from the input and the 3D student is trained
to recover them.

7. Detailed Multi-modal Object Discovery re-
sults

The results in Table 7 indicate that the 3D baseline model
(DIOD-3D) exhibits relatively low recall, particularly in
real-world data (KITTI), where it achieves 13.2, highlight-
ing challenges in object localization within sparse 3D data.
Recall improves when the 3D branch is trained alongside
RGB images via cross-modal training, as seen with xMOD
(3D), which increases recall to 16.9 on KITTI. This im-
provement suggests that the model benefits from clearer ob-
ject patterns in RGB images. On the other hand, the 2D only
method presents low precision due to the noise and less ho-
mogeneous textures compared to 3D data, resulting in lower
precision in 2D (e.g. 17.8 for DIOD on KITTI). 2D preci-
sion is enhanced through cross-modal training (from 17.8 to
22.8), possibly due to inconsistencies between RGB noise
and point cloud data. The proposed late fusion in xMOD
(2D + 3D) significantly boosts precision while maintaining
high recall, achieving a better balance between both, as re-
flected by higher F1 scores of 27.4 for KITTI and 42.5 for
TRI-PD. In Table 8 we see that, across specific depth ranges
(10-30m), the late fusion preserves high recall while main-
taining strong precision, demonstrating reduced trade-offs
and improved performance.

8. Definition of new benchmarks with available
3D data.

As stated in the main paper, experiments that include 3D

data are evaluated on new test sets for TRI-PD and KITTI,

with available 3D data.

¢ The test set for TRI-PD was derived from the old train-
ing set (with these scenes excluded during training). It

consists of the first 17 non-banned scenes, each including
views from cameras 1, 5, and 6 :

scene_000003,scene_000007,scene_000010,
scene_000011,scene_000013,scene_000014,
scene_000017,scene_000020,scene_000022,
scene_000023,scene_000024,scene_000025,
scene_000026,scene_000027,scene_000030,
scene_000031,scene 000033

* The new test-set for KITTI includes 142 scenes, selected
from the original 200 scenes in the previous test set,
where LiDAR data is available. The scenes names are
listed below:

000163,000107,000031,000090,000053,
000069,000119,000070,000075,000043,
000042,000015,000086, 000048, 000011,
000109,000157,000142,000037,000033,
000019, 000098,000039,000016, 000145,
000114, 000025,000095,000113,000010,
000076,000110,000038,000018,000160,
000044,000040,000027,000034,000045,
000029,000093,000147,000122,000128,
000067,000143,000141,000047,000002,
000052, 000158,000149,000020, 000079,
000032,000055,000036,000097,000074,
000051,000066,000089,000092,0000009,
000077,000028,000162,000115,000124,
000085,000108,000054,000080,000123,
000126, 000088,000148,000094, 000159,
000132,000017,000155,000078,000072,
000105,000081,000168,000073,000116,
000164,000112,000199,000056,000106,
000050,000129,000024,000068,000169,
000059, 000003,000130,000065, 000146,
000064, 000023,000131,000144,000117,
000013,000058,000062,000049, 000012,
000121,000026,000091,000150,000041,
000071,000022,000060,000046,000096,
000030,000007,000161,000111,000118,
000084, 000014,000127,000008, 000063,
000125,000120,000021,000057,000035,
000061

9. Comparison with Clusternet

In the ClusterNet [37] average precision (AP) computa-
tion, a subtle yet significant implementation nuance in the
handling of predictions below the Intersection over Union



KITTI TRI-PD
all-ARI F1@50 Precision Recall all-ARI F1@50 Precision Recall
DIOD [15] 62.8 18.7 17.8 19.7 66.1 30,6 224 48,1
xMOD (2D) 69.7 22.3 22.8 21.8 64.7 35.5 304 42.8
DIOD-3D 51.6 15.5 18.9 13.2 65.1 39.6 47.0 343
xMOD (3D) 58.8 18.9 21.6 16.9 65.0 37.5 324 44.6
xMOD (2D + 3D) 75.8 27.4 56.9 18.0 64.8 42.5 429 42.0

Table 7. Multi-modal Object Discovery evaluated on the new KITTI and TRI-PD testsets with available 3D data (see section 8). The
models resulting from our proposed approach are presented in blue. Parentheses indicate the modality used during inference.

0-10 10-30 30-70
F1@50 Precision Recall F1@50 Precision Recall F1@50 Precision Recall
DIOD [15] 15.3 11.6 254 26.2 21.6 34.8 12.7 8.5 21.1
xMOD (2D) 20.6 30.8 15.6 32.5 31.1 34.3 16.0 15.0 16.5
DIOD-3D 15.2 30.3 10.7 22.9 21.9 24.0 8.9 20.0 5.5
xMOD (3D) 20.2 60.7 12.3 28.7 25.2 32.8 10.1 94 12.1
xMOD (2D + 3D) 21.7 68.2 12.9 46.4 85.7 31.8 7.2 29.5 4.1

Table 8. Multi-modal Object Discovery on KITTI for different subsets of object defined by their distance to the camera. The models
resulting from our proposed approach are presented in blue. Parentheses indicate the modality used during inference.

(IoU) threshold between predicted and ground truth masks
is present. The original code lacks an explicit “’else” clause
when evaluating instance matches, effectively omitting pre-
dictions with IoU values below the specified threshold.
This results in an incomplete categorization of predictions,
where instances not meeting the IoU criterion are neither
classified as true positives (TP) nor false positives (FP).
Consequently, the lists tracking false positives (FP), true
positives (TP), and prediction scores (scores) become in-
consistent, potentially introducing computational errors in
metric calculations. The original paper (main or supple-
mentary material) did not provide any precision regarding
this customized AP computation.

Furthermore, regarding the implementation of the
method itself, key components such as the 3D Instance Seg-
mentation module are absent from the repository, thus we
were not able to reproduce it in order to estimate their per-
formances with a standard AP formula. To facilitate com-
parison, we report in Table 9 the performances of our ap-
proach with an implementation of the AP that is similar to
that of ClusterNet [37].
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