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A. Proof of Eq. (3)

In Section 3.1, we introduce the SAKD loss as an enhance-
ment to the traditional KD loss, specifically tailored for
black box domain adaptation with unkonwn classes in the
target domain. The SAKD loss, as defined in Eq. (15), aims
to mitigate the impact of noisy pseudo-labels by preferen-
tially amplifying the influence of high-confidence pseudo-
labels:

LSAKD = −Ext∼Xt [(1 + pĉs)
θ log pĉt +

|Ls|∑
c=1
c ̸=ĉ

pcs log p
c
t ],

(15)
where θ ≥ 1.

For simplicity, we consider the case with a single sample,
where the SAKD loss simplifies to:

LSAKD = −[(1 + pĉs)
θ log pĉt +

|Ls|∑
c=1,c ̸=ĉ

pcs log p
c
t ]. (16)

Next, we apply the generalized binomial theorem to ex-
pand

(
1 + pĉs

)θ
as follows:

LSAKD = −

 ∞∑
k=0

(
θ

k

)(
pĉs
)k

log pĉt +

|Ls|∑
c=1,c ̸=ĉ

pcs log p
c
t


= LKD −

[ ∞∑
k=1

(
θ

k

)(
pĉs
)k − pĉs

]
log pĉt

≈ LKD −
[
(θ − 1) pĉs +

θ (θ − 1)

2

(
pĉs
)2]

log pĉt .

(17)
In Eq. (17), the first term LKD represents the original KD

loss, while the second term introduces an additional term,
which is positive and solely depends on the target class ĉ.

We define the additional term as ∆, and we will prove its
function in the following steps.

We assume that the weight of the loss function is denoted
by ω, and the number of training iterations is represented by
i. In our analysis, we adopt the following widely recognized
assumptions:

Assumption 1 (L-smooth): The SAKD loss function
LSAKD is L-smooth, which means for all ω, the following

inequality holds:

LSAKD(ωi+1) ≤ LSAKD(ωi) + ⟨∇LSAKD(ωi), ωi+1 − ωi⟩

+
β

2
∥ωi+1 − wi∥2,

(18)
where ∇LSAKD(ωi) represents the gradient of the loss
function at iteration i, and β > 0 is the smoothness con-
stant.

Assumption 2 (Bounded Gradients): The gradient of the
SAKD loss function LSAKD is bounded. Formally, there
exists a constant G > 0 such that:

∥∇LSAKD(ωi)∥ ≤ G, ∀i. (19)

Assumption 3 (µ-smooth): The SAKD loss function
LSAKD is µ-smooth, for all ω:

LSAKD(ωi+1) ≥ LSAKD(ωi) + ⟨∇LSAKD(ωi), ωi+1 − ωi⟩

+
µ

2
∥ωi+1 − wi∥2,

(20)
where µ > 0 is a constant.

During the training process, all values in ∆ are fixed,
except for pĉt . Additionally, since Assumption 3 is holds,
the derivative of pĉt with respect to i is positive, i.e.,

d(pĉt)

di
> 0. (21)

Now, we proceed to compute the derivative of ∆ with
respect to i. By applying the chain rule, we obtain:

d∆

di
= −

[
(θ − 1) pĉs +

θ (θ − 1)

2

(
pĉs
)2] 1

pĉt

d(pĉt)

di
. (22)

Given that θ > 1, it follows that: δ = d∆
di < 0.

Next, we compute the derivative of δ with respect to pĉs:

dδ

dpĉs
= −

[
(θ − 1) + θ (θ − 1) pĉs

] 1

pĉt

d(pĉt)

di
< 0 (23)

.
Thus, as pĉs increases, δ decreases, and the absolute value

of δ increases, which means that the gradient of ∆ decreases
at a faster rate. In other words, as the confidence of the
pseudo-label increases, the gradient descent speed of ∆ be-
comes faster.



Table 6. Ablation Study on OfficeHome. H-score (%) of different variants in OPBDA scenarios. L1
HQ, L2

HQ, LLQ refer to the objectives
corresponding to the negative loss in LHQ, entropy loss in LHQ, and loss associated with low-quality labels, respectively.

L1
HQ L2

HQ LLQ Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.

- - - 61.2 68.9 73.1 67.2 67.0 72.9 71.5 57.9 81.0 70.2 61.0 70.2 68.5
✓ - - 61.2 70.4 74.5 69.5 68.7 73.9 72.0 60.8 82.2 71.4 62.7 71.1 69.9
- ✓ - 61.7 70.8 74.8 69.8 69.6 74.3 72.1 61.7 82.0 71.0 62.5 71.4 70.1
- - ✓ 61.4 71.2 74.9 69.9 69.4 74.1 72.6 60.7 82.8 71.2 62.6 71.9 70.2
✓ ✓ - 62.7 69.7 74.8 69.4 68.7 73.7 71.7 60.8 81.5 71.4 61.3 71.2 69.7
✓ - ✓ 63.3 71.4 74.6 69.9 69.8 74.7 72.3 61.9 82.1 71.5 62.6 72.2 70.5
- ✓ ✓ 62.6 71.5 75.7 70.0 70.6 74.6 72.1 61.8 82.6 71.9 63.1 72.3 70.7
✓ ✓ ✓ 61.2 72.7 77.9 70.3 72.5 77.3 75.9 62.0 84.7 73.2 64.1 74.9 72.2

Table 7. Ablation Study on Office31. H-score (%) of different
variants in OPBDA scenarios.

L1
HQ L2

HQ LLQ A→ D A→W D→A D→W W→ A W→D Avg.

- - - 82.1 82.9 84.0 92.6 80.2 85.4 84.5
✓ - - 83.2 84.3 85.6 93.5 82.6 89.4 86.4
- ✓ - 82.8 83.5 86.5 92.7 83.0 87.9 86.1
- - ✓ 83.5 84.1 86.0 93.8 83.6 85.8 86.1
✓ ✓ - 80.3 84.3 86.0 94.1 83.3 88.7 86.1
✓ - ✓ 84.6 83.1 86.3 94.2 83.3 89.2 86.8
- ✓ ✓ 85.8 85.1 86.1 94.0 83.5 88.8 87.2
✓ ✓ ✓ 87.5 85.2 87.0 94.4 83.8 90.5 88.1

In conclusion, we demonstrate that this additional term
enables the SAKD loss to prioritize pseudo-labels with high
confidence, while mitigating the influence of noisy pseudo-
labels. This mechanism improves the robustness of the
model during training, ensuring that more reliable informa-
tion is captured from pseudo-labels with higher confidence.

B. Additional experiment results

Ablation study. In our study, we perform ablation study on
two datasets and measure H-score to illustrate the impact
of each component of our method. However, due to space
constraints, we only present results of six tasks in the paper.
Hence, in this section, we display additional ablation study
results in Table 6 and 7. It is important to emphasize that in
all ablation experiments, we consistently employ the SAKD
loss, which is a critical component of the ADU framework.
The same as the ablation study results of six tasks, we can
still draw the following conclusions: (i) The introduction
of any component alongside the SAKD loss leads to per-
formance improvements, underscoring the vital role of the
EDLD module. (ii) The full EDLD loss, which includes the
negative loss term, yields better performance compared to
its version without the negative loss, demonstrating the ef-
fectiveness of incorporating this term. (iii) The integration
of all components results in the highest H-scores, providing
clear evidence of the synergy and efficacy of the combined
modules.

Table 8. Sensitivity analysis of λ.

λ A→W D→W Ar→ Cl Cl→ Re Pr→Ar Re→ Cl Avg.

0.0 82.9 92.6 61.2 72.9 71.5 61.0 73.7
0.2 84.4 93.5 62.5 73.4 71.5 62.8 74.7
0.5 83.2 93.7 62.8 73.7 71.7 63.4 74.8
1.0 85.2 94.4 61.2 77.3 75.9 64.1 76.3
2.0 83.8 93.1 61.9 73.3 71.0 61.6 74.1
5.0 85.8 93.5 60.5 71.6 70.6 60.4 73.7

Table 9. Sensitivity analysis of θ.

θ A→W D→W Ar→ Cl Cl→ Re Pr→Ar Re→ Cl Avg.

1.00 83.6 93.5 63.7 76.9 73.3 63.6 75.8
1.05 84.6 93.6 63.0 77.3 73.6 63.6 76.0
1.10 85.2 94.4 61.2 77.3 75.9 64.1 76.3
1.15 84.2 92.2 61.0 75.7 72.4 63.0 74.8
1.20 82.2 91.0 59.4 70.6 67.3 58.5 71.5
1.25 80.2 90.5 58.2 69.5 66.0 58.4 70.5

Table 10. Sensitivity analysis of γ.

γ A→W D→W Ar→ Cl Cl→ Re Pr→Ar Re→ Cl Avg.

0.0 84.7 91.0 63.2 73.5 70.9 62.5 74.3
0.2 85.2 91.9 62.4 73.4 70.2 62.2 74.2
0.4 84.9 93.4 62.5 73.9 72.7 62.9 75.1
0.6 85.2 94.4 61.2 77.3 75.9 64.1 76.3
0.8 82.8 95.1 60.6 74.1 71.7 61.5 74.3
1.0 79.0 94.3 59.8 73.9 69.8 59.7 72.8

Parameters sensitivity analysis. To illustrate the sen-
sitivity of our method to the hyperparameters λ, θ and γ,
we conduct experiments on two tasks from the Office31
dataset (A→W and D→W) and four tasks of the Office-
Home dataset (Ar→Cl, Cl→Re, Pr→Ar and Re→Cl). Due
to space constraints, we only present the average values in
the paper. Hence, in this section, we display additional re-
sults in Table 8, 9 and 10. It is evident that the results are
stable around the selected values of λ = 1.0, θ = 1.1, and
γ = 0.6.
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