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1. Additional implementation details
1.1. S-Seg experiments
Training. During training, our model is trained end-to-end
using AdamW [13] with intial learning rate 5e−4 and batch
size 4096. We use cosine learning rate decay schedule with
2 warmup epochs, and the training lasts for 30 epochs in
total. We use a 0.05 weight decay. See Table 1 for our com-
plete training hyperparameter settings. All input images are
random resized and cropped to 224×224 in resolution. Fol-
lowing [18], we extract nouns and verbs from raw sentence
because these words are more likely to describe the image.

Inference. We evaluate S-Seg on the validation set of
three datasets: Pascal VOC 2012 [6], Pascal Context [15]
and COCO [11]. As in [18], we combine all instances of
the same class to get semantic segmentation mask for each
image in COCO. Following GroupViT [18], we threshold
the maximum probability to obtain background prediction.
During inference, we set the input resolution to 448× 448,
which is consistent with [18].

1.2. S-Seg+ experiments
Self-training. For self-training experiments, we use Uper-
Net [17] with MAE [9] pretrained ViT backbone. We uti-
lize a pyramid-structured network to merge the features ob-
tained from layer 4, 6, 8, and 12 of the ViT, following the
implementation of BEiT [1]. We use the same model that
we used to evaluate our main results to generate training
data from the train set of the respective dataset. Training
hyperparameters are provided in Table 2. Following [1, 9],
we use a layerwise learning rate decay [4]. We do not use
relative position embeddings in our backbone ViT model
(which is used by [1, 9] at fine-tuning stage for extra im-
provement).

1.3. Reimplemented baselines
CLIP [16]. We utilized the CLIP ViT-B/16 model along
with the official pretraining weights. The ViT model incor-
porates attentional pooling in its last layer, using an addi-
tional [CLS] token to aggregate other tokens. We choose to

config value
optimizer AdamW [13]
base learning rate 5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
batch size 4096
learning rate schedule cosine decay [12]
warmup epochs [8] 2
training epochs 30

Table 1. S-Seg setting.

config value
optimizer AdamW [13]
base learning rate 1e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
batch size 16
learning rate schedule polynomial decay
warmup iters [8] 1.5k
training iters 20k (voc), 40k (ctxt), 80k (coco)
layer-wise lr decay [4] 0.7

Table 2. S-Seg+ setting.

employ the value embedding as the representation of each
token, as the query and key embedding of the final layer is
not fully trained during CLIP pretraining (only the similar-
ity between the query embedding of the [CLS] token and
the key embedding of other tokens is utilized). Finally, we
leverage the language model to encode all classes and clas-
sify the visual tokens, similar to CLIP’s zero-shot classifi-
cation approach.

MaskCLIP [3]. We use the testing code and weights
provided by the authors, but re-evaluating them on the
commonly-used protocol that includes the background
class. To further assess the efficacy of our approach, as well
as baseline methods, we employed the evaluation metric
utilized by MaskCLIP, which specifically disregards back-
ground pixels.

GroupViT [18]. The GroupViT project has provided
pre-trained models for two configurations. Without specific
clarification, we opt to use the model with the highest aver-
age accuracy, which was trained on CC12M, CC15M, and
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(a) Scaling training data provide consistent gain: We train our model using different
size of data: 12M (CC12M), 15M (+CC3M), and 26M (+RedCaps). We note a steady
improvement in the model’s performance as the data size increases.

data
S-Seg S-Seg+

VOC Context COCO VOC Context COCO
12M 44.9 22.9 22.5 53.1 25.5 26.2
15M 45.1(+0.2) 23.8(+0.9) 27.9(+5.4) 54.2(+1.1) 29.2(+3.7) 28.0(+1.8)
26M 53.2(+8.3) 27.9(+5.0) 30.3(+7.8) 62.0(+8.9) 30.2(+4.7) 35.7(+9.5)

(b) Self-training offers constant improvement: We ob-
serve that self-training consistently leads to significant im-
provement on performance across 3 datasets.

method
3-Average

12M 15M 26M
w/o self-train 30.1 30.8 37.1
w/ self-train 34.9 37.1 42.6

∆ +4.8 +6.3 +5.5

Table 3. Ablations on data scalability and self-training. We report mIoU evaluated on three datasets. Higher values are better.
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ds CLIP 13.2 10.4 4.4 8.0 5.9 19.4 27.0 17.5 26.0 3.1 19.6 9.0 21.5 16.8 11.2 11.7 5.2 13.1 7.6 21.1 12.2 13.5

MaskCLIP 41.3 12.8 18.7 22.5 6.7 22.8 50.7 23.4 56.8 13.6 34.1 8.1 46.3 29.5 39.9 22.7 9.5 29.5 25.1 30.8 18.2 26.8
GroupViT 79.0 37.4 29.9 33.3 33.9 64.4 60.2 62.4 76.7 16.2 68.8 28.0 75.9 62.5 64.2 51.6 38.7 63.0 37.4 44.0 38.4 50.8

S-Seg(Ours) 81.0 47.2 40.1 38.6 30.0 63.5 74.6 67.6 75.7 18.6 65.3 34.4 72.2 56.3 68.0 50.7 45.7 60.2 33.6 53.1 41.0 53.2
S-Seg+(Ours) 86.5 53.8 42.0 48.1 49.3 76.0 84.7 74.5 87.2 17.1 81.8 35.0 83.4 65.2 74.3 65.3 46.6 78.2 40.2 58.5 53.6 62.0

Table 4. Per-category open vocabulary semantic segmentation performance over 21 Pascal VOC classes. Our method surpass baseline
methods such as GroupViT on the Pascal VOC dataset, particularly in segmenting large objects and categories with consistent textures.

Method OV Sup.
LVIS

(1103 classes)
ImageNet-S
(919 classes)

CLIP [16] ✓ text 1.3 8.0
MaskCLIP [19] ✓ text 4.3 9.1
GroupViT [18] ✓ text 7.2 32.2
S-Seg (Ours) ✓ text 8.5 34.9

ViT-FCN 1 ✗ GT 9.6 40.4

Table 5. Open-vocabulary semantic segmentation results on
LVIS and ImageNet-S. Our method demonstrates competitive
performance on these challenging datasets with a significantly
larger number of classes.

Redcaps datasets. This particular model also closely aligns
with our method in terms of training data.

Fully supervised models (DeepLabV3+ [2] and Mask-
Former [3]). We leverage public checkpoints when avail-
able. In cases where a checkpoint is not available, we re-
train the model using the original training hyperparameters
(e.g. optimizer, learning rate, momentum, and weight de-
cay) along with the standard training schedule, which varies
depending on the dataset (40k iterations for P. VOC, 80k for
P. Context, and 160k for COCO). We show the performance
of DeepLabV3+ in qualitative comparisons (Fully Sup.).

2. Additional results

2.1. Additional datasets

We evaluate our method on two new challenging datasets
that contain significantly more classes, LVIS (1103 classes)
and ImageNet-S (919 classes). The results are shown in
Table 5. We observe that our model outperforms several
existing open-vocabulary baseline methods and approaches
supervised models, indicating its robustness in challenging
scenarios.

1We also tried DeepLabV3+ but failed to obtain satisfactory results.

2.2. Ablation results

In Table 3a and 3b, we show numerical results correspond-
ing to Figure 10 and 12 in the main paper. As seen from the
table, scaling data and self-training provide consistent gain
in performance for our model.

2.3. Per-category result

Table 4 presents the mIoU results of our models and base-
line methods on the Pascal VOC dataset, where each class
is evaluated separately. Our models outperform GroupViT
in most classes, and S-Seg+ achieves superior performance
across all categories. Our models are particularly effective
at segmenting large objects such as aeroplanes, buses, and
trains, with an average improvement of 11.1 compared to
2.5 for all classes. This improvement could suggest that
our models benefit from the pseudo-mask generator, which
works better for larger objects (which shows a 83.3% ora-
cle performance compared to 77.2% for other classes). On
the other hand, our self-training model performs better on
categories that share consistent texture, such as cats, cows,
dogs, and sheep, with an average improvement of 14.3 com-
pared to 8.8 for all classes. This indicates that self-training
can identify common features and reduce noise in the self-
training labels.

2.4. Additional visualizations

Figures 3 and 4 present more detailed open-vocabulary seg-
mentation results in higher resolution. As shown in the re-
sults, our approach can effectively segment object-centric
images from [6] (fig. 3) as well as context-rich images
from [11] (fig. 4) accurately. Our method can segment ob-
jects based solely on their category name, without requiring
any annotations from specific target datasets during train-
ing. Figure 5 and 6 provide additional comparison with
previous methods.



Method Algorithm VL Pretrain Pretrain data Anno. masks I-T pairs Custom model Loss mIoU (VOC)

OpenSeg [7]
Adapt&Refine image-level

VL alignment models Yes (ALIGN) 1800M Yes (COCO) - Not required image+pixel 77.2

ZegFormer [5]
Directly training

pixel&language alignment Yes (CLIP) 400M Yes (COCO) - Not required image+pixel 80.7

MaskCLIP [19]
Adapt&Refine image-level

VL alignment models Yes (CLIP) 400M Not required - Not required image 49.5

GroupViT [18]
Extract segments

from language alignment Not required - Not required 30M Yes (GroupViT) image 77.2

S-Seg (Ours) Directly training
pixel&language alignment Not required - Not required 26M Not required image+pixel 81.8

Table 6. Comparing S-Seg (Ours) with closely-related methods (OpenSeg [7], ZegFromer [5], MaskCLIP [19], and GroupViT [18]).
We conduct a comparative analysis of our method against a range of closely-related approaches, which are further detailed in Section 3.

MaskCLIP GroupViT S-Seg (Ours)

image text

Pseudo masks

image-text 
pair

ZegFormer

image class labels

GT masks

prompt

GroupViT

image text

similarity & 
disimilarity

image-text 
pair

group

ViT

image text

Language 
Model

image-text 
pair

extract predict predict

similarity & 
disimilarity

similarity & 
disimilarity

similarity & 
disimilarity

Language 
Model

Language 
Model

Language 
Model

MaskFormer MaskFormer

Figure 1. Comparing S-Seg (Ours) with closely-related methods. The components in red are those different from S-Seg.

3. Methodology Comparisons
We present a comparative analysis of our method against
several closely-related exemplary approaches. Our method
serves as a connection among these methodologies. The
primary similarities and differences are outlined in Table 6
and Figure 1, with further discussion below.

Relation to OpenSeg. OpenSeg (and similar meth-
ods, e.g. LSeg [10]) refines image-level models like
CLIP/ALIGN by training on annotated semantic masks.
The pretrained image-level model provides language align-
ment and utilize ground truth mask for refining pixel-level
feature. In contrast, S-Seg trains directly on pixel features
from pseudo-masks and learns language alignment through
text. Conceptually, S-Seg offers an end-to-end alternative
to OpenSeg, with the added advantage of training exclu-
sively on image-text pairs. Our approach removes the need
for the resource-intensive VL pretraining step, streamlines
the learning process, and reduces the reliance on extensive
supervised data.

Relation to ZegFormer. Our method can be concep-
tualized as a variant of ”ZegFormer trained from scratch
with pseudo-masks and language,” albeit with notable im-
plementation distinctions. Training with seen ground truth
masks benefits in-domain classes, but may not extend to
unseen classes. Interestingly, while our method underper-
forms compared to ZegFormer on seen classes, it surpasses
ZegFormer in handling unseen classes and demonstrates su-
perior average performance across the dataset. This sug-

gests that our solution offers better generalization than Zeg-
Former, despite not utilizing CLIP, annotated masks, or
pixel-wise labels. The architectural and training similari-
ties between the two methods suggest that their integration
could lead to enhanced performance, a hypothesis we leave
for future exploration.

Relation to CLIP/MaskCLIP. Our method closely par-
allels CLIP in the image-text contrastive training paradigm
and can be seen as a ”CLIP with MaskFormer as the image
encoder,” supplemented by an additional mask supervision
branch. Despite these similarities, CLIP primarily aims to
learn image-level alignment, whereas S-Seg is focused on
pixel-level alignment. This is evident from the fact that
even with the MaskCLIP adaptation, the segmentation per-
formance significantly lags behind that of other compared
methods. This highlights the importance of incorporating
both the MaskFormer and mask supervision in S-Seg.

Relation to GroupViT. GroupViT and S-Seg share a
similar problem setup, where both methods avoid CLIP pre-
training and manual annotations. Methodologically, S-Seg
resembles ”GroupViT with MaskFormer as the grouping
model.” A key difference, however, is that GroupViT ex-
tracts segments from a trained model, while S-Seg directly
predicts segmentation, supervised by pseudo-masks. This
more explicit form of supervision allows S-Seg to lever-
age standard segmentation models like MaskFormer more
effectively and offers a potentially simpler pathway for up-
dates with future advancements in segmentation models.



4. Limitations

Our model has several limitations. First, it may struggle
in scenes with high color contrast, where sharp transitions
between adjacent regions can confuse the model and lead
to inaccurate segmentation boundaries (see Fig. 2, top).
Second, performance tends to degrade in visually complex
scenes, such as those with dense object arrangements, in-
tricate textures, or highly cluttered backgrounds, where dis-
tinguishing individual instances becomes more challenging
(see Fig. 2, bottom). Third, the model can fail to correctly
separate overlapping objects, especially when their visual
features are similar, resulting in merged or incomplete seg-
mentations. Finally, rare categories that appear infrequently
in the training data are prone to misclassification or may be
entirely missed, reflecting a limitation in generalization.

5. Discussions

Q: Is vision-language (VL) training still used in your
approach, and how does it differ from large-scale meth-
ods like CLIP?

A: Yes, VL training is still used. However, our ap-
proach avoids relying on massive cross-modal pretraining
like CLIP. Instead, we focus on making training more acces-
sible and reproducible from scratch by using open datasets
that are over 10 times smaller (26M vs. 400M). While we
do use pretrained models like DINO, it’s based on unlabeled
ImageNet and requires far less compute, without needing
curated text–image pairs.

Q: Could you provide deeper insights into the core
motivation behind your approach?

A: Our central motivation is to show that directly learn-
ing pixel-level vision–language alignment is both vi-
able and effective. By removing complex components
to barebone, two core interests emerge: (1) exploring
a simpler pipeline that is not tied to massive curated
text–image datasets or adapting proprietary models, and (2)
demonstrating the feasibility of an alternate route to open-
vocabulary segmentation that focuses on learning from self-
supervised visual features in conjunction with textual em-
beddings.

Q: Why did you choose a weakly supervised setting
instead of fully supervised methods?

A: We opted for a weakly supervised approach for two
main reasons. First, creating segmentation masks is costly,
whereas image–text pairs are much easier to collect at scale,
such as from internet images and alt-text. Second, weak su-
pervision tends to improve generalization to unseen data,
which is crucial for open-vocabulary segmentation. Fully
supervised models, in contrast, are often limited by the spe-
cific categories they’ve been annotated with.

Car  Fire Hydrant

Bird Elephant Cow Person  Background
Figure 2. Limitations. Our model struggles with high color con-
trast (top) and complex scenes with overlapping objects (bottom),
highlighting some key failure modes.

To illustrate, we compared S-Seg to a strong fully su-
pervised model (SAN [14], trained on COCO) on 20 un-
common ImageNet-S classes2. SAN achieved 56.5 mIoU,
whereas our model obtained 62.7 mIoU. Qualitative results
on web images below further show SAN’s limitations on
new visual domains despite greater annotation use.
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2tench, peacock, ostrich, jellyfish, albatross, magpie, indian cobra,
hummingbird, snail, flamingo, tarantula, platypus, tiger shark, american
lobster, quail, kite, conch, bullfrog, axolotl, koala
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Figure 3. Additional qualitative results of S-Seg in higher resolution (object-centric images). Our method demonstrates robustness
in dealing with challenging scenarios, such as objects with unconventional shapes and poses (row 1), images with unusual color and tone
(row 2), objects of the same class but with differing colors (row 3), objects with the similar color but of different classes (row 4), concealed
objects (row 5), and various other difficult situations.
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Figure 4. Additional qualitative results of S-Seg in higher resolution (context-rich images). Although context-rich images pose
challenges in segmentation due to the presence of an increased number of small and cluttered objects, our method can still accurately
segment the objects with precision.
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Figure 5. Additional qualitative comparison with existing methods. CLIP [16] is primarily designed for classification and does not
perform well in segmentation. MaskCLIP [19] adapts CLIP for segmentation, although it produces noisy predictions and cannot handle
background classes. GroupViT [18] is a strong competitor, but it could struggle in challenging scenarios.
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Figure 6. Additional qualitative comparison with existing methods (continued).
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Koltun, and René Ranftl. Language-driven semantic seg-
mentation. In ICLR, 2022. 3

[11] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 1, 2

[12] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. ICLR, 2016. 1

[13] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICCV, 2019. 1

[14] Fangyun Wei Han Hu Xiang Bai Mengde Xu, Zheng Zhang.
Side adapter network for open-vocabulary semantic segmen-
tation. 2023. 4

[15] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu
Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and
Alan Yuille. The role of context for object detection and se-
mantic segmentation in the wild. In CVPR, 2014. 1

[16] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. 2021. 1, 2, 7

[17] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In ECCV, 2018. 1

[18] Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon,
Thomas Breuel, Jan Kautz, and Xiaolong Wang. Groupvit:
Semantic segmentation emerges from text supervision. In
CVPR, 2022. 1, 2, 3, 7

[19] Chong Zhou, Chen Change Loy, and Bo Dai. Extract free
dense labels from clip. In ECCV, 2022. 2, 3, 7


	Additional implementation details
	S-Seg experiments
	S-Seg+ experiments
	Reimplemented baselines

	Additional results
	Additional datasets
	Ablation results
	Per-category result
	Additional visualizations

	Methodology Comparisons
	Limitations
	Discussions

