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1. Preliminaries of Large Language Model

Large Language Models (LLMs) take a sequence of text to-
kens as input and output a distribution over the vocabulary
for the next token. The first layer of the LLM is the em-
bedding Eword(·) ∈ RVw×dw , where Vw represents the vo-
cabulary size and dw is the embedding dimension. Eword(·)
converts input token indices into embeddings {e1, . . . , eH},
where ei ∈ Rdw and H is the number of input tokens. Addi-
tionally, we use a position embedding matrix P ∈ RH×dw

to add positional information to each token’s embedding
and have e′i = ei + Pi. Subsequently, let {a1, . . . , aH}
be the input vector sequence to an attention layer in the
LLM, represented as matrix A ∈ RH×dw , we use lin-
ear projections to generate query, key, and value matrices
Q,K, V ∈ RH×dw , respectively. Self-attention is com-
puted between Q and K to obtain attention weights, which
are then used to weight V to produce output A′:

A′ = softmax(MT ⊙ QKT

√
dw

V ) (1)

where ⊙ denotes the element-wise product, and MT ∈
RH×H is a matrix where elements on and below the di-
agonal are 1, and others are −∞. Finally, A′ is fed into
LayerNorm and a feedforward network to generate the in-
put to the subsequent layers. The last layer of the LLM is
an affine projection layer that predicts the probability of the
next token in the sequence.

2. Identity-disentangled VQ-VAE

2.1. Architecture Details

As shown in Fig. 1, we employ a standard CNN-based ar-
chitecture with 1D convolution (Conv1D), residual block
(ResBlock) and ReLU activation for both the encoder and
decoder of our identity-disentangled VQ-VAE. Specifically,
the residual block in the encoder uses instance normaliza-
tion to eliminate identity-specific variations, and the resid-
ual block in the decoder uses adaptive instance normaliza-
tion to inject identity information back into the response
synthesis process. We use convolution layers with stride
2 and nearest interpolation for temporal downsampling and
upsampling operations, respectively. We use L = 3 as the
number of residual blocks, so the overall downsampling rate
r = 23 = 8.

Figure 1. Architecture of the Encoder and Decoder in the proposed
Identity-disentangled VQ-VAE.

2.2. Losses Details
We use a set of different losses to train our VQ-VAE:

Lembed =

T/r∑
t=1

∥zt − sg[Q(zt)]∥2, (2)

Lcommit =

T/r∑
t=1

∥sg[zt]−Q(zt)∥2, (3)

Lrec =

T∑
t=1

Lsmooth
1 (f̂t, ft), (4)

Lveloc =

T−1∑
t=1

Lsmooth
1 (f̂t+1 − f̂t, ft+1 − ft), (5)

where sg denotes the stop-gradient operator, and Lsmooth

denotes the L1 smooth loss function. The final loss function
for our VQ-VAE is defined as:

Lvq = Lembed + λcommitLcommit + Lrec + λvelocLveloc,
(6)

where λcommit = 0.02 and λveloc = 0.5 are the weights
used to balance individual losses.

3. Speaker Emotion Details
We first downsample the sequence of speaker facial motions
Fs = {fs

1 , f
s
2 , . . . , f

s
T } by a rate of r, dividing Fs into T/r

groups. In this way, the groups can be represented as:

Fs
j = (fs

(j−1)r+1, f
s
(j−1)r+2, . . . , f

s
jr), (7)

where j = 1, 2, . . . , T/r. For each Fs
j , we use the emo-

tion recognition module (ER) from EMOCA [1] to predict



the emotion probability distribution for each facial motion
within the group, and have:

pk = ER(fs
k) ∈ RNe , (8)

where k = (j−1)r+1, (j−1)r+2, . . . , jr, Ne is the num-
ber of emotion states. Then, we average the emotion proba-
bility distributions across all motions in the group, yielding:

p =
1

r

jr∑
k=(j−1)r+1

pk ∈ RNe (9)

Finally, the emotion state with the highest probability is se-
lected as the emotion token for that group’s facial motions.
This process is repeated for all groups, resulting in the final
speaker emotion tokens emo ∈ R(T/r)×1, where emoi,
i = {1, . . . , T/r}, is the emotion token for group i.

4. Training Details

(i) For VQ-VAE, we use an AdamW [4] optimizer with
[β1, β2] = [0.9, 0.99] and a batch size of 256. We train
200K iterations with a learning rate of 2e−4 and 100K it-
erations with a learning rate of 1e−5. (ii) For the language
model, we use an AdamW [4] optimizer with [β1, β2] =
[0.5, 0.99] and a batch size of 8. First, we train 60K itera-
tions using Lpre with a learning rate of 5e−5. Second, we
train 150K iterations using L with a learning rate of 5e−5,
and the learning rate is decayed to 2.5e−6 for another 50K
iterations. Training the VQVAE and the language model on
a single NVIDIA A100-40G GPU takes about 22 hours and
38 hours respectively.

5. Inference Efficiency

Our inference speed is 393.1 FPS, with minimal additional
computational overhead against LM-listener (405.7 FPS).
Specifically, we additionally: i) introduce SpeechTokenizer
and EMOCA to extract additional information, extending
the input token sequence, and ii) add several AdaIN layers
during response token decoding. Preprocessing a 10-minute
video with SpeechTokenizer and EMOCA takes 2.05 and
8.66 minutes, respectively. Parallel preprocessing and end-
to-end pipelines can further improve the efficiency of our
framework.

6. Metrics for Quantitative Results

Following [5], we evaluate our method based on realism
(L2 and Frechet Distance (FD)), diversity (Variation and
Diversity), and synchrony (Paired FD (P-FD) and L2 Af-
fect), whose details are provided as follows:
• L2: Distance to ground truth expression and pose coeffi-

cients.

• Frechet Distance (FD): Motion realism measured by dis-
tribution distance between generated and ground-truth fa-
cial motion. We calculate FD [3] scores in the expression
RT×dψ and pose RT×dθ space of the full facial motion
sequence.

• Variation: Variance calculated across the sequence of ex-
pression and pose coefficients.

• Diversity: Following [6], we randomly sample 30 pairs
of listener expression and pose coefficients within a se-
quence, and compute the average Euclidean distances be-
tween the pairs to measure motion diversity in the set.

• Paired FD (P-FD): Quality of listener-speaker dynam-
ics measured by distribution distances on listener-speaker
pairs. Specifically, we calculated FD [3] scores on con-
catenated listener-speaker expression RT×(dψ+dψ) and
pose RT×(dθ+dθ).

• L2 Affect: Measures the accuracy of the produced listener
facial affect across the sequence. We average listener fa-
cial affect over a 1-second window and compute the L2
against ground truth in a sliding-window manner.

7. Metrics for VQ-VAE Evaluation

We evaluate VQ-VAE performance using three metrics: Re-
construction (Rec.), Commitment (Commit.), and Perplex-
ity (PPL):
• Reconstruction (Rec.): Distance to the ground truth ex-

pression and pose coefficients.
• Commitment (Commit.): Mean Squared Error (MSE) be-

tween the output feature of the encoder and the output
token of the quantizer.

• Perplexity (PPL.): The entropy of the token distribution
from the quantizer, where a higher value indicates a uni-
form distribution across all tokens, and a lower value in-
dicates a concentration on specific tokens.

8. User Study Details

We conducted an online anonymous survey (questionnaire)
with university student volunteers. Our survey first presents
the survey topic and evaluation metrics (contextual consis-
tency and synchrony), and shows one video at a time. Users
could watch the videos for an unlimited duration and rank
them based on their preferences. To further illustrate user
preferences in the user study, we assign scores ranging from
3 to 1, corresponding to the ranking results of the volun-
teers for the three responses: GT, LM-listener [5], and
Ours, from highest to lowest. As shown in Tab. 1, Ours
significantly outperforms the LM-listener [5] and slightly
surpasses GT. Using multimodal speaker cues, our method
occasionally generated more diverse responses, surpassing
the ground truth video, which often remained calm on such
occasions.



Method Video1 Video2 Video3 Video4 Video5 Video6 Video7 Video8 Video9 Video10 Average

GT 2.36 1.73 1.97 2.00 2.12 2.33 1.94 2.03 2.48 2.55 2.15
LM-listener 1.24 1.36 1.24 1.33 1.15 1.18 1.39 1.42 1.61 1.33 1.33
Ours 2.39 2.91 2.19 2.67 2.73 2.48 2.67 2.55 1.91 2.12 2.46

Table 1. Additional User Study Results. Scale: 1-3; the higher, the better.

Method MultiModal Identity L2 ↓ FD ↓ Variation Diversity P-FD ↓ L2 Affect(102) ↓
GT 0.1148 2.6053

Naive × × 0.2026 9.6016 0.0313 1.5817 9.9899 11.6484
MM only

√
× 0.1794 8.2897 0.0297 1.5629 8.6663 10.6285

ID only ×
√

0.0882 3.5803 0.0123 1.0175 3.8507 5.7948
Full (Ours)

√ √
0.0860 3.3939 0.0130 1.0426 3.6768 5.2537

Table 2. Ablation study of the different components (Multimodal-LM and Identity-disentangled VQ-VAE) on the RealTalk dataset [2].

9. Effectiveness of Different Components Re-
sults on RealTalk

As shown in Tab. 2, the performance trends are consistent
with the results on L2L-trevor [5], confirming that the per-
formance gains can generalize across different datasets.

10. Limitations and Future Work

Our method, while effective, has the following limitations
to be addressed in future work:
• Global Context. In addition to using only the speaker’s

video as input, we can incorporate global context infor-
mation to assist the model in better understanding the
speaker’s intent. This includes contextual factors such as
the setting of the conversation and the relationship be-
tween the speaker and the listener.

• Identity Priors. We can utilize additional identity infor-
mation as priors to refine the representation of the lis-
tener’s identity, such as age, gender, and personality, en-
abling a more comprehensive modeling of the listener’s
response style.

• Unified Speaker-Listener Generation. We aim to unify
Talking Head Generation and Listening Head Generation
within a single LLM model. By using prompts to facil-
itate identity switching between the speaker and the lis-
tener, the model can exhibit different functionalities (out-
putting conversational content or responses) as the con-
versation progresses, thereby creating highly interactive
digital humans.
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