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Figure 7. Stabilization effect of our model on video prediction tasks: Left (Video Colorization): The first row shows input grayscale
video frames. The second row demonstrates the output of a frame-by-frame base model [22], producing inconsistent colors across frames
(e.g., varying hues in pink and green boxes). The third row highlights our proposed Tracktention (+base model [22]), achieving consistent
and stable colorization across frames. Right (Video Depth Prediction): The first row displays input video frames. The second row shows the
depth predictions from a base model [62], which suffers from temporal instability. The third row presents Tracktention’s (+base model [62])
depth predictions, offering consistent and stable outputs over time.

A. Design and Implementation Details

A.1. Query Initialization and Point Tracking

In Tracktention, we use randomly initialized queries for the
point tracking model. In Figure 8, we compare the results of
two different query initialization strategies for object track-
ing in video: grid-initialized queries and random-initialized
queries that we use. Queries (represented as larger dots
with white edges) are seed coordinates in the video’s spatio-
temporal space that are used to start the tracking process.
Effective query initialization is crucial for maintaining com-
plete and consistent coverage of objects throughout the
video frames.

The top row illustrates the tracks obtained using a grid
sampling strategy, where a uniform grid of queries is placed
over the spatial dimensions of the first frame. While this
method provides good initial coverage, it results in signifi-
cant gaps in later frames due to motion and occlusion, lead-
ing to many areas being left untracked as the video pro-
gresses.

In contrast, the bottom row demonstrates tracks pro-
duced by our proposed random sampling method, where
queries are initialized randomly in the spatio-temporal
space. This approach results in more robust and complete
tracking, as seen in the wider spatial distribution of tracks
in the later frames.

This enhanced tracking coverage is advantageous for
our tracking-based attention model, Tracktention, which de-
pends on the completeness and density of query tracks to
deliver comprehensive attention across the scene. By ensur-
ing consistent and uniform tracking throughout the video,
our random query initialization method enables Trackten-
tion to more effectively focus on and process critical regions
of interest, even in complex and dynamic scenarios. This
leads to improved performance and robustness, as demon-
strated in the Ablation Study presented in the main paper.

A.2. Tracktention compared with Standard Atten-

tion Mechanisms

In Figure 9, we provide a conceptual overview comparing
Tracktention to standard attention mechanisms for video
processing. Spatial-temporal attention attends to all to-
kens across space and time, capturing comprehensive rela-
tionships but at a prohibitive computational cost. Spatial

attention focuses only on spatial tokens within individual
frames, ignoring temporal dependencies, while temporal

attention processes temporal evolution at fixed spatial lo-
cations and fails when objects move across patches. While
some methods combine spatial and temporal attention, at-
tending to a different location in another frame requires
traversing intermediate tokens implicitly, leading to indi-
rect and inefficient attention pathways. These limitations
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Figure 8. Comparison of query initialization strategies for point tracking. The top row shows the point tracks obtained with grid-
initialized queries, which suffer from significant coverage loss in later frames. In contrast, the bottom row illustrates tracks obtained with
our random initialization method, which maintains comprehensive coverage across the scene over time. Larger dots with white edges
represent queries, which are seed coordinates used to initiate tracking in the video. Numbers at the bottom left of each frame indicate the
frame index, highlighting the improved completeness of tracks produced by our approach, particularly in later frames.
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Figure 9. Comparison of different attention mechanisms for

video processing. The red-bordered block represents the query
token, while the blue-highlighted blocks indicate the range of to-
kens the mechanism attends to. See text for details.

hinder their ability to efficiently and effectively model dy-
namic video content.

Our proposed Tracktention addresses these challenges
by leveraging point tracks to attend selectively to spatial-
temporal tokens relevant to a query’s trajectory. Through
our Attentional Sampling module, Tracktention handles
cases where objects span multiple patches (e.g., the second
frame), ensuring fragmented representations do not disrupt
attention. Additionally, it is robust to occlusion (e.g., the
fourth frame) by using a tracker [24] designed to handle
occlusions. By combining computational efficiency, adapt-
ability to motion, and robustness to occlusion, Tracktention
significantly improves video processing in complex scenar-
ios.

A.2.1 Complexity Analysis

We analyze the computational complexity of our pro-
posed Tracktention layer in comparison to standard atten-
tion mechanisms used in video processing. Let H and W
denote the height and width of the frame features, T the
number of frames (temporal dimension), and N the number
of point tracks used in Tracktention, where N < HW and
N ⌧ HWT .
Spatio-temporal Attention: Spatio-temporal attention at-
tends to all tokens across both space and time, capturing
comprehensive relationships but at a prohibitive computa-
tional cost: O((HWT )2) = O(HWT ·HWT ).

This quadratic complexity over the total number of to-
kens HWT makes it computationally infeasible for larger



videos or higher resolutions.
Spatial Attention: Spatial attention operates on each
frame independently, attending to all spatial tokens within
a frame. The computational complexity for processing all
frames is: O(T · (HW )2) = O(HWT ·HW ).

This is because, for each of the T frames, attention com-
putations involve all pairs of spatial tokens, resulting in a
quadratic complexity with respect to the number of spatial
tokens HW .
Temporal Attention: Temporal attention focuses on the
temporal evolution at fixed spatial locations. Each spatial
position attends over the temporal dimension. The compu-
tational complexity is: O(HW · T 2) = O(HWT · T )

Here, each of the HW spatial positions computes atten-
tion over all T temporal tokens at that position, leading to
quadratic complexity with respect to the temporal length T .
Tracktention Complexity: Our proposed Tracktention
leverages point tracks to attend selectively to relevant
spatial-temporal tokens along a query’s trajectory. The
computational complexity of Tracktention is: O(HWT ·
N + T 2 ·N)

The term O(HWT · N) corresponds to the Attentional

Sampling and Attentional Splatting process, where features
are sampled along the point tracks from the video tokens.

The term O(T 2 · N) arises from the Temporal Trans-

former operating over the point tracks, computing attention
across time for each track.
Complexity Comparison: Since N is significantly smaller
than the total number of tokens (N ⌧ HWT ). The com-
plexity of Tracktention is substantially lower than that of
spatio-temporal attention mechanisms.

Factorized spatial and temporal attention achieves bet-
ter efficiency by separating spatial (O

�
T ⇥ (HW )2

�
) and

temporal (O
�
HW ⇥ T 2

�
) attention, resulting in a com-

bined complexity of O(HWT · (HW + T )). As N <
(HW + T ), Tracktention achieves lower complexity by at-
tending selectively to N point tracks, yielding an more effi-
cient tool for video processing.

Furthermore, we note that the attentional sampling and
splatting processes realistically focus on a local patch
around each query. This allows us to further reduce the
complexity of these processes from O (HWT ⇥N) to
O
�
P 2 ⇥ T ⇥N

�
, where P is a local patch size (P 2 ⌧

HW ). We leave this sparsity optimization for future work.

A.3. Other Implementation Details

A.3.1 Video Depth Estimation Evaluation

Data and evaluation metric. For training, we use a
combination of datasets containing both synthetic and
real videos: ARKitScenes [2], ScanNet++ [65], Tar-
tanAir [57], PointOdyssey [68], DynamicReplica [23], and
DL3DV [33], totaling 12,947 videos. All videos are

resized to have a short side of 336 pixels for compu-
tational efficiency. For evaluation, we use two bench-
marks: RobustMVD [48], containing short clips of 8 frames
with large motion, and the longer benchmark videos from
DepthCrafter [20]. These evaluation datasets include a wide
variety of scenes from KITTI [17], ScanNet [8], DTU [64],
Tanks and Temples [28], ETH3D [47], Sintel [39], and
Bonn RGB-D [41].

We use standard depth estimation metrics [62]: Abso-

lute Relative Difference (AbsRel) — calculated as |d̂�d|/d,
where d̂ is the estimated depth and d is the true depth — and
Threshold Accuracy (�⌧ ), the percentage of pixels satisfying
max(d

d̂
, d̂

d
) < ⌧ , with ⌧ set per the original benchmark. As

in training, we calibrate each prediction to the ground truth
using a scale and shift factor, shared across all frames in a
video, before assessing a metric.
Scale and shift ambiguity Evaluating depth estimation in
video sequences presents unique challenges due to the scale
ambiguity inherent in monocular depth prediction, where
predicted depths may differ from ground truth by a global
scale and shift. Traditional methods [29, 38, 49, 59] often
employ frame-wise evaluation, fitting a separate scale and
shift for each frame independently:

min
si,ti

X

(x,y)

(D2,i(x, y)� (si ·D1,i(x, y) + ti))
2 ,

where D1,i is the predicted depth, D2,i is the ground-truth
depth for frame i, and si, ti are the scale and shift for that
frame. While this approach minimizes per-frame error, it
can mask significant temporal inconsistencies, as it allows
scale and shift to vary freely between frames, leading to
flickering or unstable depth predictions in videos.

To address this issue, we adopt a video-wise evaluation
method similar to DepthCrafter [20]. This approach en-
forces a single global scale and shift across the entire video
sequence:

min
s,t

X

i

X

(x,y)

(D2,i(x, y)� (s ·D1,i(x, y) + t))2 .

By using consistent scaling factors s and t for all frames,
the video-wise evaluation penalizes variations in predicted
depth over time, providing a more accurate assessment of
temporal consistency. This method highlights the model’s
ability to maintain stable and coherent depth predictions
across frames, which is crucial for applications requiring
consistent video outputs.

A.3.2 Implementation Details for Video Colorization

Evaluation metrics. We assess the quality of the coloriza-
tion using standard metrics: the Fréchet Inception Distance

(FID), which evaluates how well the predicted colorization



matches the ground truth statistically in feature space; the
Colorfulness Score (CF), which quantifies color vibrancy;
and the Color Distribution Consistency (CDC), which mea-
sures the temporal consistency of the colorization. We also
include the Peak Signal-to-Noise Ratio (PSNR), though it is
generally acknowledged that this is a poor metric for evalu-
ating colorization accurately [22].
Integration implementation We evaluate the effective-
ness of the Tracktention layer in enhancing temporal consis-
tency by integrating it into four image colorization models:
CIC [66], IDC [67], ColorFormer [21], and DDColor [22].
Integration with CIC and IDC For the ConvNet-based ar-
chitectures CIC and IDC, which feature encoder-decoder
structures with downsampling, standard, and upsampling
convolutional layers, we insert the Tracktention layer after
the standard convolutional layers 5, 6, and 7. This integra-
tion allows temporal alignment at multiple stages of feature
extraction, enhancing consistency across video frames.
Integration with ColorFormer and DDColor In Color-
Former, which utilizes a transformer backbone followed by
a 4-layer U-Net decoder with residual connections, we in-
tegrate the Tracktention layer after the first three layers of
the transformer backbone. Similarly, for DDColor, which
employs a ConvNeXt [36] backbone with a U-Net decoder,
we add the Tracktention layer after the first three layers of
the backbone.
Training Details All models are trained using the loss
functions from DDColor with the AdamW optimizer (initial
learning rate 1.6⇥10�5). The learning rate is decayed using
a MultiStepLR scheduler every 4k iterations starting from
the 8k-th iteration, over a total of 40k iterations. Training is
conducted on the YouTube-VIS [60] dataset using raw, un-
labeled video data, with frames resized to 256⇥ 256 pixels.

We do not employ temporal consistency losses such as
flow warping losses used in prior works [31, 34]. By avoid-
ing the computation of optical flow and associated warp-
ing operations, our training process remains efficient while
achieving temporal consistency through the Tracktention
layer integration. This shows that the Tracktention layer can
effectively enhance temporal consistency in video coloriza-
tion without relying on additional temporal loss functions,
highlighting its flexibility and practicality.

B. Additional Experimental Results

Here, we present additional experimental results and visual
comparisons showing how the Tracktention layer enhances
video consistency, stability, and accuracy, along with an
analysis of input tracks’ influence.

B.1. Influence of Input Tracks on Video Consistency

We analyzed how the selective use of specific tracks af-
fects the temporal consistency of video colorization. By

selectively activating tracks corresponding to specific ob-
jects or regions, Tracktention guides its attention mecha-
nism to maintain stable and consistent colorization for those
targeted areas across video frames, while areas without ac-
tive tracks may exhibit color inconsistencies. Figure 10 il-
lustrates this behavior. In each case, activating tracks for
a particular object (e.g., one bird, the front of the train, or
the dog) results in consistent coloring for that object, while
other objects without active tracks (e.g., the other bird, the
back of the train, or the ball) show inconsistent coloring.
This demonstrates that Tracktention can leverage selective
tracks to ensure localized stability in the colorization pro-
cess, even when other regions of the frame are affected.

B.2. Additional Visual Examples

Video Depth Estimation Figures 11 and 12 present addi-
tional visual comparisons for video depth estimation. Sim-
ilar to the results in the main paper, our model produces
stable and accurate depth maps across all frames. The incor-
poration of the Tracktention layer enables precise temporal
alignment of features, resulting in consistent and accurate
depth estimation over time.

The state-of-the-art method, DepthCrafter exhibits sig-
nificant errors in certain regions, particularly where com-
plex motion or occlusions occur. DUSt3R, which relies on
implicit triangulation, struggles with dynamic content, lead-
ing to inaccuracies and temporal inconsistencies in the esti-
mated depth maps.

Our base model, Depth Anything, is an image-based
depth estimation model that processes frames indepen-
dently. As a result, it shows inconsistent depth estimation
across frames, with noticeable instability in the depth maps.
By integrating the Tracktention layer into Depth Anything,
we enhance temporal consistency, achieving results that are
both accurate and stable throughout the video sequence.

Automatic Video Colorization Figures 13 and 14 provide
more results on automatic video colorization. Consistent
with observations in the main paper, the baseline method
TCVC is unable to produce vibrant colors, resulting in de-
saturated and less realistic outputs.

Our base model, DDColor, performs frame-by-frame
colorization, which leads to unstable and inconsistent color
results. The absence of temporal coherence causes color
flickering and discrepancies between frames, detracting
from the overall visual quality of the video.

When we augment DDColor with our Tracktention layer,
we observe a clear improvement in temporal consistency
while retaining the original color vibrancy and realism. The
Tracktention layer allows the model to attend to correspond-
ing areas across time based on point tracks, ensuring smooth
and coherent colorization throughout the video.



B.3. Video Demonstrations

We also provide a supplementary video that explains
our method and showcases the resulting video outputs.
The video includes side-by-side comparisons of the base
models before and after augmented with our Trackten-
tion layer for both video depth estimation and automatic
video colorization tasks. It highlights the temporal consis-
tency and accuracy achieved by integrating the Trackten-
tion layer into existing models. Please find the enclosed
supplementary video.mp4 file for a visual demon-
stration of our method’s performance.
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Figure 10. The impact of selective tracks used on video colorization consistency. In the top example, using tracks corresponding to the
left bird (Row 1) results in consistent colorization of the left bird (Row 2, green box), while the right bird exhibits inconsistent colorization
(red box). Conversely, using tracks for the right bird (Row 3) ensures stable colorization for the right bird (Row 4, green box), while the
left bird becomes inconsistent (red box). Similar patterns are observed for the train and dog examples. Green boxes highlight regions with
stable and consistent colors, while red boxes indicate inconsistent colorization.
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Figure 11. Comparison of depth prediction results across different models: DepthCrafter, DUSt3R, Depth-Anything (marked with * as
the base model), and Ours (+Depth-Anything). Each row shows depth predictions, corresponding error maps, and the ground truth for the
input video frames. Highlighted rectangles emphasize key issues in baseline methods: DepthCrafter exhibits significant errors in certain
areas, DUSt3R tends to fail in dynamic regions, and Depth-Anything produces flickering results, evident from inconsistent error patterns.
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Figure 12. Additional comparison of depth prediction results across DepthCrafter, DUSt3R, Depth-Anything (*denotes the base model),
and Ours (+Depth-Anything). The rows present depth predictions, their error maps, and ground truth for a different set of input video
frames, illustrating consistency across varying scenes.
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Figure 13. Video colorization results comparing TCVC, DDColor (*denoting the base model), and Ours (+DDColor). The rows show the
input grayscale video frames, followed by the colorized outputs from each method. Highlighted areas indicate inconsistencies in the base
model (DDColor), which are resolved by our model, demonstrating its ability to produce consistent and accurate colorization.
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Figure 14. Additional video colorization results comparing TCVC, DDColor (*denoting the base model), and Ours (+DDColor). The
rows display the input grayscale video frames alongside the colorized outputs from each method. Highlighted areas pinpoint inconsistencies
in the base model (DDColor), which are effectively resolved by our model, showcasing its improved consistency and color accuracy.
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