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Supplementary Material

We begin this supplementary document by expounding
on the limitations of our proposed UWAV method. In the
section that follows, we elaborate on the implementation
details, compute environment used for implementation, and
the training and inference times of our proposed method.
Then, we quantitatively compare with VALOR on the LLP
datset using better backbone features. In Section 6, we put
forward studies showcasing the sensitivity of our method
to the choice of the hyper-parameters α,W , followed by
ablation studies about the various design choices of our
model. Finally, we end this document by providing some
qualitative visualizations of the predictions obtained by our
method versus competing baselines on both the LLP and the
AVE datasets.

The following summarizes the supplementary materials
we provide:
• Limitations.
• Implementation details of UWAV.
• Details of our compute environment.
• Compute time analysis.
• Quantitative comparison using better backbone features.
• Studies on the sensitivity of UWAV to the choice of α,W .
• The Scalability of UWAV.
• Ablation studies on the different design choices.
• Qualitative results of UWAV versus competing methods

for the AVVP task.

1. Limitations
Although UWAV achieves state-of-the-art results on the
AVVP task, compared to competing methods, it requires
additional training data to pre-train the pseudo-label gen-
eration module (on which we train for about 80 epochs).

2. Implementation Details of UWAV
To assess the effectiveness of our method, in line with prior
work [11], each 10-second video in both the LLP [11] and
AVE [10] datasets is split into 10 segments of one sec-
ond each, where each segment contains 8 frames. The
visual feature backbone for the LLP dataset is based on
the ResNet-152 [3] network (pre-trained on the ImageNet
dataset [1]) for extracting 2D-appearance features, and the
R(2+1)D [12] network (pre-trained on the Kinetics-400
dataset [5]) for extracting features that capture the visual dy-
namics, respectively. The VGGish [4] network, pre-trained
on the AudioSet dataset [2], is used to extract features from
the audio, sampled at 16KHz. For the AVE dataset how-
ever, akin to prior work [6], we extract visual features from
pre-trained CLIP [8] and R(2+1)D, while CLAP [13] is

Table A1. Compute time analysis on the LLP dataset. “Infer-
ence Time” denotes the time to evaluate all testing data.

Method Training Time per Epoch Inference Time

CoLeaf [9] 25 sec 24 sec

UWAV (Ours) 24 sec 20 sec

used to embed the audio stream. For both datasets, we set
the number of encoder blocks L of the transformers in the
pseudo-label generation module to 5, α for the Beta dis-
tribution in the feature mixup strategy to 1.7, and W in
the class-balanced loss re-weighting step to 0.5. Both the
pseudo-label generation modules and the inference mod-
ules are trained with the AdamW optimizer [7]. To train
the model, we employ a learning rate scheduling strategy
that warms up the learning rate for the first 10 epochs to its
peak of 1e−4 and then decays according to a cosine anneal-
ing schedule, to the minimum, which is set to 1e−5 for the
pseudo-label generation models and 5e−6 for the inference
model. We clip the gradient norm at 1.0 during training.
For the LLP dataset, the training batch size is set to 64 and
the total number of training epochs to 80 for both models,
while the same is set to 16 and 80 for the AVE dataset.

3. Details of Compute Environment
Our model is trained on a desktop computer with an Intel
Core i7 CPU, with 32GB RAM, and a single NVIDIA RTX
3090 GPU.

4. Analysis of Compute Time
For a more holistic understanding of the performance of our
method, we compare its training and inference times with
the most recently published approach for the AVVP task,
viz. CoLeaf [9] on the LLP dataset [11]. The results of
this study are shown in Table A1. We see that our method’s
runtime performances are comparable with those of com-
peting approaches, with notable inference time gains over
the CoLeaf method [9].

5. Quantitative Comparison Using Better
Backbone Features

We also quantitatively compare our proposed approach with
VALOR on the LLP dataset using better backbone features,
i.e. CLIP and CLAP as visual and audio feature backbones.
As shown in Table A2, UWAV outperforms VALOR with
2.7 F-score improvement in segment-level Type@AV and
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Figure A1. Sensitivity of α in the uncertainty-weighted feature
mixup on the LLP dataset.
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Figure A2. Sensitivity of W in the class-balanced re-weighting
on the LLP dataset.

Table A2. Comparison with VALOR on the LLP dataset. † denotes using CLIP and CLAP features as input to the HAN model.

Method Segment-level Event-level
A V AV Type Event A V AV Type Event

VALOR† [17] 68.1 68.4 61.9 66.2 66.8 61.2 64.7 55.5 60.4 59.0
UWAV† (Ours) 68.9 72.3 65.6 68.9 68.3 63.5 68.7 59.6 63.9 62.4

3.5 F-score improvement in event-level Type@AV.

6. Sensitivity to the Choice of α and W

To gain a better understanding of the effect of the choice
of hyper-parameters on our model’s performance, we eval-
uate the sensitivity of our model to the choice α in the
uncertainty-weighted feature mixup and W in the class-
balanced loss re-weighting strategy. When α is adjusted,
class-balanced loss re-weighting is not applied. As shown
in Figure A1, for the LLP dataset, when α increases from
0.1 to 2.0, segment-level Type@AV F-score first decreases
to 64.5, then rises to a peak of 65.2 at α = 1.7, and sub-
sequently declines back to 64.5. On the other hand, Fig-
ure A2 illustrates the effect of varying W on the segment-
level Type@AV F-score. The F-score reaches its maximum
value of 65.3 when W = 0.5 and decreases as W becomes
larger. When W is adjusted, the uncertainty-weighted fea-
ture mixup is not applied. These observations point towards
the robustness of our model to the precise choice of these
hyper-parameters. We observe similar trends for the AVE
dataset as well. Hence, for best results, we select α = 1.7
and W = 0.5 in all our experiments for both datasets.

7. The Scalability of UWAV

To evaluate the scalability of UWAV, we train the inference
model (HAN) with less training data (Table A3b) as well as
fewer event classes (Table A3a) on the LLP dataset by re-

Table A3. The scalability of UWAV.

(a) Training with different amounts of data.

Training Data
Ratio

Segment-level
A V AV Type Event

100% 64.2 70.0 63.4 65.9 63.9
80% 63.4 69.2 62.5 65.0 63.0
60% 63.4 68.6 62.4 64.8 62.8

(b) Training with different number of classes.

Segment-level Type F-score

Number of Classes 25
(all events) 20 15

VALOR [17] 62.0 65.9 66.6
UWAV(Ours) 65.9 71.4 68.4

moving the training videos or event classes randomly. Even
with only 60% of the training data, UWAV exhibits com-
petitive performance. Moreover, UWAV shows a consistent
performance lead against VALOR [17], irrespective of the
number of event classes, with no change in training strategy
or the core model structure.

8. Ablation Studies
Ablation Study on All Metrics: In Table A4, we report
the ablation study on all metrics for a more complete un-
derstanding. Coupled with our proposed class-balanced re-



Table A4. Ablation study reported on all metrics. “Binary” denotes training with binary pseudo-labels. “Soft” denotes training with
uncertainty-weighted pseudo-labels.

Binary Soft Re-weight Mixup Segment-level Event-level
A V AV Type Event A V AV Type Event

✓ 62.7 67.7 61.9 64.2 62.2 56.9 64.9 56.6 59.5 55.8
✓ 63.0 68.3 61.8 64.4 62.8 56.9 65.2 55.9 59.3 56.1

✓ ✓ 63.6 69.5 63.0 65.4 63.1 57.9 66.4 57.0 60.4 56.9
✓ ✓ 63.9 69.0 62.8 65.2 63.4 57.7 65.6 56.3 59.9 56.8
✓ ✓ ✓ 64.2 70.0 63.4 65.9 63.9 58.6 66.7 57.5 60.9 57.4

Table A5. Ablation study of uncertainty-weighted mixup in Eq.
14 and Eq. 15. on the AVE dataset.

Method p̂at , p̂
v
t ⌈p̂at ⌉, ⌈p̂vt ⌉

Acc.(%) 80.3 80.6

weighting strategy, the HAN model improves from 59.3 to
60.4 for the event-level Type@AV. On the other hand, by
introducing the proposed uncertainty-aware mixup strategy,
the event-level Type@AV increases from 59.3 to 60.

Ablation Study of the Uncertainty-weighted Mixup on
the AVE Dataset: As shown in Table A5, our experi-
ments reveal that using ⌈p̂at ⌉ and ⌈p̂vt ⌉ as the segment-level
pseudo labels instead of p̂at and p̂vt for the uncertainty-
weighted feature mixup strategy, in Eq. 14 and Eq. 15.
in the main paper, results in a slightly better performance
on the AVE dataset.

9. Qualitative Results
Figures A3, A4 show event predictions of our method ver-
sus competing baselines on sample videos from the LLP
dataset [11]. Figure A5 shows the same, for sample videos
on the AVE dataset [10]. As is evident from the figures,
we see consistently accurate event-label predictions across
different videos, while also generally accurately localizing
them, the same is not the case for the baseline approaches.
This feature is particularly prominent for instance, for the
visual event classes in the first video in Figure A4, or the
audio-visual events in the second video example in Fig-
ure A5. However, there remain challenging scenarios where
almost all methods struggle, such as the audio events in the
first video example in Figure A4, which we hope to address
going forward.
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Figure A3. Comparison between predictions by UWAV and competing AVVP methods on the LLP dataset. “GT”: ground truth.
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Figure A4. Comparison between predictions by UWAV and competing AVVP methods on the LLP dataset. “GT”: ground truth.
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Figure A5. Qualitative comparison between predictions by UWAV and previous methods on the AVE dataset. “GT”: ground truth.
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