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1. Proof of Corollary 1

Given x̃0, it can be represented into the noisy states accord-
ing to the forward process of diffusion models as follows:

x̃0 =
xt − σtϵ̃

αt
, (1)

Substitute Equation (1) into x̃s = αsx̃0 + σsϵη , we get:

x̃s = αsx̃0 + σsϵη

=
αs

αt
xt −

αs

αt
σtϵ̃+ σsϵη(xu, y, u),

(2)

Given the teacher trajectory xη
s,u,t defined in the main pa-

per:
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(3)

we can obtain the following equation:
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(4)

2. Implementation details

We train our teacher models for 2 million iterations with the
framwork of SR3 on the Gaussian flow [3]. In the distilla-
tion stage. and 5000 iterations is required. We employ the
Adam optimizer with a learning rate of 1× 10−4, applying
linear weight decay. To stabilize training, we utilize an ex-
ponential moving average (EMA) with a weight of 0.9999
during parameter updates in both the pretrain and distilla-
tion stages. We adopt a fine-grained diffusion method with
T = 512 steps and implement a linear noise schedule with
endpoints set at 1 × 10−4 and 2 × 10−2. The patch size
and batch size are set to 96 and 16, respectively. All the
experiments are run on a single A100 GPU with 80GB of
memory. Training our method with a smaller patch size and
batch size on a device with less memory is feasible.
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Figure 1. Failure cases in the single step.

3. Dataset

LOLv1 comprises 485 pairs of low/normal-light images for
training and 15 pairs for testing, taken under different expo-
sure conditions. LOLv2 is divided into LOLv2-real and
LOLv2-synthetic subsets. LOLv2-real contains 689 pairs
for training and 100 for testing, adjusted for exposure time
and ISO. LOLv2-Synthetic is created by analyzing the illu-
mination distribution of low-light images, comprising 900
pairs for training and 100 for testing.
SID. The subset of the SID dataset captured by a Sony cam-
era is adopted for evaluation. There are 2697 short-/long-
exposure RAW image pairs. The low-/normal-light RGB
images are obtained by using the same in-camera signal
processing of SID [1] to transfer RAW to sRGB. 2099 and
598 image pairs are used for training and testing. SDSD.
We adopt the static version of SDSD, captured by a Canon
EOS 6D Mark II camera with an ND filter. We use 62:6
and 116:10 low-/normal-light video pairs for training and
testing on indoor subsets.
DICM, LIME, MEF, NPE, and VV. We evaluate the gen-
eralization capability of our models trained on the LOLv1
and LOLv2 datasets by testing them on the DICM, LIME,
MEF, NPE, and VV datasets. Since these datasets lack
ground truth images, evaluation relies on visual comparison
and no-reference image quality assessment methods.

4. More experiment results

4.1. The failure cases in one-step restoration.

As discussed in the limitation, ReDDiT struggles with
single-step image restoration. Unlike single-step diffu-
sion in image generation, which primarily introduces arti-
facts, single-step diffusion in LLIE mainly introduces noise.
This brings a new insight into LLIE: the overall structure
is constructed by the single-step diffusion, while iterative
sampling enhances restoration results through denoising.
The qualitative results of single-step restoration are demon-
strated in Figure 1.
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Figure 2. Qualitative results on SID and SDSD. Patches highlighted in each image by the red and blue boxes indicate that ReDDiT
effectively enhances the visibility, preserves the color, reduces noise, and retains finer details in normal light images. It can be observed
that the visual results of our method align more closely with the ground truth. Please zoom in for a clearer view of the image details.
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Figure 3. Qualitative results on DICM, LIME, NPE, MEF, and, VV. Our method effectively enhances the visibility and preserves the color.
Please zoom in for a clearer view of the image details.



4.2. Visual comparison on SID and SDSD dataset
Due to space constraints in the main manuscript, we only
presented quantitative comparisons. Here, we offer ad-
ditional visual comparisons on the SID [1] and SDSD
[4] datasets in Figure 2. These datasets pose significant
challenges for low-light image enhancement due to both
low light levels and severe noise degradation. Our ReD-
DiT method demonstrates strong performance in improving
brightness and reducing noise on these challenging datasets
It can be observed in Figure 2 that our ReDDiT effectively
enhances the visibility, preserves the color, improves noise
reduction, and retains finer details in normal light images.

4.3. Visual comparison on Unpair dataset
Due to space limitations in the main manuscript, we only
provided visual comparisons with GSAD [2]. In Figure 3,
we offer additional visual comparisons on DICM, LIME,
NPE, MEF, and VV datasets. These results demonstrate
the generalizability of ReDDiT to real-world low-light im-
age enhancement scenarios and its consistent performance
and superiority in preserving image details and improving
visibility, making it a reliable solution for real-world appli-
cations.

References
[1] Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learn-

ing to see in the dark. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.
1, 3

[2] Jinhui Hou, Zhiyu Zhu, Junhui Hou, Hui Liu, Huanqiang
Zeng, and Hui Yuan. Global structure-aware diffusion pro-
cess for low-light image enhancement. Advances in Neural
Information Processing Systems, 36, 2024. 3

[3] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sali-
mans, David J Fleet, and Mohammad Norouzi. Image super-
resolution via iterative refinement. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(4):4713–4726,
2022. 1

[4] Ruixing Wang, Xiaogang Xu, Chi-Wing Fu, Jiangbo Lu, Bei
Yu, and Jiaya Jia. Seeing dynamic scene in the dark: A high-
quality video dataset with mechatronic alignment. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 9700–9709, 2021. 3


	Proof of Corollary 1
	Implementation details
	Dataset
	More experiment results
	The failure cases in one-step restoration.
	Visual comparison on SID and SDSD dataset
	Visual comparison on Unpair dataset




