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Figure 6. Dataset statistics. The number of annotated pixels per class and their associated class labels for each part (ISSU-Train, ISSU-
Test-Static, and ISSU-Test-Temporal) of the proposed dataset.

In the supplementary, we provide additional results in
Sec. 7, implementation details of benchmarked methods in
Sec. 8, dataset composition process in Sec. 9 and compari-
son with existing anomaly segmentation datasets in Sec. 10.

7. Additional Results
In this section, we provide extended results and additional
analysis. Section 7.1 shows the train and test statistics, Sec-
tion 7.2 presents the results of the cross-domain evaluation,
while Secs. 7.3 and 11 provides qualitative examples of un-
detected anomalies which are the primary contributors to
the high FPR metric. Furthermore, Secs. 7.4 and 7.5 in-
clude additional ablation studies and detailed analyses.

7.1. Statistics
The number of pixels (log-scale) per class in ISSU-Train,
ISSU-Test-Static, ISSU-Test-Temporal is shown in Fig. 6.
As can be seen, the distribution of pixel counts per class is
similar between train and test splits. Additionally, Tab. 6
provides statistics on the number of normal and adverse im-
ages across different ISSU splits.

7.2. Cross-domain Results
Complete results for the cross-domain evaluation, i.e., train-
ing on CityScapes and evaluating on the proposed ISSU, are
provided in Tab. 7 and Tab. 8 for the road anomaly and road
obstacle evaluation protocols, respectively.

The effects of cross-domain evaluation are less pro-
nounced for the road obstacle evaluation, i.e., where only

Dataset Day Lowlight

ISSU-Train 2690 746
ISSU-Test-Static 848 132
ISSU-Test-Temporal 868 270

Table 6. Statistics of Day and Lowlight across the train and test
splits of the proposed dataset.

the road region and anomalies are considered due to the
high visual similarity of road regions across domains. In
this setting, pixel-level methods demonstrate better robust-
ness.

7.3. Qualitative Results
To analyze the high FPR metric, particularly for
Mask2Former-based methods, we conducted a visual anal-
ysis of the results from the RbA method (representative of
Mask2Former-based approaches) in Fig. 7. By setting the
anomaly score threshold such that the TPR metric reaches
95%, we observe several examples of fully (or partially) un-
detected anomalous instances. This behavior leads to a high
FPR at this operating point, as the method includes many
known-class pixels to correctly classify the “hard” anoma-
lous cases.

We considered cross-sensor (in-domain Temporal) and
cross-domain setups, and qualitatively compared two meth-
ods: PixOOD and RbA (✓) in Fig. 8. The results are shown
for very large and small anomalies with TP, FN and FP



Method OOD
Data

Static Temporal

Road Anomaly Closed & Open-set Road Anomaly Closed & Open-set

AP ↑ FPRT ↓ TPRF ↑ IoU ↑ oIoUT ↑ oIoUF ↑ AP ↑ FPRT ↓ TPRF ↑ IoU ↑ oIoUT ↑ oIoUF ↑

pi
xe

l-
le

ve
l JSR-Net† ✗ 3.60 55.71 5.06 45.57 8.07 36.64 2.21 69.51 5.10 19.70 3.03 15.02

DaCUP† ✗ 5.16 50.69 16.35 46.35 8.81 35.45 2.61 66.03 13.88 22.63 3.87 16.61
PixOOD ✗ 11.44 73.73 33.19 56.30 20.36 52.84 4.81 80.74 25.53 48.67 14.72 46.99

m
as

k-
le

ve
l

RbA ✗ 43.31 97.30 70.47 57.17 4.12 55.24 15.66 98.46 46.21 41.33 1.15 40.56
EAM ✗ 51.49 96.32 68.83 65.58 4.82 61.98 30.28 96.12 53.51 56.04 2.86 51.87
Pebal ✗ 38.80 96.62 71.09 57.17 5.29 55.51 14.79 96.84 46.86 41.33 3.07 40.69

RbA ✓ 56.39 80.75 78.98 57.50 11.88 55.12 24.64 91.56 54.40 43.72 3.18 41.97
EAM ✓ 54.54 95.40 71.74 66.80 7.94 63.44 35.57 96.42 61.97 57.33 2.72 53.16
Pebal ✓ 48.32 64.88 79.66 57.50 34.20 55.36 16.11 79.54 55.01 43.72 8.31 42.07
UNO ✓ 55.54 92.96 79.15 68.11 12.03 65.58 37.24 92.37 70.35 57.24 6.56 54.63
M2A ✓ 37.48 79.82 69.00 50.59 26.40 48.23 10.66 91.92 33.16 33.99 16.76 33.33

Table 7. Cross-domain evaluation of road anomaly, closed-set and open-set.

Method OOD
Data

Static Temporal

AP ↑ FPRT ↓ AP ↑ FPRT ↓

pi
xe

l-
le

ve
l JSR-Net† ✗ 80.70 11.91 25.45 41.63

DaCUP† ✗ 85.95 9.23 69.52 20.42
PixOOD ✗ 92.30 5.10 84.34 10.84

m
as

k-
le

ve
l

RbA ✗ 62.40 99.11 32.48 99.28
EAM ✗ 57.96 93.83 37.15 95.44
Pebal ✗ 62.85 98.08 34.21 97.97

RbA ✓ 76.14 68.89 37.86 87.93
EAM ✓ 61.35 93.44 43.03 98.26
Pebal ✓ 73.58 40.79 29.36 67.09
UNO ✓ 66.25 90.81 49.10 90.50
M2A ✓ 63.29 45.84 30.74 81.35

Table 8. Cross-domain evaluation of road obstacle

pixels colored accordingly. These qualitative visualizations
support the findings in Fig. 9 – pixel-level PixOOD strug-
gles in detecting very large anomalies while being better
than mask-level RbA in detecting small anomaly objects.
The cross-sensor and cross-domain shift is challenging for
both methods as shown by the known classes misclassified
as anomalies (FP pixels).
7.4. Ablation: Anomaly Size
Figure 9 presents an ablation study of the performance of all
methods with respect to different anomaly sizes. The find-
ings, consistent across all methods, align with the results
presented in the main paper (cf . Fig. 5).

7.5. Ablation: Effect of Anomaly Sizes to Metrics
The component-level F1 metric was introduced by Chan
et al. [3] to account for small-sized anomalies. Correla-
tion plot in Fig. 10 between pixel-level metric, AP and
component-level F1, shows that both these metrics are
highly correlated. We hypothesize this is due to the diver-
sity of anomaly size in our dataset. Detailed component-

level metrics - F1, sIoU and PPV are provided in Tab. 9 for
completeness following common practice [3].

In order to show the correlation between the F1 and AP
metrics in the proposed dataset, we fit a regression line that
minimizes the total squared difference (SSR) between the
observed data points (xi, yi) and the predicted values ypred,i,
i.e., ypred = mx + c, where m is the slop, and c is the
intercept. The correlation coefficient R2 measures how well
the regression line explains the variability of the data. The
R2 value is defined as:

R2 = 1− SSR
SST

(1)

where SST is a total sum of squares that measures the
variability in the data relative to the mean, i.e., SST =∑n

i=1 (yi − ȳ)
2; the residual sum of squares, SSR is a mea-

sure of the discrepancy between the actual data points and
the values predicted by a regression model. It quantifies
the amount of variation in the dependent variable y that the
model does not explain, i.e., SSR =

∑n
i=1 (yi − ypred,i)

2

8. Implementation Details
Pixel-level baselines. We implement JSR-Net4 and
DaCUP5 baselines by extending the publicly available code
releases. Both baselines extend the DeepLabV3 segmenta-
tion model with specialized plug-in modules for anomaly
detection. Thus, we follow the optimization procedure and
hyperparameters reported in the original papers [27] and
[28]. Similarly, we extend the publicly available code of the
PixOOD6 baseline. This baseline relies on a generic feature
extractor, so we use ViT-L trained with DINOv2 as sug-
gested in [29]. Other hyperparameters follow the reported
values as well.
4https://github.com/vojirt/JSRNet
5https://github.com/vojirt/DaCUP
6https://github.com/vojirt/PixOOD

https://github.com/vojirt/JSRNet
https://github.com/vojirt/DaCUP
https://github.com/vojirt/PixOOD


Input Image FP. TP, FN Predicted Score Input Image FP. TP, FN Predicted Score

Figure 7. Qualitative results of the RbA(✗) at 95% TPR threshold. The figure shows examples of anomalies that are not detected (fully or
partially) at this threshold where most of the image pixels are falsely labeled as anomalies, resulting in very high FPR at 95% TPR metric.
The pixel classifications at the 95% TPR threshold are coded by color overlay in the middle images – false positive (blue), true positive
(green), false negative (red), void (white) and true negative (without overlay).

TP,FN,FP TP,FN,FP TP,FN,FP TP,FN,FP

(a) in-domain Temporal, small anomaly (b) in-domain Temporal, very large anomaly
TP,FN,FP TP,FN,FP TP,FN,FP TP,FN,FP

(a) cross-domain, small anomaly (b) cross-domain, very large anomaly
Figure 8. Qualitative Results shown for PixOOD (1st and 3rd row) and RbA (✓) (2nd and 4th row) across in-domain Temporal (cross-
sensor) and cross-domain setups for small and very large anomalies. Anomaly detection threshold is set based on operation point 95%TPR

Mask-level baselines. All mask-level baselines extend the
Mask2Former architecture with anomaly detection capa-
bilities. In the case of EAM and UNO7 we use the de-
fault Mask2Former upsampling and SWIN-L backbone pre-
trained on ImageNet-22k, as suggested in the corresponding

7https://github.com/matejgrcic/Open-set-M2F

manuscripts [8, 11]. In the case of the RbA8 baseline, we
use SWIN-B and a single transformer decoder layer. This
architecture was validated as optimal for RbA [19]. We use
the same architecture when adapting the pixel-level base-
line PEBAL to mask-level predictions. Finally, we use a

8https://github.com/NazirNayal8/RbA

https://github.com/matejgrcic/Open-set-M2F
https://github.com/NazirNayal8/RbA
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Figure 9. Ablation for different anomaly sizes. Top (bottom) plot shows results for ISSU-Test-Static (ISSU-Test-Temporal), respectively.
The different anomaly sizes are defined in Fig. 3. The corresponding tick (✓/ ✗) defines trained with / without OOD data.
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Figure 10. Correlation of AP-F1. We fit a regression line and
report the correlation coefficient R2 between the F1 and AP met-
rics. The correlation coefficient is defined as R2 = 1− SSR/SST
(cf . Sec. 7.5) showing how well the regression line explains the
variability of the data. The reported values (0.837 and 0.857) indi-
cate a strong correlation for both datasets.

frozen ResNet-50 feature extractor pretrained on ImageNet
for the Mask2Anomaly baseline. Again, this backbone was
validated as optimal for Mask2Anomaly [23]. We use the
default hyperparameter values reported in the correspond-
ing manuscripts for all baselines.

9. Dataset Composition

ISSU-Train and ISSU-Test-Static are composed from the
train and validation sets of IDD [26] which already has
semantic segmentation annotations as per level-4 IDD la-
bel hierarchy that consists of 30 classes. We mapped these
classes to CityScapes (C), anomaly (A) and void (V) classes
as shown in Tab. 10. Certain IDD classes are mapped to
multiple classes, however, the mapping is such that an in-
put pixel can only map to one of the 3 classes (C / A / V)
making the assignment unique.

The main requirement for the annotation is to ensure
only the test set ISSU-Test-Static contains anomalies. This
is done by first identifying the anomaly objects in IDD and
creating two subsets: one that does not include any of the
listed anomaly objects forming ISSU-Train and the remain-
ing subset forms ISSU-Test-Static. To identify anomaly ob-
jects, we asked the annotators to find images with objects
in IDD classes that are mapped to A, lies within 2 meters
of the road and likely to cause damage or alter the trajec-
tory of a vehicle. A list of such objects are mentioned in
Sec. 3.3 and shown in Fig. 11. The shortlisted images with
anomaly objects are used to form ISSU-Test-Static and the
remaining subset constitutes ISSU-Train. Objects in A that
are outside 2 meters of the road, or unlikely to adversely
affect a vehicle, are annotated as void. Similarly, objects in
”traffic-sign” IDD class are mapped to both C and A. Ob-
jects that are mapped to A consist of traffic cones and traf-
fic poles that are considered anomalies in existing anomaly



Road Anomaly

Method OOD
Data

Static Temporal

F1 ↑ sIoU ↑ PPV ↑ F1 ↑ sIoU ↑ PPV ↑
pi

xe
l-

le
ve

l JSRNet† ✗ 3.2 / 1.7 13.8 / 14.6 8.2 / 3.2 1.2 / 1.2 12.0 / 13.5 4.4 / 2.6
DaCUP† ✗ 1.2 / 2.0 8.7 / 7.0 7.5 / 6.6 0.9 / 2.5 4.3 / 8.3 5.4 / 6.1
PixOOD ✗ 1.8 / 1.9 15.6 / 27.5 13.4 / 7.6 1.4 / 1.4 14.1 / 24.7 7.8 / 3.7

m
as

k-
le

ve
l

RbA ✗ 11.2 / 15.3 28.5 / 36.7 19.9 / 18.2 5.7 / 10.7 17.5 / 25.6 12.4 / 17.8
EAM ✗ 20.2 / 20.9 29.3 / 35.8 23.2 / 23.2 11.7 / 14.4 19.1 / 25.4 18.0 / 20.3
Pebal ✗ 11.8 / 17.6 27.2 / 34.2 21.7 / 23.0 6.3 / 11.3 14.1 / 23.2 17.2 / 20.5

RbA ✓ 9.6 / 20.2 33.2 / 36.9 15.5 / 25.7 5.3 / 11.2 20.0 / 21.6 11.9 / 23.9
EAM ✓ 21.5 / 20.7 30.4 / 39.1 25.2 / 23.0 10.6 / 14.7 26.0 / 27.8 13.5 / 20.2
Pebal ✓ 13.0 / 0.0 29.4 / 0.0 25.2 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
UNO ✓ 27.8 / 27.7 27.8 / 44.3 43.3 / 29.1 18.6 / 16.6 22.8 / 37.9 28.4 / 17.8
M2A ✓ 10.8 / 9.0 27.3 / 25.5 18.3 / 17.5 4.4 / 5.4 8.8 / 16.1 15.3 / 15.4

Road Obstacle

Method OOD
Data

Static Temporal

F1 ↑ sIoU ↑ PPV ↑ mF1 ↑ sIoU ↑ PPV ↑

pi
xe

l-
le

ve
l JSRNet† ✗ 31.2 / 24.3 55.4 / 62.4 33.2 / 23.8 11.5 / 18.6 25.4 / 45.1 28.1 / 26.6

DaCUP† ✗ 28.1 / 28.2 62.8 / 53.0 22.3 / 24.5 31.0 / 24.1 47.7 / 41.6 32.7 / 25.5
PixOOD ✗ 28.0 / 27.9 58.9 / 64.6 27.3 / 22.9 33.6 / 28.2 50.5 / 53.7 35.8 / 27.6

m
as

k-
le

ve
l

RbA ✗ 25.6 / 29.5 37.7 / 51.7 38.6 / 30.1 13.7 / 22.5 26.0 / 41.8 25.1 / 27.4
EAM ✗ 36.4 / 32.7 31.7 / 55.5 51.8 / 28.4 19.3 / 27.5 28.8 / 43.3 27.7 / 28.2
Pebal ✗ 25.6 / 30.8 37.7 / 51.1 38.7 / 32.4 13.7 / 22.5 26.6 / 42.5 25.0 / 27.2

RbA ✓ 17.5 / 37.0 40.9 / 50.9 24.6 / 40.1 9.3 / 23.5 26.6 / 39.1 18.0 / 31.9
EAM ✓ 36.3 / 41.4 35.5 / 56.7 47.9 / 38.7 23.6 / 28.0 30.8 / 48.4 32.4 / 26.8
Pebal ✓ 19.0 / 37.4 40.3 / 50.5 26.8 / 41.1 10.8 / 25.5 23.1 / 35.3 22.8 / 38.6
UNO ✓ 38.5 / 41.5 29.0 / 62.1 67.9 / 35.0 26.2 / 31.1 31.9 / 52.2 34.6 / 28.7
M2A ✓ 24.5 / 22.4 36.9 / 39.3 35.0 / 31.0 12.4 / 15.4 21.9 / 25.6 25.3 / 31.2

Table 9. Component-level metrics for road anomaly (top) and obstacle (bottom) tracks in the form cross-domain/in-domain.

segmentation datasets [3].
ISSU-Test-Temporal is composed using videos from

IDD-X [21]. From the original 1140 videos, we selected
a subset of 103 videos that depicted the anomaly objects
present in ISSU-Test-Static. The particular clip showing the
anomaly object is cropped and will be released as part of
ISSU-Test-Temporal to facilitate methods to utilize tempo-
ral information. The clip is chosen in a way such that first
and last frame in the clip observes the relevant anomaly.
The average clip length is 8.5 seconds at a frame rate of 25
FPS resulting in around 21K images. For each clip, we se-
lected around 10 frames for anomaly and closed-set label
annotation. The frame selection is done in a way to ensure
the anomaly is approximately observed at uniform tempo-
ral and spatial resolutions with respect to the ego-vehicle.
The selected subset of frames are annotated into one of the
3 classes (C / A / V).

To include images with challenging lighting conditions,
we expanded ISSU-Train and ISSU-Test-Static with images

from IDD-AW [25]. The images in IDD-AW are also an-
notated as per level-4 IDD label hierarchy and consists of
images collected in adverse weather conditions such as fog,
rain, lowlight, snow. We excluded images collected in snow
conditions due to the absence of anomaly objects. Similarly,
ISSU-Test-Temporal also consists of rain and lowlight im-
ages present in the original IDD-X dataset. The number of
such images with challenging lighting variations is listed in
Tab. 6 and example images shown in Fig. 12.

10. Dataset comparison

In Tab. 11, we compare ISSU-Test-Static and ISSU-Test-
Temporal with existing datasets based on the best perfor-
mance achieved by any method on the respective datasets.
The results indicate that for both evaluation protocols -
road obstacle (RO) and road anomaly (RA), ISSU-Test-
Static is comparably challenging to existing datasets. How-
ever, ISSU-Test-Temporal proves to be significantly more



Figure 11. Qualitative results. Example images with anomaly objects from ISSU-Test-Static (first 4 rows) and ISSU-Test-Temporal
(bottom 4 rows).

difficult, showing a notable gap in the best performance
achieved.

The best values obtained for the metrics (F1 / AP /
FPR) on the challenging SMIYC-RA’21 [3] , FSL&F [1]
are (60.9 / 94.5 / 4.1), (- / 74.8 / 2.7) [8, 29] respec-
tively. In comparison, the corresponding values on ISSU-

Test-Static and ISSU-Test-Temporal are (27.7 / 79.2 / 3.0)
and (18.5 / 45.2 / 24.7). Given in-domain training data,
ISSU-Test-Static is as challenging as FSL&F while being
significantly diverse (cf . Tab. 2). ISSU-Test-Temporal is
much more challenging. A detailed comparison with other
datasets is provided in Supplementary.



Figure 12. Qualitative results. Example images with anomaly objects in challenging lighting conditions.

11. Additional Qualitative Results
We provide additional examples of failure cases for RbA
(✓) and UNO (✓) in this section. First, we plot ROC curves
of both methods in cross-domain Static and Temporal se-
tups in Fig. 13. Across both setups, these methods attain
a TPR of 80% at FPR ≤ 15%, beyond which the TPR
deos not improve until a certain critical operating point is
reached (indicated by vertical line in Fig. 13). Examples of
anomalies detected beyond this critical operating point are
presented in Fig. 14 and Fig. 15.



(a) RbA (✓) Static (b) RbA (✓) Temporal (c) UNO (✓) Static (d) UNO (✓) Temporal
Figure 13. ROC curves shown for RbA (✓) and UNO (✓) across cross-domain setup on Static and Temporal splits. X-axis: FPRT ,
Y-axis: TPRF . Anomalies not detected until the critical point indicated by vertical line are shown in 14 and 15.

TP,FN,FP TP,FN,FP TP,FN,FP TP,FN,FP

(a) RbA (✓) Static
TP,FN,FP TP,FN,FP TP,FN,FP TP,FN,FP

(a) RbA (✓) Temporal
Figure 14. Cross-domain qualitative results of RbA (✓) in (a) Static and (b) Temporal splits. Anomaly detection threshold is set based
on Fig. 13 (a) and (b).



TP,FN,FP TP,FN,FP TP,FN,FP TP,FN,FP

(a) UNO (✓) Static
TP,FN,FP TP,FN,FP TP,FN,FP TP,FN,FP

(a) UNO (✓) Temporal
Figure 15. Cross-domain qualitative results of UNO (✓) in (a) Static and (b) Temporal splits. Anomaly detection threshold is set based
on Fig. 13 (c) and (d).



Class
Mapping

CityScapes (C) Anomaly (A) Void (V)

road ✓

parking ✓

drivable fallback ✓

sidewalk ✓

non-drivable fallback ✓

person ✓

animal ✓

rider ✓

motorcycle ✓

bicycle ✓

auto-rickshaw ✓

car ✓

truck ✓

bus ✓

caravan ✓

vehicle-fallback ✓ ✓

curb ✓ ✓

wall ✓

fence ✓

guard rail ✓ ✓

billboard ✓

traffic-sign ✓ ✓

traffic-light ✓

pole ✓

obs-str-bar-fallback ✓ ✓

building ✓

bridge ✓

vegetation ✓

sky ✓

fallback-background ✓

Table 10. Dataset annotation protocol. The mapping between
the level-4 label hierarchy of IDD dataset and corresponding
CityScapes (C), Anomaly (A), and Void (V) labels in our proposed
datasets is indicated by the ✓ tick.

Datasets Eval F1↑ AP↑ FPR↓ oIoUT ↑

LostAndFound’16 [22] RO 61.7 89.2 0.6 N/A
SOS’22 [18] RO 53.6 89.5 0.3 N/A
WOS’22 [18] RO 48.5 93.8 0.8 N/A
SMIYC-RoadObstacle’21 [3] RO 75.0 95.1 0.1 N/A

Street-hazards’22 [14] RA N/A 58.1 13.0 59.8
Fishyscapes-static’21 [1] RA N/A 96.8 0.3 N/A
Fishyscapes-LaF’21 [1] RA N/A 74.8 1.3 N/A
SMIYC-RoadAnomaly’21 [3] RA 60.9 94.5 4.1 N/A

ISSU-Test-Static’24 RO 41.5 95.8 1.2 N/A
ISSU-Test-Temporal’24 RO 31.1 83.1 10.1 N/A
ISSU-Test-Static’24 RA 27.7 79.2 3.0 68.4
ISSU-Test-Temporal’24 RA 18.5 45.2 24.7 46.2

Table 11. The datasets performance comparison. For different
evaluation protocols - road obstacle (RO) and road anomaly (RA),
best values obtained by any method across different metrics: F1,
AP, FPR at 95%TPR (FPR), open-IoU at 95%TPR (oIoUT ) are
presented.
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[28] Tomáš Vojı́ř and Jiřı́ Matas. Image-Consistent Detection of
Road Anomalies As Unpredictable Patches. In WACV, pages
5491–5500, 2023. 7, 2
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