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Supplementary Material

A. Algorithm and Implementation Details

Our proposed algorithm trains the student model in multi-
ple phases for both target domain pseudo-label training and
alignment. We present all the training phases here and sum-
marize our method in Algorithm 1. For pseudo-label train-
ing, we have two phases:

1. If iter < ninitPL, train only on source images with
ground truth labels.

2. If iter ≥ ninitPL, train on source images with ground
truth labels and on target images with DINO labeller la-
bels.

In all of the presented runs, we use ninitPL = 20,000. For
alignment, we have 2 phases:

1. If iter < ninitSim, align student and DINO features
only from source images.

2. If iter ≥ ninitSim, align student and DINO features
from both source and target images.

In all of the presented runs, we use ninitSim = 5000. With
weak-strong augmentation [3], two versions of each source
and target image are generated. We do labelled detec-
tion training and DINO alignment with both weakly and
strongly augmented source images and target images. We
present Algorithm 1 assuming that ninitSim ≤ ninitPL,
which is true for all the reported runs.

Algorithm 1 Pseudocode for DINO Teacher

while iter < nmax do
Input: Source images and labels (XS , YS , BS)
Input: Target images XT

Augment source images XS =
[
Xweak

S , Xstrong
S

]
Compute source similarity loss Lsim

S (XS)
Compute source detection loss Ldet

S (XS , YS , BS)
if iter ≥ ninitSim then

Augment target images XT =
[
Xweak

T , Xstrong
T

]
Compute target similarity loss Lsim

T (XT )
end if
if iter ≥ ninitPL then

Get DINO labels
(
ỸT , B̃T

)
Compute target detect. loss Ldet

T

(
XT , ỸT , B̃T

)
end if
Sum all losses and update student model

end while

Method ninitPL mAP
Ldis 28.5 46.8
LsimS 31.9 47.4
LsimB 33.0 47.8
LsimL 32.3 48.3

Table 7. Ablation of the size of DINOv2 backbone model for the
alignment teacher. We consider ViT-S, B and L for the alignment
loss (LsimS, LsimB, LsimL).

B. Additional Ablations and Results
B.1. Alignment with Larger ViT-L
In our ablations in the main paper in Tab. 5b, we present re-
sults for alignment with a ViT-S and ViT-B DINOv2 back-
bone and discuss in Sec. 3.3 that using larger models during
online training was too time consuming. We add the ViT-
L result in Tab. 7 and show the continuing trend of larger
alignment targets leading to improvements in final perfor-
mance. This shows the potential of aligning with larger
models if the training cost could be reduced. One possible
solution could be to precompute and store the DINO fea-
tures for each image in the target dataset, thus only requiring
a single forward pass on the dataset for the alignment tar-
get. This single forward pass could even be combined with
the forward pass of the DINO labeller used to generate the
target pseudo-labels. However, this would have significant
data storage requirements for the larger datasets.

B.2. Ablation on the Choice of Student Backbone
Our main results in Sec. 4.3 use VGG16 as the backbone for
domain adaptation to Foggy Cityscapes and to BDD100k,
following previous works. However, we chose ResNet-50
for our experiments on ACDC as this is a more common ar-
chitecture. Similarly, the small ViT-S architecture is of sim-
ilar size to VGG and is generally a stronger baseline, partic-
ularly when using better initializations such as the distilled
DINOv2 weights.

We present additional results on the Cityscapes →
BDD100k test case with a ResNet-50 backbone and a ViT-
S backbone for 3 settings: source only (SO), self-generated
pseudo labels with Mean Teacher (MT) and our DINO
Teacher (DT) in Tab. 8. We use the same training proto-
col for ResNet-50 as our tests on ACDC described in Sec.
4.2 and use the same ViT-G generated labels on BDD100k
as in our original test. We consider cases where the ViT-S
backbone is frozen and unfrozen. When unfrozen, the ViT-



Backbone State Method mAP

VGG16 Unfr.
SO 29.1
MT 30.1
DT 47.8

ResNet-50 Unfr.
SO 37.9
MT 42.7
DT 52.5

ViT-S Frozen
SO 37.3
MT 38.2
DT 43.2

ViT-S Unfr.
SO 43.9
MT 47.1
DT 53.9

Table 8. Ablation of the choice of student backbone model. We
maintain significant improvements on ResNet-50 and ViT-S.

S backbone learning rate is scaled down by a factor of 0.01
compared to the detector head learning rate.

For all settings, the better architectures lead to improved
performance compared to the VGG results. Moreover, our
DINO Teacher remains significantly better (+5%) com-
pared to Mean Teacher for all tested architectures. Even
with the stronger student models, we see large improve-
ments when using labels from the external labeller instead
of self-labelling.

B.3. Ablation on Choice of Detector

We use single-scale (SS) Faster R-CNN in all our results,
but some works used multi-scale Faster R-CNN (FR) with a
feature pyramid (FPN) or single-stage methods like FCOS.
We provide results for both in Tab. 9, comparing source
only (SO) and the self-generated pseudo-labels from Mean
Teacher (MT) to our DINO Teacher (DT). Again, we see
that our DINO Teacher approach gives substantial improve-
ments for all tested detectors. Moreover, there is a larger
improvement (+1.0% to +2.8%) when going from single-
scale to multi-scale Faster R-CNN for Mean Teacher com-
pared to source only, highlighting that the performance of
Mean Teacher self-labelling approaches is sensitive to the
source-only model performance from which they are ini-
tialized. We observe similar trends when considering the
changes in backbones in Tab. 8. We are unable to gener-
ate good Mean Teacher pseudo-labels for the single-stage
FCOS approach, and find that the box confidence scores are
generally much lower than those of the two-stage Faster R-
CNN methods. We test multiple bounding box confidence
thresholds from 0.3 to 0.8 for pseudo-label selection but all
led to rapid performance drop on both source and target
datasets, meaning best performance occurs prior to using
any pseudo-labels.

Detector Features Method mAP

FR SS
SO 29.1
MT 30.1
DT 47.8

FR FPN
SO 32.7
MT 35.5
DT 51.2

FCOS FPN
SO 33.1
MT 33.1∗

DT 51.8

Table 9. Ablation of the choice of student model detector. We
maintain significant improvements across detectors. ∗We do not
obtain good self-generated pseudo-labels with MT on FCOS, and
performance collapses rapidly when using the generated labels.

Backbone State Labeller Student

ViT-L Frozen 45.7 46.9
Unfr. 50.0 47.2

ViT-G Frozen 51.1 47.8

Table 10. Ablation on unfreezing the labeller backbone. Per-
formance of the labeller and the student improve when unfrozen,
but the transfer is less effective compared to using a larger frozen
backbone.

B.4. Ablation on Unfreezing the Labeller Backbone
In the main paper, we consider the simplest setting in which
the labeller ViT backbone is kept frozen, maintaining the
pretrained DINOv2 weights, and present ablations on the
effects of labeller backbone size and performance in Tab.
5a. Here, we consider the case where the labeller backbone
is unfrozen and is trained with the detector on source im-
ages. We generally follow the training regiment from Sec.
4.2 when training, but downscale the learning rate of the
backbone by a factor of 0.01. We present the performance
of the labeller trained on Cityscapes images on the unseen
target BDD and the performance of the VGG student trained
with the labeller pseudo-labels on BDD in Tab. 10. We see
that while unfreezing the backbone leads to significant im-
provements on the labeller (+4.3%), these are smaller for
the student (+0.3%). We find that the improvements in la-
beller performance due to unfreezing do not transfer to the
student as well as those from using a larger model.

B.5. Ablation on Using EMA Teacher Labels
Our method differs from the Mean Teacher baseline by gen-
erating target pseudo-labels with our DINO labeller instead
of using the EMA teacher, leading to better performance.
However, in many cases (smaller labeller in Tab. 5b, ACDC
fog and snow splits, larger student backbone and detectors),
the teacher model derived from the student exposed to tar-
get data performed better than the labeller trained only on



Method mAP
MT 35.3

EMA only 43.3∗

EMA mixed 47.3
DT 47.8

Table 11. Ablation of using EMA teacher pseudo-labels. ∗Best
performance occurred at 25,000 iterations, just before switching
to using only EMA teacher pseudo-labels.

source data. Thus, we investigate whether EMA teacher la-
bels could be useful in addition to using the DINO labeller.
We assume that one of the most significant advantages of
the DINO labels is that they are more accurate for the first
few iterations of training on the target data, after which the
EMA teacher is adapted to the target domain and could be
good enough to generate useful labels.

We propose to add a third phase to pseudo-label train-
ing (see Appendix A above): after ninitEMA iterations, we
start using EMA teacher pseudo-labels following the regu-
lar Mean Teacher strategy. We propose two variations: use
only EMA teacher labels after ninitEMA (EMA only), or al-
ternate between DINO ViT-G and EMA labels in alternating
iterations (EMA mixed). The second variation assumes that
there might be some advantage in using the EMA labels but
tries to avoid any potential issue of drift from biased EMA
teacher labels by still using the DINO labels.

We present results in Tab. 11 of these variations on trans-
fer to BDD with a VGG backbone and compare to the nom-
inal DINO Teacher (DT) and Mean Teacher with DINO
alignment but no labels (MT, corresponds to case 1 in Tab.
4). We follow the training protocol from Sec. 4.2 and use
ninitEMA = 25,000. For both variations, the best perfor-
mance was worse than the nominal DT but better than MT.
Notably, the EMA only case led to a monotonic reduction
in performance from the initial state at ninitEMA = 25,000
iterations, meaning the EMA pseudo-labels made perfor-
mance worse after the initial training phase with DINO la-
bels. This highlights the potential risk of using pseudo-
labels and the importance of more robust generation.

B.6. Issues with Self-Labelling Approaches
When looking at our results comparing self-generated la-
bels with using an external source of labels, we generally
find that performance is not only worse when self-labeling
but it can be unstable: after some initial improvements
compared to source-only training, performance on the tar-
get data can drop. This is most striking in our ablations
in Tab. 11, where even when initialized with the stronger
DINO Teacher labels, using only Mean Teacher labels after
ninitEMA leads to a reduction in performance over time.
We believe this can be explained by class confusion in the
pseudo-labels, particularly for rare classes, which lead to

degraded class representation over time.
To explore this, Fig. 4 presents the ratio of pseudo-labels

with class confidence values above the threshold of δ = 0.8
(and thus kept as labels) compared to the number of real in-
stances of a given class on the target BDD dataset for three
labellers: our ViT-G DINO labeller, source-only VGG stu-
dent at ninitPL = 20,000 iterations (when Mean Teacher
pseudo-label generation begins), and the Mean Teacher
EMA teacher at 40,000 iterations. We observe that the
source-only student is a poor labeller for rare classes like
Truck, Bus and Motorcycle, and this poor initial perfor-
mance leads to even worse labels as training continues. We
see an increase in confident boxes of common classes like
car that are matched to rare class boxes (orange lines for
truck and bus) or that do not match any ground truth in-
stance (green bar on car).

B.7. Results on BDD Daytime-Sunny to BDD Night-
Sunny

We followed existing domain adaptation works in con-
sidering domain adaptation from Cityscapes to BDD100k
Daytime in our main results in Tab. 1. However, the
BDD100k [6] dataset contains many images that are not
daytime scenes, including many night scenes. A recent
work in domain generalization by Wu and Deng [5] pro-
poses a new dataset of multiple weather conditions com-
posed mainly of BDD100k images. It contains five splits:
daytime-sunny (day and without significant weather) from
BDD100k, night-sunny also from BDD100k, the smaller
dusk-rainy and night-rainy rendered from BDD100k im-
ages, and daytime-foggy composed of Foggy Cityscapes [4]
and Adverse-Weather [1] images. The proposed daytime-
sunny split differs from the Daytime split we present in Sec.
4.1.

We consider the daytime-sunny and night-sunny splits,
which have a similar number of images, with 19,395 train-
ing and 8313 testing images for daytime-sunny and 18,310
training and 7848 testing images for night-sunny. This test
case is similar to Cityscapes → Foggy Cityscapes except
for larger datasets and a non-synthetic domain gap. We use
the training protocol described in Sec. 4.2 for a VGG16
backbone. Because we use a new source dataset, we train a
new ViT-L DINO labeller on the daytime-sunny split. We
present results for the Adaptive Teacher baseline (AT) and
our DINO Teacher (DT) in Tab. 12. Similar to the domain
adaptation from Cityscapes to BDD100k Daytime, we find
that DINO teacher leads to a substantial improvement of
+9.2% on the target dataset compared to Adaptive Teacher.

B.8. Complete ACDC results
We present the full per-class AP and mAP for the ACDC
runs that are averaged to obtain the results of Tab. 3 in the
paper. Tab. 13 presents results from our reimplementation
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Figure 4. Quality of generated pseudo-labels. Ratio of number of high-confidence pseudo-labels compared to the total number of
instances per class. The student model (SO and MT) is much weaker for the rare classes, and as training progresses Mean Teacher pseudo-
labels, the label quality becomes worse.

Method mAP
AT 34.9
DT 44.1

Table 12. Results for domain adaptive object detection from
BDD daytime-sunny to BDD night-sunny. We maintain signifi-
cant improvements on this task.

of Adaptive Teacher, and Tab. 14 presents our DINO teacher
results. We show that our DINO Teacher consistently im-
proves on the Adaptive Teacher baseline. However, both
the baseline and our proposed method struggle with certain
rare classes in the hardest night and rain splits, specifically
Rider and Bicycle. This is not seen on the easier fog and
snow splits or when adapting to BDD100k Daytime (Tab. 1)
or to Foggy Cityscapes (Tab. 2). This could be because of
limited labels, overlapping boxes between Rider and Bicy-
cle instances, or Rider instances being incorrectly pseudo-
labelled as Person, all of which could cause training issues.

C. Qualitative Results
We present qualitative results in Fig. 5 that compare our ap-
proach with the baseline Adaptive Teacher for the transfer
to BDD100k, Foggy Cityscapes and ACDC Night. In gen-
eral, our method performs better for rare classes like trucks
and trains and can be better in complex scenarios with over-
lapping objects. We also generate fewer false positives from
wrong classes.
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Run Person Rider Car Truck Bus Train Motor Bicycle mAP Avg Stdev

Fog
1 62.6 67.2 83.0 26.1 70.3 66.3 53.3 65.4 61.8

62.2 0.42 67.4 62.3 86.2 42.3 60.3 66.3 47.0 66.2 62.3
3 64.9 64.1 85.4 35.2 68.6 66.3 50.7 65.6 62.6

Night
1 35.6 28.0 57.5 18.5 -† 34.0 19.5 21.8 30.7

29.5 1.12 36.2 17.0 56.8 32.3 -† 30.6 16.9 15.2 29.3
3 34.9 20.3 59.5 38.7 -† 11.6 15.2 20.2 28.6

Rain
1 45.5 4.0 76.6 58.4 37.6 21.0 50.2 4.3 37.2

37.0 0.92 45.6 3.8 76.0 45.1 36.5 44.9 43.6 5.9 37.7
3 40.5 19.7 76.5 37.5 37.7 14.2 61.4 0.4 36.0

Snow
1 51.8 52.3 77.8 56.3 21.3 61.9 71.0 49.9 55.3

55.2 1.02 53.3 64.6 78.9 56.2 20.2 61.1 70.8 44.4 56.2
3 50.5 56.0 78.6 49.5 27.2 54.5 71.8 45.8 54.2

Table 13. Full results, Cityscapes to ACDC splits, Adaptive Teacher [2] baseline. †There are no labels for the Bus class in the night
validation split.

Run Person Rider Car Truck Bus Train Motor Bicycle mAP Avg Stdev

Fog
1 73.4 70.2 85.6 36.8 76.2 77.6 45.8 66.0 66.4

68.6 2.22 66.4 75.1 85.2 40.9 89.2 80.8 56.4 72.3 70.8
3 67.1 67.9 85.4 41.7 100.0 80.8 44.4 62.3 68.7

Night
1 38.3 32.0 58.2 34.9 -† 40.6 32.8 20.1 36.7

36.4 0.42 41.4 27.5 58.8 37.6 -† 50.6 23.2 16.8 36.5
3 38.9 24.4 57.8 35.3 -† 45.0 32.5 17.8 36.0

Rain
1 49.3 6.4 79.9 49.8 40.0 26.2 56.3 6.5 39.3

39.0 0.62 51.3 7.9 78.1 41.0 37.8 30.9 58.6 0.7 38.3
3 52.3 7.7 79.2 48.5 38.1 25.9 57.6 6.0 39.4

Snow
1 50.9 70.3 78.4 55.0 20.1 62.0 60.3 60.4 57.2

56.9 0.32 50.5 70.3 77.4 53.0 25.2 57.2 59.0 60.6 56.7
3 55.4 64.6 76.6 55.9 20.2 66.5 63.9 50.5 56.7

Table 14. Full results, Cityscapes to ACDC splits, proposed DINO Teacher. †There are no labels for the Bus class in the night validation
split.



Adaptive Teacher DINO Teacher

Figure 5. Qualitative results on target domain. We compare Adaptive Teacher (left) to our DINO Teacher (left) on BDD (rows 1 and 2),
Foggy Cityscapes (rows 3 and 4) and ACDC Night (rows 5 and 6). Green, Yellow, Orange and Red indicate true positive, low-confidence
positives, false positive, and false negatives respectively. We use a threshold of 0.7 for true positives and false positives.


	Algorithm and Implementation Details
	Additional Ablations and Results
	Alignment with Larger ViT-L
	Ablation on the Choice of Student Backbone
	Ablation on Choice of Detector
	Ablation on Unfreezing the Labeller Backbone
	Ablation on Using EMA Teacher Labels
	Issues with Self-Labelling Approaches
	Results on BDD Daytime-Sunny to BDD Night-Sunny
	Complete ACDC results

	Qualitative Results

