
Cubify Anything: Scaling Indoor 3D Object Detection

Supplementary Material

7. CA-1M
7.1. Additional Dataset Samples
We include additional panoramic projections of sample an-
notations in Figure 11.

7.2. Rendering CA-1M
We provide more details on the process to generate CA-1M
per-frame ground truth. Given a video capture consisting
of N frames, per-frame intrinsics Ki, possible distortion pa-
rameters di, and per-frame pose RT i registered to the same
coordinate system as the laser scans, we define a high-level
rendering pipeline:
1. Transform 3D boxes from world to camera space using

RT i.
2. Apply frustum culling, removing boxes irrelevant to the

current camera pose and frustum
3. Render each box independently at a suitable resolution

(e.g., 320x240) using Ki and di.
4. Cut each 3D box to the frustum by backprojecting the

independently rendered masks along rays terminating at
the far position of the frustum.

5. Determine coarse visibility of each box by considering
the the subset of each rendered mask whose depth is
closest to the camera.

6. Cut each 3D box to the scene by backprojecting the visi-
bility masks along rays terminating at the rendered depth

to solve for visibility and occlusion.
7. Remove 3D boxes which have had too significant of a

cut relative to the original box.
This process was shown in the main paper as Figure 4. This
pipeline is implemented in PyTorch3D [13] and parallelized
across multiple GPUs and nodes such that ground-truth can
feasibly be generated for every frame over thousands of cap-
tures.

7.2.1. Importance of Handling Distortion
During rendering (of boxes), we must handle distortion
(even in the main camera) within the handheld captures in
order to maintain pixel alignment, as shown in Figure 8.
While this is easier to implement when dealing with points
or high resolution meshes, this is non-trivial to implement
for 3D boxes.

8. Cubify Transformer
8.1. Additional Training Details
All image-based methods (CuTR, Cube R-CNN) are trained
in a framework based on Detectron2. CuTR uses settings

Figure 8. Rendering 3D boxes with distortion is important on CA-
1M in order to maintain pixel accuracy and alignment for small,
distant objects. The top image is rendered with distortion whereas
the bottom is rendered purely using a Pinhole model.

similar to ViTDet (AdamW optimizer, layer decay rates)
while we use the same settings from Omni3D [3] for traning
Cube R-CNN models. All point-based methods are trained
in MMDetection3D using the default settings from each re-
spective work.

Image-based models are trained across 8⇥4 V100 nodes
using a total batch size of 64 (2 images per GPU). All data
is processed into WebDataset format and streamed to each
node — keyframing (with some randomness) is applied on
the fly. Images are randomly augmented using the ViTDet
style augmentations: a random factor between 0.25 and 1.25
is selected and multiplied by a base resolution of 1024 ⇥
1024 to get the target image size. A random crop is taken
(or the full image if the resolution is smaller). The depth
map is augmented accordingly to preserve the same ratio of
image to depth. We also select to randomly augment the
image to depth ratio (1, 2 or 4).

Since we generate our training data at high frequency, we
apply keyframing with a displacement of 30cm or a change
in angle of 15 degrees.

8.2. Inference speed

In terms of model size, we trained ViT-B (90M), ViT-S
(25M), and ViT-T (8M) models. We are releasing MPS-
accelerated (Apple Silicon GPU) ViT-B checkpoints which
provide comparable inference times to CUDA: 150 ms on a
V100 versus 270 ms on an M1 Mac Studio. We emphasize
that a 3D sparse convolution is not generally available on
practical accelerators which makes them unusable for de-
ployment on most mobile devices.



9. ScanNet++
9.1. ScanNet++ versus CA-1M
ScanNet++ adopts the same FARO scanner and handheld
capture approach as ARKitScenes/CA-1M and thus can, in
theory, offer similar accuracy in 3D annotations to CA-1M.
However, we note significant differences compared to CA-
1M. First, ScanNet++ is not a detection dataset, only of-
fering semantic instance segmentation of a large but not ex-
haustive taxonomy on the FARO meshes. While we can
(and do) attempt to derive 6-DOF axis-aligned boxes from
these, annotating with explicit 3D boxes ensures that ev-

ery object can labeled, as done in CA-1M. This is because
even a high quality scanner like FARO will still be unable
to acquire points for many objects in a scene (field-of-view,
material, etc). Points will inevitably be missing and so by
only labeling acquired points as ScanNet++ does, a signif-
icant number of objects will still go unlabeled (see Figure
5). Second, ScanNet++ is an order of magnitude smaller
than CA-1M in terms of scans and captures — having 230
captures versus 3,500 in CA-1M. Finally, the registration
process in ScanNet++ is less complete — only able to di-

rectly register a subset of frames (264K out of 3.2M frames,
i.e., 8%) to the FARO space. As mentioned in ScanNet++
[20], frames are considered not registerable when the ren-
dering of depth from the FARO scans does not sufficiently
agree with depth acquired from the handheld device (i.e.,
the LiDAR-equipped iPhone). Not only does this lead to
less available frames, it biases the dataset towards frames
where the handheld’s acquired depth is “accurate” — par-
tially entangling the dataset to the sensors of the hand-
held device. On the other hand, the registration process of
ARKitScenes/CA-1M registers nearly every frame across
all captures.

9.2. Experiments on ScanNet++
While we don’t attempt to draw any conclusions dissimilar
from the experiments on CA-1M, we, for completeness, in-
clude results of models trained on ScanNet++ data. Since
ScanNet++ does not offer 3D box annotations, we must de-
rive them. We use the 3D instance segmentation labels and
use the normal of the first “wall” object in each scan to
define the basic rotation of the scene and thus produce 6-
DoF (axis-aligned) 3D boxes. Notably, this can be error
prone if this wall happens to not adhere to some Manhattan
assumption, which happens rarely. To generate per-frame
ground-truth, we augment the same protocol defined in Sec-
tion 7.2, but instead of using the rendered 3D boxes to gen-
erate a coarse instance mask (like in Figure 4), we render
the modal instance segmentation from the underlying mesh
annotations. The rest of the process (filtering, cutting, etc)
proceeds the same as CA-1M. While ScanNet++ has a sig-
nificant number of class labels, we do not consider them

in experiments and treat this as a class-agnostic dataset to
avoid complications that may arise due to the vocabulary
size. Experimental results are presented in Table 6.

Method AP25 AR25 AP50 AR50

3D point-based methods

ImVoxelNet (RGB only) 21.3 40.7 4.4 11.7

FCAF 41.1 65.3 16.4 33.2
TR3D 38.1 68.3 12.8 30.9
TR3D + FF 40.3 66.6 14.1 31.4

2D based methods

Cube R-CNN (RGB only) 15.5 33.2 3.5 10.6
CuTR (RGB only) 25.8 49.0 7.0 20.2

CuTR (RGB-D) 48.7 71.5 18.5 36.6

Table 6. Results on the ScanNet++ dataset when using ARKit
depth and axis-aligned (i.e., to walls) ground-truth boxes derived
from provided instance segmentation. We evaluate the class-
agnostic precision and recall of each method.

Generally, we observe similar trends as we see on CA-
1M: CuTR (both RGB and RGB-D variants) outperforms
existing methods over the range of evaluation thresholds.

10. ARKitScenes
We present no specific results for ARKitScenes, however,
we do use a CuTR model pre-trained on per-frame ARK-
itScenes data in order to conduct the experiments in 5. For
uniformity, this per-frame ground-truth is generated using
the same protocol as CA-1M, with only the underlying pose
and 3D box annotations coming from the original ARK-
itScenes [2] dataset.

11. Further Ablations
We provide additional ablations which attempt to answer
not only specific questions about CuTR and CA-1M but also
to further ablate the shortcomings of point-based methods.
Model Size While all experiments of CuTR are done us-
ing a ViT-B backbone, we additionally ablate how CuTR
responds to smaller backbones: a ViT-S (6 heads, 384 di-
mension embedding) and a ViT-T (3 heads, 192 dimension
embedding). We observe that CuTR scales to these smaller
backbones gracefully, still retaining performance competi-
tive with point-based methods even at the ViT-T size.
Depth (Modality) Fusion CuTR adopts a MultiMAE-like
backbone: a separate depth patch embedding and joint en-
coding of both RGB and depth tokens within a Transformer
encoder. This can be initialized by a pre-trained MultiMAE
(i.e., on pseudo-labeled ImageNet) or we could use a strong



ViT AP25 AR25 AP50 AR50

Tiny 28.8 54.3 7.3 22.0
Small 34.8 58.3 9.6 25.4
Base 40.9 62.3 12.7 29.1

Table 7. CuTR can still retain competitive performance on CA-
1M while using significantly smaller model sizes like ViT-S and
ViT-T.

RGB only backbone like DINOv2 or Depth-Anything and
learn the depth fusion (from scratch) during training. In Ta-
ble 8, we show the benefit of initialization from MultiMAE
pre-training over DINOv2 [10] or Depth-Anything [19], de-
spite these being considered much stronger backbones than
MultiMAE. We compare both the 2D and 3D box accuracy
which helps explain whether performance differences come
from 2D box quality or from 3D.

Backbone AR50 (2D) AR75 (2D) AR25 (3D) AR50 (3D)

MultiMAE [1] 83.6 55.1 62.4 29.0
DINOv2 [10] 83.9 55.2 60.5 27.2
Depth-Anything [19] 83.8 55.0 59.8 26.7

Table 8. CuTR initialized with a pre-trained MultiMAE back-
bone shows strong performance on CA-1M against pre-trained DI-
NOv2 and Depth-Anything backbones which must learn the depth
modality fusion during training. While all share similar 2D box
performance, MultiMAE shows significant improvements with re-
spect to 3D accuracy. This may show the importance of depth
fusion at pre-training time for 3D box prediction.

“Pixel for point” All point-based methods are inherently
limited by the depth provided by the underlying sensor, i.e.,
they can only backproject at a resolution limited by the
depth (256 ⇥ 192 in CA-1M). In practice, depth is usually
significantly lower resolution than what the RGB sensor is
capable of delivering (1024⇥768 in CA-1M). Therefore, an
advantage of CuTR could be seen as efficiently fusing lower
resolution depth data with higher resolution RGB data. In
Table 9, we purposefully decrease the RGB resolution given
to CuTR to understand how “pixel for point” it compares
to point-based methods. Even at the exact “pixel for point”
setting of RGB and depth at 256⇥192, CuTR can match the
performance of point-based methods. Restoring this resolu-
tion even to 512 ⇥ 384 shows minimal losses over the full
1024⇥ 768 evaluation setting of CuTR.
We further understand how the resolution affects perfor-
mance over distance by decomposing the 3D evaluation of
Table 9 by box distance. We group all boxes into near (0-2
meters), medium (2-4 meters), and far (4-5 meters) buckets.

We observe that the most significant drops in perfor-

RGB Res. AR50 (2D) AR75 (2D) AR25 (3D) AR50 (3D)

1024⇥ 768 83.6 55.2 62.3 29.1
512⇥ 384 81.7 52.2 59.3 26.0
256⇥ 192 81.1 51.9 50.7 19.5

3D point-based methods

FCAF N/A N/A 49.5 22.6
TR3D N/A N/A 51.9 20.0
TR3D + FF N/A N/A 52.9 21.0

Table 9. CuTR is evaluated on CA-1M at a variety of RGB resolu-
tions with a fixed depth resolution of 256⇥192. We reproduce the
point-based method results here for convenience. Both 2D and 3D
recall suffers at lower RGB resolutions, however, CuTR remains
competitive with point-based methods.

RGB Res. AR25n AR25m AR25f

1024⇥ 768 68.4 58.8 40.0
512⇥ 384 66.4 54.5 35.4
256⇥ 192 59.1 44.5 24.8

Table 10. We view the results of Table 9 with the 3D evaluation
broken down by near, medium, far box distances.

mance as RGB resolution decreases, comes from the further
objects (medium and far distances), which may stem from
the possibility that both depth uncertainty increases and size
in image decreases as objects are further away. Higher RGB
resolutions would better allow the network to learn to over-
come these shortcomings.




