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Figure 6. Visualization of GT Box Types for Different Datasets.
In this supplementary material, we present a detailed de-
scription and visualization of the datasets we used for train-
ing and evaluation, including DOTA-v1.0 [29], DIOR [13],
DIOR-R [5], SIMD [9], and NWPU VHR-10 [4] datasets.
Furthermore, we validate the effectiveness of our methods
through two additional ablation studies on (i) the scale ad-
justment function and (ii) the scale ranges for the DOTA-
v1.0 dataset. Also, we provide quantitative and qualita-
tive results on DIOR-R [5] under the experimental set-
tings based on the H2RBox [42]’s public source codes.
Lastly, we provide additional qualitative results on DIOR
[5, 13], DOTA-v1.0 [29], SIMD [9], and NWPU VHR-10
[4] datasets.

A. Details of Datasets
A.1. Detailed Description of Datasets

DOTA-v1.0 [29] comprises 2,806 images with 188,282 an-
notated instances across 15 categories, having both rotated
bounding boxes (GT RBoxes) and coarse horizontal bound-
ing boxes (GT C-HBoxes) for annotation. Among these
images, 1,411 are designated for training, 458 for valida-
tion, and 937 for testing. The image dimensions range
from 800 × 800 to 4, 000 × 4, 000. During training, the
images were cropped into a patch size of 1, 024 × 1, 024.
The dataset includes 15 categories: ‘plane’ (PL), ‘baseball-
diamond’ (BD), ‘bridge’ (BR), ‘ground-track-field’ (GTF),
‘small-vehicle’ (SV), ‘large-vehicle’ (LV), ‘ship’ (SH),
‘tennis-court’ (TC), ‘basketball-court’ (BC), ‘storage-tank’
(ST), ‘soccer-ball-field’ (SBF), ‘roundabout’ (RA), ‘harbor’
(HA), ‘swimming-pool’ (SP), and ‘helicopter’ (HC).

In our experimental setup, all methods including our AB-
SSPO are trained on the train split of DOTA-v1.0 [29] with
GT C-HBoxes and evaluated on its validation split with GT

RBoxes.

DIOR [13] contains 800 × 800-sized 23,463 aerial im-
ages of 20 categories with 190,288 instances (objects), each
having tight horizontal bounding box annotations (GT T-
HBoxes). Among these, 5,862 images are used for train-
ing, 5,863 images for validation, and the remaining 11,738
images for testing. The 20 categories of the dataset in-
clude: ‘airplane’ (APL), ‘airport’ (APO), ‘baseball field’
(BF), ‘basketball court’ (BC), ‘bridge’ (BR), ‘chimney’
(CH), ‘expressway service area’ (ESA), ‘expressway toll
station’ (ETS), ‘dam’ (DAM), ‘golf field’ (GF), ‘ground
track field’ (GTF), ‘harbor’ (HA), ‘overpass’ (OP), ‘ship’
(SH), ‘stadium’ (STA), ‘storage tank’ (STO), ‘tennis court’
(TC), ‘train station’ (TS), ‘vehicle’ (VE), and ‘windmill’
(WM).

DIOR-R [5] contains the same images as DIOR [13], but
includes rotated bounding box annotations for its objects
instead of HBox annotations. It should be noted that in our
experiments, we utilize both the train and validation splits
in DIOR [13] dataset for training our method, while em-
ploying the test split in DIOR-R [5] dataset for evaluation.

SIMD [9] comprises aerial images annotated with tight
horizontal bounding boxes (GT T-HBoxes). The dataset
contains 5,000 images spanning 15 categories, with a to-
tal of 45,096 instances. Each image has a fixed width of
1,024 pixels and fixed-sized heights of 768 pixels. The
15 categories are as follows: ‘car’, ‘truck’, ‘van’, ‘longve-
hicle’, ‘bus’, ‘airliner’, ‘propeller’, ‘trainer’, ‘chartered’,
‘fighter’, ‘other’, ‘stairtruck’, ‘pushbacktruck’, ‘helicopter’,
and ‘boat’.

NWPU VHR-10 [4] is an aerial image dataset featuring
tight horizontal bounding box (GT T-HBox) annotations. It
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Figure 7. Analysis on variations of width and height ratios between the T-HBoxes and the HBoxes derived as minimum circumscribed
rectangles of RBoxes. (a) Variations in the shapes of manually annotated T-HBoxes, manually annotated RBoxes and derived HBoxes from
the RBoxes for various rotations angles of different objects (airplanes in the first row and ground track fields in the second row); (b) Width
and height ratios between T-HBoxes and corresponding derived HBoxes for the rotation angles of the airplanes (top) and the ground track
fields (bottom).
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Figure 8. Comparisons between width (height) ratios and scale factors. (a) Width ratio curve (blue curve) calculated from manual anno-
tations, and angle-adjusted width scale factors (diamond-shaped pink points) derived from best scaled HBoxes selected by the ABBS; (b)
height ratio curve (red curve) calculated from manual annotations and angle-adjusted height scale factors (diamond-shaped green points)
derived from best scaled HBoxes selected by the ABBS. It is noted that the angle-adjusted width (height) scale factors are well aligned
with the width (height) curves, indicating that our ABBS works properly in scaling the GT HBoxes.

comprises 800 images spanning 10 categories, with approx-
imately 3,775 annotated instances. The images have widths
of around 1,000 pixels. The dataset includes the following
10 categories: ‘airplane’, ‘ship’, ‘storage tank’, ‘baseball
diamond’, ‘tennis court’, ‘basketball court’, ‘ground track
field’, ‘harbor’, ‘bridge’, and ‘vehicle’.

After training on the SIMD [9] and NWPU VHR-10 [4]
datasets, we focus on qualitative comparisons only, as these
datasets do not provide RBox annotations.

A.2. Visualization of GT Box Types for Different
Datasets.

Fig. 6 illustrates how GT HBoxes are annotated across dif-
ferent datasets. In this figure, the GT RBoxes are marked

in green, while the GT HBoxes are marked in blue. For
the SIMD [9] and NWPU VHR-10 datasets [4] where their
GT RBoxes do not exist, only the GT HBoxes (blue) are
displayed. The comparison emphasizes airplanes that have
complex shapes, to highlight the differences in the GT
HBox annotation types.

DOTA-v1.0 [29]. The GT HBoxes (blue) in DOTA are an-
notated as the minimum circumscribed HBoxes for their
corresponding GT RBoxes (green), as can be seen in the
first column of Fig. 6. For the objects with larger rotation
angles, the sizes of their GT HBoxes (blue) appear larger-
sized, when being more apart from the objects’ bound-
aries. Such GT HBoxes (blue) that are derived directly from
the objects boundaries were previously defined as GT C-



HBoxes in Sec. 1 of the main paper.
DIOR [13] (& DIOR-R [5]). Its GT HBoxes (blue) are
sourced from the DIOR dataset, while the GT RBoxes
(green) are taken from the DIOR-R dataset for visualiza-
tion purposes. The GT HBoxes (blue) tightly enclose the
objects’ boundaries, and are annotated independently from
the GT RBoxes (green). This type of HBox annotations is
referred to as GT T-HBoxes in the main paper. As the orien-
tations of the objects increase, their GT RBoxes (green) ex-
tend further beyond their corresponding GT HBoxes (blue),
which can be observed in the center and right airplanes in
the second column of Fig. 6.
DOTA [29] vs. DIOR [13] (& DIOR-R [5]). In the DOTA
and DIOR datasets, their objects are annotated as GT C-
HBoxes and GT T-HBoxes, respectively. The GT HBoxes
(blue) and GT RBoxes (green) align perfectly each other
when the objects’ orientations are horizontal or vertical, as
demonstrated by the top-right airplanes in the first column
of Fig. 6 and the left airplane in the second column of Fig. 6.
However, as the objects get more rotated from the horizontal
or vertical angle, their GT C-HBoxes (blue) become con-
sistently enlarged to circumscribe their corresponding GT
RBoxes (green), as seen in the bottom-left airplanes in the
first column of Fig. 6. In contrast, as depicted in the sec-
ond column of Fig. 6, the GT T-HBoxes always tightly en-
close the objects boundaries, regardless of their GT RBoxes
(green). This difference in GT HBox annotation leads to a
significant degradation in the OOD performance of the pre-
vious HBox-supervised OOD methods when trained on the
DIOR dataset with GT T-HBoxes, unlike when trained on
the DOTA dataset with GT C-HBoxes.
SIMD [9] & NWPU VHR-10 [4]. As shown in the third
and forth columns of Fig. 6, SIMD and NWPU VHR-
10 datasets contains only GT T-Hboxes, where the GT T-
HBoxes (blue) tightly enclose the boundaries of airplanes,
even for objects with large orientation angles.

B. Additional Ablation Study
Ablation Study on Scale Adjustment Function. As men-
tioned in Sec. 3.2 of the main paper, we incorporate the ob-
ject shape types and orientation degrees into the scale ad-
justment of the widths and heights of GT T-HBoxes. The
scale adjustment function f is designed as a linear function
of the angle θ, as presented in Eq. 8 of the main paper.
Fig. 7-(a) demonstrates this process using two images con-
taining objects from the ‘airplane’ class and ‘ground track
field’ class, which are manually rotated from 0° to 45°
in 15° increments. On the top of each rotated image, a
T-HBox (red), an RBox (green), and a minimum circum-
scribed HBox (blue) derived from the RBox are overlayed.
Fig. 7-(b) shows the width and height ratios between the T-
HBoxes and their derived HBoxes. As shown, the results
indicate that these ratios increase linearly as the orientation

Scale Range DOTA-v1.0

Min Max Interval 3-AP50 AP50

0.9 1.0 0.05 61.80 68.09
1.0 1.1 0.05 64.77 69.08
0.9 1.1 0.05 65.27 69.26
0.8 1.1 0.05 63.33 69.03

Table 7. Ablation results on the scale ranges of GT HBoxes for
ABBS module in the DOTA-v1.0 [29] dataset.

degrees increase, validating that the proposed linear scale
adjustment function f can effectively capture the scale vari-
ations in annotations caused by the object orientations.
Additionally, Fig. 8 visualizes the scale proportion between
the annotated T-HBoxes and their best scaled HBoxes in the
ABBS module, by passing manually rotated airplane im-
ages from 0° to 45°. This scale proportion corresponds to
the angle-adjusted scale factors derived from Eq. 7, Eq. 8,
and Eq. 10 in the main paper, which are represented as
diamond-shaped points in Fig. 8. Fig. 8-(a) compares the
width ratio curve (blue curve) calculated from manually an-
notated T-HBoxes and derived HBoxes from manually an-
notated RBoxes with the angle-adjusted width scale factors
(diamond-shaped pink points) obtained from best scaled
HBoxes selected by the ABBS. Fig. 8-(b) compares the
height ratio curve (red curve) calculated from manually an-
notated T-HBoxes and derived HBoxes from manually an-
notated RBoxes with the angle-adjusted height scale factors
(diamond-shaped green points) obtained from best scaled
HBoxes selected by the ABBS. It is noted in Fig. 8-(a)
and -(b) that the angle-adjusted width (height) scale factors
are well aligned with the width (height) curves, indicating
that our ABBS works properly in scaling the GT HBoxes.
This alignment highlights the effectiveness of our proposed
ABBS module in capturing and leveraging the scale vari-
ations caused by the object orientation, enabling precise
adaptation to changes in object orientations and shapes dur-
ing training.

Ablation Study on Scale Ranges of GT HBoxes for
ABBS Module. Our ABBS module adjusts the sizes of
given GT HBoxes during the training, with their scale ad-
justment range depending on the annotation types of the
datasets. Especially for the DIOR dataset [13] that uses GT
T-HBoxes, the scale range is set from 1 to 1.5 to optimize
the training process as shown in Table 6 of the main paper.
Conversely, for the DOTA-v1.0 dataset [29] that provides
GT C-HBoxes, a narrower scale range of 0.9 to 1.1 is em-
ployed. As shown in Table 7, the best OOD performance
on DOTA-v1.0 dataset is achieved when the scale range is
set between 0.9 and 1.1, validating the necessity of dataset-
specific scale adjustments.



Methods APL APO BF BC BR CH ESA ETS DAM GF GTF HA OP SH STA STO TC TS VE WM 3-AP50 AP50

H2RBox [42] 57.1 14.4 72.2 82.6 17.5 71.2 56.5 55.2 14 67.7 77.9 31 40.7 76.3 66.2 63.4 81.5 50.4 38 57.6 51.43 54.57
H2RBox* [42] 65.5 12.5 74.6 81.3 21.3 72.2 62.7 60.4 19.2 70.1 78.7 35.3 44.3 79.1 62.7 68.2 81.5 51.7 39.6 60.7 57.50 57.08
H2RBox-v2 [48] 55.5 17.8 76.9 80.5 27.7 72.2 63.0 58.6 24.4 73.9 80.3 33.9 47.2 77.4 58.7 60.9 81.4 48.1 41.1 53.9 55.23 56.67
H2RBox-v2* [48] 67.2 11.5 75.8 84.0 31.4 72.5 65.3 60.7 25.3 72.2 80.9 35.2 50.2 78.9 67.0 61.5 81.5 52.6 43.0 26.7 60.90 57.17
ABBSPO (Ours) 69.5 15.7 76.2 87.5 29.9 72.3 75.3 61.2 28.1 74.1 81.7 34.7 48.2 79.3 67.4 61.4 81.5 54.7 41.5 53.8 64.33 59.70
ABBSPO (Ours)* 66.6 20.2 77.6 84.7 30.8 72.5 75.0 60.1 28.3 75.3 81.2 35.9 49.0 79.4 69.7 65.3 81.4 55.1 41.7 33.0 63.53 59.14

Table 8. Quantitative OOD results for various object categories on the DIOR-R [5] dataset. Results marked with * are obtained by running
H2RBox [42]’s public source codes. For these results, the experiment settings do not include angle prediction for the airplane class. Results
without * are obtained using the original configuration that is the same as that in the main paper.

H2RBox H2RBox-v2

H2RBox* H2RBox-v2* ABBSPO (Ours)* 

ABBSPO (Ours) 

Figure 9. Qualitative OOD comparisons on DIOR [5, 13]. Results marked with * are obtained by running H2RBox [42]’s public source
codes. For these results, the experiment settings do not include angle prediction for the airplane category. Results without * are obtained
using the original configuration that is the same as that in the main paper.

C. Additional Results on DIOR
As discussed in Sec. 4.3.1 of the main paper, our ABBSPO
demonstrates superior OOD performance compared to the
previous methods, H2RBox [42] and H2RBox-v2 [48]. For
fair comparison, we set the objects belonging to the follow-
ing six classes (‘baseball field’, ‘chimney’, ‘golf field’, ‘sta-
dium’, ‘storage tank’, and ‘windmill’) as the subjects not to
predict their orientations due to orientation ambiguities. We
denote this setting as the original configuration that is the
same as that in the main paper. We further provide the OOD
results under an additional configuration, where six dif-
ferent classes (‘airplane’, ‘baseball field’, ‘chimney’, ‘golf
field’, ‘stadium’, and ‘storage tank’) were designated as ob-
jects without orientation prediction, following the H2Rox
[42]’s public source codes.

We denote the methods trained and evaluated in the above
additional configuration as H2RBox* [42], H2RBox-v2*

[48], and ABBSPO*, while H2RBox [42], H2RBox-v2
[48], and ABBSPO denote the methods trained and eval-
uated in the original configuration. As illustrated in Fig. 9,
H2RBox* [42], H2RBox-v2* [48], and ABBSPO* predict
objects in ‘airplane’ class in the form of HBoxes without
orientations, while H2RBox [42], H2RBox-v2 [48], and
ABBSPO predicts orientations of the objects for the same
class. As shown in Table 8, our ABBSPO* still outper-
forms H2RBox* [42] and H2RBox-v2* [48]. These findings
demonstrate the effectiveness and robustness of our ABB-
SPO over different configurations for the orientation ambi-
guity.
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Figure 10. Qualitative OOD results on DIOR [5, 13] and DOTA-v1.0 [29] datasets.
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Figure 11. Qualitative OOD results on SIMD [9] and NWPU VHR-10 [4] datasets.



D. Additional Qualitative Results
DIOR. As shown in the first row of Fig. 10, our ABBSPO
successfully detects more ships and harbors with higher pre-
cision. This demonstrates an improved object capturing
ability of our model, achieved through an effective training
process.

DOTA-v1.0. As shown in the second row of Fig. 10, our
ABBSPO predicts the orientations of airplanes more accu-
rately. This highlights an enhanced angle prediction accu-
racy of our ABBSPO, which is reinforced by our SPA loss-
based self-supervision during training.

SIMD & NWPU VHR-10. As shown in the first column
of Fig. 11, the GT HBoxes for the corresponding test im-
ages are displayed since they only contain GT T-HBoxes.
Across the four test images, our ABBSPO demonstrates su-
perior OOD performance in terms of both scale and ori-
entation predictions. Notably, in the first and third rows
that show predictions for airplanes, our ABBSPO success-
fully predicts accurate orientations and scales of the objects
while H2RBox [42] and H2RBox-v2 [48] predicts inaccu-
rate orientations and scales for the objects, which often oc-
curs when their models are trained with GT T-HBoxes.
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