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Figure 7. Visual comparison between AESOP (ours) against baseline methods for the real-world ×4 SR task. AESOP leads to improved
realism (top) with a lower level of visual artifacts (bottom). Zoom in for best view.

A. Implementation and experimental details
Network architecture and weight initialization. Fol-
lowing previous works, we initialize our SR networks with
the official weight of the fidelity-oriented model of either
ESRGAN [54] or SwinIR [36]. Similarly, the decoder of
the AE follows the architecture of RRDB and is initialized
with the fidelity-oriented weights. The overall architecture
of the encoder is implemented in a straightforward manner.
We simply design it as a series of two convolutional lay-
ers (fromRGB layer), followed by a pixel-unshuffle opera-
tion and two RRDB blocks [54], concluding with additional
two convolutional layers (toRGB layer). The RRDB block
is identical to that of the SR networks. The pixel-unshuffle
acts as a×s downscaling operation, effectively reducing the
image dimension to match that of the LR image. Since the
channel size is increased due to the pixel-shuffle operation,
the second layer of the fromRGB layer reduces the channel
size ×s2 smaller than that of the RRDB block. The kernel
size is 3×3 for all convolutional layers.

Training and evaluation details. The optimizer is chosen
as the Adam [26] optimizer with a learning rate of 0.0001,
for both the Auto-Encoder and the SR network. Following
conventions, we choose p = 1 for Lp and the coefficient of
loss factors are λAESOP = 1, λ2 = 1, λ3 = 1, λ4 = 0.005. The
Auto-Encoder is pretrained up to 100K iterations, and the
SR networks are trained up to 300K iterations. Unless spec-

ified, the HR training patch size is 128. PSNR and SSIM
scores are evaluated on the Y channel (luminance channel)
in the YCbCr space and pixels up to the scale factors in the
border were ignored. We use the default alex option for
LPIPS [66]. Training and evaluation are performed on top
of BasicSR [56]. Networks are trained and evaluated with
either 4 NVIDIA A6000s or 4 NVIDIA RTX 3090s.

B. Evaluation on real-world SR datasets
AESOP on real-world SR. In the real-world SR task, the
overall task becomes more complex and the range of plausi-
ble solutions is larger than that of the conventional bicubic
SR task. Accordingly, the conflict between Lpix and percep-
tual quality-oriented objectives gets severe, and the blurring
tendency of conventional Lpix loss may become more sig-
nificant. We further validate the effectiveness of the pro-
posed method in the real-world ×4 SR task. For compar-
ison, we use representative baseline real-world SR meth-
ods utilizing Lpix, including RealESRGAN [55], BSRGAN
[65], and LDL [37].

Qualitative results. In Fig.7, we provide a visual compar-
ison of AESOP against baseline methods for the ×4 real-
world SISR task on RealSRSet [65]. We only replace the
Lpix term of [37] while keeping all other training settings
identical. Since we do not have ground-truth HR images, we
only provide bicubic upsampled images and SR results from
each method. Due to the inherent high complexity of the



Dataset Method NIQE↓ MANIQA MUSIQ CLIP-IQA

RealSRv3 [3]

ESRGAN [54] 7.7326 0.2043 29.0494 0.2362
BSRGAN [65] 4.6519 0.3698 63.5908 0.5439
Real-ESRGAN [55] 4.6790 0.3662 59.6855 0.4901
LDL [37] 4.8869 0.3706 60.1015 0.4883
AESOP (Ours) 4.2337 0.4136 63.6489 0.5687

DRealSR [58]

ESRGAN [54] 8.3949 0.2115 20.2861 0.2468
BSRGAN [65] 4.6809 0.3381 35.4973 0.5614
Real-ESRGAN [55] 4.7152 0.3404 35.2747 0.5098
LDL [37] 5.0974 0.3393 35.9026 0.5137
AESOP (Ours) 4.1922 0.3917 36.5533 0.6025

Table 6. Quantitative results of AESOP and baseline methods in real-world settings. All methods except ESRGAN are trained for the
real-world SR task. The best results of each group are highlighted in bold. ↓ means lower is better. If not specified, higher is better. Due to
memory constraints, images were cropped before evaluating CLIP-IQA scores for the DRealSR dataset.

real-world task, baseline networks fail in generating fine-
grained textures (first row of Fig.7) and generate visually
unpleasing artifacts (second row of Fig.7). In contrast, AE-
SOP successfully recovers fine textures with fewer artifacts.

Quantitative results. We report quantitative results on Re-
alSRv3 [3] and DRealSR [58]. To assess perceptual qual-
ity, we utilize NIQE [46], MANIQA [60], MUSIQ [24],
and CLIP-IQA [52] scores. Due to memory constraints, im-
ages were divided into four quadrants when evaluating the
CLIP-IQA scores for the DRealSR dataset. AESOP demon-
strates superior performance against baselines in all evalua-
tion metrics, which verifies the effectiveness of our method
for practical applications.

C. Additional results for the Bicubic SR task

FID scores. In Tab.7, we report Frechet Inception Dis-
tance (FID) [17] scores to further evaluate the proposed AE-
SOP against baseline methods for the bicubic ×4 SR task.
FID, widely used for generative tasks [23], has recently
been adopted for super-resolution tasks [37, 48]. However,
its standard approach of resizing images to 299×299 may
not be suitable to assess SR methods. Resizing can alter im-
portant details that SR aims to improve, directly conflict-
ing with the objectives of SR focusing on enhancing image
quality at higher resolutions.

Patch FID scores. Accordingly, we additionally report
the patch-FID (pFID) [4] scores, which does not require
image resizing. For patch-FID evaluation, 299×299 non-
overlapping patches are extracted from the images. If an
image is smaller than 299 pixels in any dimension, we use
zero-padding to meet the required size.

Fidelity bias estimation. As discussed in the main article,
we do not multiply a small scaling factor to LAESOP which
leads to significantly stronger guidance on fidelity biases
(Fig.9). Accordingly, we have measured how well AESOP
and the baseline methods estimate the fidelity biases by re-

porting AE-PSNR which captures the distance between the
fidelity bias of the SR image and the fidelity bias of the
HR image. Additionally, we have shown LR-PSNR scores
to provide a metric that is not biased by the Auto-Encoder.
In Tab.8, we additionally provide AE-PSNR and LR-PSNR
scores on top of the RRDB [54] backbone. Similar to results
in Tab.4, AESOP shows improvements in both AE-PSNR
and LR-PSNR scores, highlighting the superiority of AE-
SOP in effectively reducing the SE term.

AESOP on recent backbone network architecture. We
report additional quantitative results on the benchmark
datasets in Tab.9. First, we employ DRCT [18], a recent
state-of-the-art Swin Transformer-based method that lever-
ages dense residual connections within a fidelity-oriented
SR framework. We implement LDL on top of DRCT and
compare it to our proposed AESOP. AESOP consistently
outperforms the baseline in terms of both fidelity and per-
ceptual quality, demonstrating its effectiveness even with
advanced network architectures. Notably, the performance
improvement is more significant compared to the RRDB
backbone, suggesting that AESOP may yield even greater
benefits with larger-capacity network architectures.

Regarding recent perceptual-oriented losses. We re-
port quantitative results of another recent state-of-the-art
method, CALGAN [48]. This work is a different branches
of research in the field of perceptual SR, focusing on im-
provements in perceptual quality-oriented losses. Interest-
ingly, AESOP outperforms CALGAN in most cases, even
without the Mixture of Experts (MoE)–based discriminator
proposed in CALGAN [48]. This signifies the effectiveness
of AESOP. However, note that improvements in network ar-
chitectures and perceptual-oriented losses are beyond the
scope of this work. The focus of this study is on the fi-
delity loss term Lpix within the perceptual SR framework.
We leave the integration of LAESOP (fundamentally a fidelity
loss), with the enhanced perceptual-oriented losses of CAL-
GAN to future work due to limited computational budget.



Backbone RRDB SwinIR

Metrics Benchmark ESRGAN SPSR LDL* LDL AESOP AESOP +GAN LDL* LDL AESOP

Recon. Objective Lpix Lpix Lpix Lpix LAESOP LAESOP Lpix Lpix Lpix LAESOP

Patch size (Training) 128 128 128 128 128 256 256 256 256 256

pFID ↓

Set14 65.220 70.990 - 57.132 56.727 54.792 - - 55.367 53.175
Manga109 29.326 28.314 - 23.895 23.384 22.833 - - 21.766 21.290
General100 50.062 50.053 - 43.406 42.117 41.041 - - 42.028 40.199
Urban100 32.094 31.105 - 28.380 27.875 27.017 - - 26.972 25.613
BSD100 69.943 68.370 - 64.058 57.864 56.844 - - 59.653 57.118
LSDIR 14.579 14.110 - 12.537 12.220 11.718 - - 12.056 11.387

FID ↓

Set14 54.939 53.919 43.454 43.479 46.828 38.907 48.910 46.057 46.110 45.411
Manga109 11.559 10.663 10.161 10.162 9.230 9.446 9.703 8.680 8.677 9.256
General100 29.850 30.172 27.211 27.220 27.425 25.201 27.557 25.304 25.301 24.592
Urban100 20.354 18.676 16.351 16.355 16.865 16.723 17.555 16.282 16.287 15.547
BSD100 50.752 48.349 - 44.053 41.130 40.751 - - 41.954 41.721
LSDIR 17.552 16.056 - 15.229 14.748 14.802 - - 14.510 14.397

Table 7. Quantitative results of the proposed method (AESOP) against baseline methods. We report Frechet Inception Distance (FID) and
patch-FID (pFID) scores. LDL* indicates that scores are from the official paper. All other scores are evaluated in our settings, with officially
provided pretrained weights. The best results of each group are highlighted in bold, based on scores evaluated in our settings.

Metric Method Set14 Manga109 General100 Urban100 DIV2K-val BSD100 LSDIR

AE-PSNR

ESRGAN [54] 30.280 31.165 32.663 27.198 31.668 28.991 27.636
SPSR [42] 30.602 31.351 32.670 27.508 31.737 29.029 27.881
LDL [37] 31.180 32.608 33.823 28.488 32.597 29.595 28.625
AESOP (Ours) 31.341 32.843 33.956 28.529 32.740 29.737 28.812

LR-PSNR

ESRGAN [54] 43.892 43.908 45.259 42.879 45.689 43.823 42.718
SPSR [42] 43.835 44.359 44.656 42.666 44.717 42.719 42.364
LDL [37] 46.497 47.603 48.184 45.975 47.793 45.307 45.295
AESOP (Ours) 46.625 48.188 48.653 46.280 48.272 45.837 45.571

Table 8. Quantitative comparison between the proposed method (AESOP) and baseline methods. We report AE-PSNR and LR-PSNR scores
using the RRDB backbone. AE-PSNR measures how accurately the method estimates fidelity bias factors, while LR-PSNR evaluates how
well the generated images align with the input LR image. The best result in each group is highlighted in bold.

D. Further discussion on AESOP
Regarding the loss maps and spectral magnitudes. Here
we provide further discussions regarding the loss maps and
the spectral analysis in the main article. In Sec.5.2, we have
discussed the differences between AESOP and low-pass
filtering-based methods. However, the loss maps reveal ob-
ject edges, which are the regressable high-frequency com-
ponents, aligning to high-pass filters. Accordingly, we pro-
vide further discussion and compare AESOP against high-
pass filter based losses or similarly against edge filters from
two perspectives: 1) regions with low loss values under
LAESOP and 2) regions with high loss values under HPF
losses. (Fig.8)

First, we emphasize that regions with low loss values
under LAESOP do not imply that LAESOP neglects these ar-
eas. Instead, they simply indicate that the network has ac-

curately estimated the fidelity bias in those regions. This is
clearly different from frequency filters, which entirely ig-
nore these regions. For instance, consider a scenario where
the SR network produces low-frequency artifacts due to ad-
versarial training instability. In such cases, LAESOP effec-
tively guides the network toward proper estimation, whereas
HPF loss ignores these artifacts, resulting in suboptimal per-
formance. This also suggests that the components that re-
quire reconstruction guidance and those that do not require
reconstruction guidance are inherently intertwined within
each pixel. Thus, they cannot be disentangled merely by se-
lecting which pixels to penalize.

Meanwhile, for regions that receive high loss activations
under high-pass filtering (HPF) loss, these typically corre-
spond to areas with fine textures. This is exactly the prob-
lematic issue raised in Lpix, where such activations con-



Backbone RRDB SwinIR DRCT

Metrics Benchmark CALGAN AESOP CALGAN AESOP LDL AESOP

Recon. Objective Lpix LAESOP Lpix LAESOP Lpix LAESOP

LPIPS ↓

Set14 - 0.1053 - 0.1027 0.1086 0.1022
Manga109 - 0.0494 - 0.0461 0.0459 0.0447
General100 0.077 0.0734 0.074 0.0710 0.0727 0.0722
Urban100 0.108 0.1033 0.098 0.0945 0.1006 0.0972
DIV2K-val 0.091 0.0936 0.087 0.0893 0.0934 0.0949
BSD100 0.151 0.1443 0.147 0.1385 0.1462 0.1451
LSDIR - 0.1123 - 0.1071 0.1131 0.1129

DISTS ↓

Set14 - 0.0825 - 0.0819 0.0889 0.0830
Manga109 - 0.0356 - 0.0328 0.0316 0.0338
General100 0.083 0.0773 0.081 0.0762 0.0782 0.0775
Urban100 0.082 0.0768 0.083 0.0742 0.0803 0.0771
DIV2K-val 0.049 0.0484 0.048 0.0459 0.0487 0.0485
BSD100 0.118 0.1089 0.128 0.1072 0.1136 0.1072
LSDIR - 0.0612 - 0.0591 0.0635 0.0621

PSNR ↑

Set14 - 27.246 - 27.421 27.314 27.796
Manga109 - 29.747 - 30.061 29.979 30.398
General100 30.182 30.251 - 30.401 30.143 30.646
Urban100 25.290 25.541 - 26.148 26.038 26.360
DIV2K-val 28.863 28.910 - 29.137 29.030 29.456
BSD100 25.925 25.904 - 25.930 25.942 26.324
LSDIR - 24.845 - 25.038 24.943 25.354

SSIM ↑

Set14 - 0.7371 - 0.7438 0.7403 0.7546
Manga109 - 0.8802 - 0.8880 0.8888 0.8936
General100 0.825 0.8269 - 0.8327 0.8288 0.8382
Urban100 0.763 0.7697 - 0.7884 0.7855 0.7926
DIV2K-val 0.790 0.7951 - 0.8023 0.7994 0.8085
BSD100 0.676 0.6783 - 0.6813 0.6812 0.6921
LSDIR - 0.7202 - 0.7289 0.7253 0.7353

Table 9. Additional quantitative evaluation on benchmark datasets. We also provide quantitative results of CALGAN [48] and DRCT [18].
CALGAN is a recent work improving perceptual-oriented losses, while DRCT made improvements in the SR network architecture. AESOP
mostly outperforms CALGAN [48] even without the MoE-discriminator. However, note that enhancements to network architectures and
perceptual-oriented losses are beyond the scope of this work. The focus of this work is on the fidelity loss term Lpix under the perceptual
SR framework. The best results of each group are highlighted in bold. Additionally, refer to the PD trade-off curve in Fig.14-20.

tribute to blurring. Consequently, this represents an unde-
sirable aspect of HPF-based methods.

Intuitions on LAESOP based on loss scales. In Fig.9, we
compare the loss scales of Lpix and LAESOP, both before and
after applying their loss coefficients. Before the loss coef-
ficients are applied, Lpix (green) exhibits greater loss val-
ues than LAESOP (blue). This observation aligns with our
theoretical analysis and construction of the Auto-Encoder,
where LAESOP only penalizes a subcomponent of Lpix.
Specifically, while Lpix minimizes both perceptual variance
(VE) and fidelity bias induced error (SE), our carefully de-
signed LAESOP only targets the SE term, leading to lower
loss values. Consequently, the gap between the green loss
trajectory and the blue one quantifies the VE loss compo-
nent embedded within Lpix. After the loss coefficients are
applied to each reconstruction loss, LAESOP (blue) provides
an order of magnitude stronger reconstruction guidance
compared to scaled Lpix (red). Regardless of this strength-
ened fidelity guidance, SR networks trained with LAESOP do
not have to suffer from blurring and can achieve improved
perceptual quality over Lpix.

Intuitions on Lpix and LAESOP. Apart from Fig.1, we show
additional graphical illustration in Fig.11 to provide further
intuitions on the overall optimization procedure and the op-
timal point of eachLpix andLAESOP. As can be seen,LAESOP
consecutively estimates the centroid (fidelity bias) of the
prediction and solution space, and minimizes the distance
between them (i.e., minimizes the SE factor). Accordingly,
LAESOP reaches the optimal point when the two distribu-
tions are aligned. However, Lpix converges to the minimum
expected error point, which is the blurry average solution.
Thus, the prediction space degenerates.

Comparison between Lpercep and LAESOP. The proposed
loss LAESOP and the perceptual loss Lpercep share the char-
acteristic of utilizing a pretrained neural network for guid-
ance. However, they differ fundamentally in their objectives
and mechanisms. Below, we clarify these differences in two
different aspects.

First, the primary objectives of these two losses differ
significantly.Lpercep belongs to the category of perceptual-
oriented losses. Its main purpose is to explicitly improve
perceptual quality by providing high-level semantics and
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Figure 8. Loss map comparison between high-pass filtered (HPF) loss and LAESOP. Refer to Appendix.D for further discussion.
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Figure 9. The loss trajectory of Lpix before applying the coefficient
(green) is visualized by scaling the original loss (red). The loss
trajectory of LAESOP (blue) is visualized as-is, since we do not scale
it. Refer to Appendix.D for further discussion.
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Figure 10. Comparison between feature inversion results obtained
from deep features extracted by VGG and our proposed AE. Deep
features of VGG lose important low-level features crucial for a
reconstruction loss. Meanwhile, the carefully chosen network ar-
chitecture and the pretraining objective of our AE enable precise
control over which information to remove (blur-inducing high-
frequency patterns) and preserve (structural edges).

textural guidance. Accordingly, Lpercep measures the dis-
crepancy between the SR and HR images within a high-
dimensional feature space derived from a pretrained feature
extractor (such as VGG [51]), where the high-dimensional
space captures additional semantic and textural details be-
yond those available in the raw pixel domain. In con-
trast, LAESOP is fundamentally a reconstruction (fidelity)
loss that provides guidance based on low-level features,
similar to the conventional Lpix, but specifically tailored
for perceptual SR tasks so that it does not show conflicts
with perceptual-oriented losses. LAESOP employs an Auto-
Encoder (AE) architecture with a low-dimensional bottle-
neck, pretrained for low-level reconstruction. Due to its
design and pretraining objective, the AE inherently com-
presses the input and selectively discards certain informa-
tion, while preserving important low-level features. Conse-
quently, the Auto-Encoded output contains less information
compared to the original image, as opposed to the enriched,
high-dimensional features used in Lpercep.

Second, the underlying mechanism and the information
each feature encoder embeds are different. In order to uti-
lize a feature encoder as a loss function in low-level vision
tasks, precise control over which information to remove
and preserve is important. Considering that a reconstruction
loss in perceptual SR task should (1) provide sufficient re-
construction guidance while (2) avoid blurring; feature en-
coders should be able to preserve important low-level fea-
tures while removing blur-inducing factors. However, fea-
ture encoders pretrained on image classification tasks (such
as VGG) naturally discard many low-level features not rel-
evant to classification, resulting in uncontrollable loss of
critical reconstruction information. In contrast, the carefully
designed AE preserves essential low-level features, partic-
ularly structural edges, while the blur inducing perceptual
variance factors are removed.

We empirically verify these properties through feature
inversion results shown in Fig.10. Clearly, deep features ex-
tracted from VGG omit critical low-level reconstruction de-
tails. On the other hand, our AE-derived deep features suc-
cessfully retain sharp edges and structural alignment while



(b) Optimal point of 𝐿pix and 𝐿AESOP

C

𝔼(𝑝 ො𝑦) 𝔼(𝑝𝑦)

ො𝑦

ො𝑦 𝑦

Auto-Encoder

𝐿pix

𝐿AESOP

𝑦

Auto-Encoder

(1)
(2) (3)

(1) VE (Variance-Effect) (2) SE (Systematic-Effect)

(3) Irreducible Variance of y (Omitted in Eq.1)

Solution Space
Prediction Space

Perceptual-Variance Vanishing

(i.e., Distribution not-preserving)

Perceptual-Variance Preserving

(i.e., Distribution preserving)

Must suffer PD trade-off

Optimization is free from PD trade-off

(a) Comparison between 𝐿pix and 𝐿AESOP

(Sampling has PD trade-off, inevitable)Estimate the centroid
(Pretrain AE with 𝐿pix)

Prediction space 

degenerates

Figure 11. Graphical illustration of the optimization procedure and the optimal point for Lpix and LAESOP.

the blur inducing high-frequency textural information is re-
moved as intended. Overall, this verifies that Lpercep cannot
act as a standalone reconstruction loss in low-level vision
tasks, while LAESOP can, and is even shown to outperform
conventional Lpix through extensive experiments.

Disclaimer. We clarify that the improvement in percep-
tual scores by raising LAESOP is since it does not hinder
the perceptual-oriented guidance provided by perceptual-
oriented losses under the SRGAN-framework. LAESOP itself
will not guide towards realism. We keep improvements in
perceptual-oriented losses out of the scope of this work.

E. Further intuition regarding the PD trade-off
Comparison between Lpix and LAESOP. Fig.12 repre-
sents the guidance Lpix and LAESOP provides in terms the
perception-distortion (PD) trade-off. We start our discus-
sion with point (B), which represents an image that is not
optimal in both fidelity and perception. Given this image,
Lpix with a large coefficient guides the image towards point
(C). This is the blurry image with the lowest expected dis-
tortion, or simply the fidelity bias of the image. Mean-
while, with a smaller coefficient, it achieves improved per-
ception as point (G). However, it leads to unnecessary fi-
delity loss (H) since SE reduction is significantly weakened
while the adversarial loss continuously hinders SE conver-

gence. Meanwhile, LAESOP removes the VE minimization
term of Lpix. Thus, it improves fidelity without suffering
from blurring, thereby guides point (B) towards point (A).
However, we clarify that LAESOP cannot further improve the
fidelity beyond the ideal PD trade-off curve. This is impos-
sible as (E), under non-invertible degradation [2] including
image super-resolution. This statement even holds for the
case with an optimal perceptual SR network that can sam-
ple images from the true posterior. Note thatLAESOP reaches
zero for point (A).

Is LAESOP a distortion measure? Blau et. al. [2] have
shown that we must compensate perception when aim-
ing to reduce any distortion measure; the perception-
distortion trade-off. This might seem contradictory with
LAESOP at first glance, since LAESOP is designed to improve
fidelity without degrading perception. However, fortunately,
LAESOP does not fall within the definition of distortion met-
ric defined in Blau et. al. [2]. A distortion measure ∆ that
induces PD trade-off requires: ∆(y1, y2) > 0 for y1 ̸= y2
by definition. However, for AESOP, it is straightforward
(and also intended) that multiple different images can share
an identical fidelity bias. Formally, there exists y1, y2 s.t.
LAESOP(y1, y2) = 0 and y1 ̸= y2. As this does not satisfy
the constraints of a distortion measure, LAESOP is not guar-
anteed to raise PD trade-off. However, we clarify that this
does not imply that SR networks trained with LAESOP can
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Figure 12. Graphical illustration of Lpix and LAESOP in terms of the perception-distortion trade-off.

generate images that are free from the PD trade-off. This is
impossible even with an oracle perceptual SR network, as
discussed in prior sections.

F. Additional visualization

Spectral magnitudes. Fig.13 provides visual examples of
the spectral magnitudes, aligning with Fig.6. The spectral
magnitudes reflect the effectiveness of the pretrained Auto-
Encoder in discriminating non-regressable factors that lead
to blurring and the regressable high-frequency components
that enhance fidelity without causing blurring. Meanwhile,
low-pass filters fail to achieve this since the regressable and
non-regressable components cannot be disentangled using
simple frequency filters. They are intertwined within the
same frequency band.

Qualitative examples on benchmark datasets. To further
illustrate the effectiveness of our method, we present an ad-
ditional qualitative comparison between AESOP against the
baseline method LDL [37] on the bicubic ×4 SR task. We
provide results of tested methods, AESOP and LDL, on top
of the SwinIR backbone (Fig.21 and Fig.22) and the RRDB
backbone (Fig.23 and Fig.24). As can be seen, AESOP sig-
nificantly improves perceptual quality while effectively sup-
pressing visual artifacts observed in the baseline method.

Additional perception-distortion trade-off curves. We
provide extensive visualizations of the perception-distortion
trade-off curves in Fig.14-20. For CALGAN [48], we

present only a single data point rather than the full
perception-distortion trade-off curve, as its official weights
are not publicly available. Extensive results show that AE-
SOP leads to substantial performance improvements against
baselines in terms of the perception-distortion trade-off.
Aligning to Tab.9, AESOP also often outperforms CAL-
GAN even without MoE-discriminator proposed in CAL-
GAN. Additionally, we observe that AESOP often results
in larger improvements for Swin Transformer-based meth-
ods (e.g., SwinIR, DRCT) compared to CNN-based meth-
ods (e.g., RRDB). This is likely because these models have
greater capacity and benefit more from the enhanced re-
construction guidance provided by AESOP. However, there
are instances where AESOP does not always lead to im-
proved performance. Specifically, AESOP often fails to en-
hance performance on the Manga109 [44] dataset, which is
consistent with the unexpected trade-off behaviors observed
across most methods in this dataset. This limitation arises
because Manga109 consists predominantly of comic im-
ages, which typically lack the fine-grained textures found in
photorealistic datasets. The absence of such textures poses
a challenge for perceptual SR methods, including AESOP,
which are specifically designed to enhance and preserve re-
alistic textures. Consequently, without the presence of these
detailed textures, AESOP’s advantages in minimizing fi-
delity bias and preserving perceptual variance are less pro-
nounced, leading to suboptimal performance in this partic-
ular dataset.



(a) Original (e) Difference(b) Original (c) AE (d) LPF

Figure 13. Visual comparison between Auto-Encoding and low-pass filtering. (a) Original image. (b) Original image in spectral domain.
(c) Auto-Encoded image. (d) Low-pass filtered image. (e) Absolute difference between the Auto-Encoded image and the low-pass filtered
image. Electronic viewer recommended.
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Figure 14. The perception-distortion trade-off curve between AESOP and baseline methods on top of the RRDB [54] backbone. The
training HR patch size is 128. AESOP often fails to improve the performance on the Manga109 dataset.
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Figure 15. The perception-distortion trade-off curve between AESOP and baseline methods on top of the RRDB [54] backbone. The
training HR patch size is 128. AESOP often fails to improve the performance on the Manga109 dataset.
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Figure 16. The perception-distortion trade-off curve between AESOP and baseline methods on top of the DRCT [18] backbone. The
training HR patch size is 256. AESOP often fails to improve the performance on the Manga109 dataset.
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Figure 17. The perception-distortion trade-off curve between AESOP and baseline methods on top of the DRCT [18] backbone. The
training HR patch size is 256. AESOP often fails to improve the performance on the Manga109 dataset.
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Figure 18. The perception-distortion trade-off curve between AESOP and baseline methods on top of the SwinIR [36] backbone. The
training HR patch size is 256. AESOP often fails to improve the performance on the Manga109 dataset.
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Figure 19. The perception-distortion trade-off curve between AESOP and baseline methods on top of the SwinIR [36] backbone. The
training HR patch size is 256. AESOP often fails to improve the performance on the Manga109 dataset.
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Figure 20. The perception-distortion trade-off curve between AESOP and baseline methods on top of the RRDB [54] backbone. The
training HR patch size is 256. AESOP mostly outperforms CALGAN [48] even without the MoE-discriminator.
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Figure 21. Visualization of AESOP (ours) and the baseline method for the bicubic ×4 SR task with SwinIR backbone. AESOP can generate
fine-grained textures with a lower level of visual artifacts. Zoom in for best view.
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Figure 22. Visualization of AESOP (ours) and the baseline method for the bicubic ×4 SR task with SwinIR backbone. AESOP can generate
fine-grained textures with a lower level of visual artifacts. Zoom in for best view.
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Figure 23. Visualization of AESOP (ours) and the baseline method for the bicubic ×4 SR task with RRDB backbone. AESOP can generate
fine-grained textures with a lower level of visual artifacts. Zoom in for best view.
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Figure 24. Visualization of AESOP (ours) and the baseline method for the bicubic ×4 SR task with RRDB backbone. AESOP can generate
fine-grained textures with a lower level of visual artifacts. Zoom in for best view.
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