
Calibrated Multi-Preference Optimization for Aligning Diffusion Models

Supplementary Materials

A. Additional description

In this section, we provide additional details to Sec. 3 and Sec. 4 of the main manuscript. Specifically, we review the
preliminaries on diffusion models and flow-based models (Sec. A.1), preference optimization for diffusion models (Sec. A.2),
and provide details on loss weighting scheme (Sec. A.3).

A.1. Background on diffusion and flow-based models

Diffusion models. Let q(x) be the density of data distribution of a sample x and pω(x) be a generative model parameterized
by ω that approximates q. Given x → q(x), the diffusion model considers a series of latent variables xt at time t ↑ [0, 1].
Specifically, the forward process forms a conditional distribution q(xt|x), where the marginal distribution is given by

xt = εtx+ ϑtω, (9)

where ω → N (0, I), and εt,ϑt are noise scheduling functions such that satisfies ε0 ↓ 1, ε1 ↓ 0, and ϑ0 ↓ 0, ϑ1 ↓ 1. Let
us denote ϖt = log(ε2

t /ϑ
2
t) log signal-to-noise ratio (log-SNR), then ϖt is a decreasing function of t. Here, εt and ϑt (or

equivalently ϖt) is chosen to satisfy that x1 is indiscernible from Gaussian noise (i.e., p(x1) ↓ N (0, I)), and conversely,
x0 matches the data density q(x). Then the reverse generative process gradually denoises the random Gaussian noise
x1 → N (0, I) to recover x0. Specifically, the sampling process is governed by solving time-discretized SDE [17, 60] or
probability flow ODE [22, 58], by using the score function ↔ log q(xt). Training diffusion model then optimizes the neural
network to approximate the score function by sω(xt; t). Especially, using the noise-prediction model [17] is a common practice,
where the training objective can be written as following weighted loss objective [27]:

LDM(ω;x) = Et→U(0,1),ω→N (0,I)

[
↗ 1

2wtϖ
↑
t↘ωω(xt; t)↗ ω↘22

]
, (10)

where wt is a weighting function and ϖ↑
t is a time-derivative of ϖt. Note that when wt = 1 for all t ↑ (0, 1), it becomes the

variational lower bound (vlb) of KL divergence [25], and the original DDPM uses wtϖ↑
t = ↗1.

Flow models. Alternatively, flow-based models or stochastic interpolants [1, 38, 40] consider approximating the velocity field
v(xt, t) on x at time t ↑ (0, 1), and solve following probability flow ODE to transport noise to data distribution:

x↑
t = v(xt, t), (11)

where the marginal distribution of the solution of ODE matches the distribution qt(xt). Given xt = εtx + ϑtω for some
t ↑ (0, 1) and ω → N (0, I), the velocity field satisfies following:

v(xt, t) = E[x↑
t |Xt = xt] = ε↑

t E[x |Xt = xt] + ϑ↑
t E[ω |Xt = xt], (12)

and training objective for flow matching model is given as follows:

LFM(ω) = Et→U(0,1),ω→N (0,I)

[
↘vω(xt, t)↗ (ε↑

tx+ ϑ↑
tω)↘22

]
. (13)

Note that Eq. (13) is a special case of Eq. (10), when wt = ↗ 1
2ϖ

↑
tϑ

2
t [11, 27]. In case of Rectified Flow [38], we set εt = 1↗ t,

ϑt = t, and ϖt = 2 log(1↓t
t), and the training objective of rectified flow model is given as follows:

LRF(ω) = Et,ω[↘vω(xt, t)↗ (ω↗ x)↘22]. (14)

For SD3-M [11], we use Eq. (14) to compute the loss.

A.2. Diffusion preference optimization

For preference optimization with diffusion models, we consider following relaxation of original RLHF objective:

max
ω

R̄(x0:1, c)↗ ϱDKL
(
pω(x0:1|c) ↘ pref(x0:1|c)

)
, (15)

where R̄(x0:1, c) satisfies following:
R(x, c) = Eq(x0:1|x)

[
R̄(x0:1, c)

]
. (16)

Then by rearranging the equation derived from the closed solution of Eq. (15), we have following:

R̄(x0:1, c) = ϱ log
pω(x0:1|c)
pref(x0:1|c)

↗ ϱ logZ(c), (17)

where Z(c) is a partition function. From Eq. (17) and by rearranging q(x0:1|x) in the inside term, we have

Eq(x0:1|x)[R̄(x0:1, c)↗ ϱ logZ(c)] = Eq(x0:1|x)

[
ϱ log

pω(x0:1|c)
q(x0:1|x)

↗ ϱ log
pref(x0:1|c)
q(x0:1|x)

]

= ϱ
(
DKL(q(x0:1|x) ↘ pref(x0:1|c))↗DKL(q(x0:1|x) ↘ pω(x0:1|c))

)
.

(18)

Note that the KL divergence satisfies following (see [27] for details):

d

dt
DKL

(
q(xt:1|x ↘ pω(xt:1|c)

)
=

1

2
ϖ↑
tEω→N (0,I)

[
↘ωω(xt; c, t)↗ ω↘22

]
. (19)

By taking integration of Eq. (19) over t ↑ (1, 0), one can rewrite R(x, c) as follows:

R(x, c) =
ϱ

2
Et→U(0,1),ω→N (0,1)

[
ϖ↑
t

(
↘ωω(xt; c, t)↗ ω↘22 ↗ ↘ωε(xt; c, t)↗ ω↘22

)]
, (20)

For a triplet (c,x+,x↓), we consider following upper bound of a training objective for any convex function g : R ≃ R:

ς̄(ω) = g
(
R(x+, c)↗R(x↓, c)

)

= g

(
ϱ

2
Et,ω+,ω→

[
ϖ↑
t

(
↘ωω(x+

t ; c, t)↗ ω+↘22 ↗ ↘ωref(x
+
t ; c, t)↗ ω+↘22 ↗ ↘ωω(x↓

t ; c, t)↗ ω↓↘22 + ↘ωref(x
↓
t ; c, t)↗ ω↓↘22

)])

⇐ Et,ω+,ω→

[
g

(
1
2ϱϖ

↑
t

(
↘ωω(x+

t ; c, t)↗ ω+↘22 ↗ ↘ωref(x
+
t ; c, t)↗ ω+↘22 ↗ ↘ωω(x↓

t ; c, t)↗ ω↓↘22 + ↘ωref(x
↓
t ; c, t)↗ ω↓↘22

))]
,

where t → U(0, 1), ω+ → N (0, I), ω↓ → N (0, I), and the last inequality comes from the Jensen’s inequality. Using the
equation we defined in our main paper, i.e.,

Rω(xt, c, t)=ϖ↑
t

(
↘ωω(xt; c, t)↗ ω↘22 ↗ ↘ωref(xt; c, t)↗ ω↘22

)
, (21)

we derive following training objectives for DPO, IPO, and CaPO:

ςDPO(ω) = Et,ω+,ω→

[
↗ log ϑ

(
ϱ
(
Rω(x

+, c, t)↗Rω(x
↓, c, t)

))]

ςIPO(ω) = Et,ω+,ω→

[(
1↗ ϱ

(
Rω(x

+, c, t)↗Rω(x
↓, c, t)

))2]

ςCaPO(ω) = Et,ω+,ω→

[(
R(x+, c)↗R(x↓, c)↗ ϱ

(
Rω(x

+, c, t)↗Rω(x
↓, c, t)

))2]
,

(22)

where R(x, c) is a reward from the external reward model.
Independent noise sampling. Note that in original Diffusion-DPO paper [63], the author proposed to use same noise for x+

and x↓, i.e., ω+ = ω↓, while we sample independent noise for ω+ and ω↓. We believe this is more theoretically grounded, and
empirically found that it has slightly better performance than using the same noise (even for DPO and IPO).

A.3. Loss weighting

In practice, we multiply wt to the noise-prediction loss for diffusion preference optimization. One can consider this as setting
timestep-wise different ϱt = ϱwt, i.e., giving different regularization hyperparameters at each time t ↑ (0, 1). Thus, we have

Rω(xt, c, t)=wtϖ
↑
t

(
↘ωω(xt; c, t)↗ ω↘22 ↗ ↘ωref(xt; c, t)↗ ω↘22

)
, (23)

(a) Weighting for noise-prediction loss (b) Weighting for flow matching loss

Figure 5. Loss weighting. We plot the weighting function with bias b → {↑2,↑1, 0, 1, 2} for each noise prediction loss and flow matching
loss.

and applies to each DPO, IPO, and CaPO loss. As we mentioned in Sec. 4.4 in our main draft, we use sigmoid loss
weighting [27], where the loss weights are sigmoid function of log-SNR ϖt with bias b:

wt = w(ϖt) =
1

1 + exp(b↗ ϖt)
. (24)

Note that SDXL uses a modified DDPM schedule [17], where ϱ =
(⇒

ϱ0 +
t

T↓1 (
√

ϱT↓1 ↗
⇒
ϱ0)

)2, and εt = (
∏t

s=0(1↗
ϱs))1/2. Since it is impractical to compute ϖ↑

t, we simply set it as constant (i.e., linear ϖt, which empirically holds when
ϖt ↑ [↗15, 5], and for ϖt > 0.5 the weight wt is close to 0, so one can ignore it).

SD3-M uses a rectified flow scheduler [38], where ϖt = 2 log(1↓t
t). Note that we have

Et→U(0,1),ω

[
↘vω(xt, t)↗ (ω↗ x)↘22

]
= Eϑ→U(ϑmin,ϑmax),ω

[
e↓ϑ/2↘ωω(xϑ,ϖ)↗ ω↘22

]
, (25)

where xϑ denotes forward process of x with log-SNR value ϖ, and ϖmin and ϖmax denotes the minimal and maximal value
for log-SNR (see [27] Appendix D.3 for details). As such, multiplying w = ϑ(↗ϖ) to noise-prediction loss is equivalent to
multiplying (eϑ/2 + e↓ϑ/2)↓1 to flow matching objective:

ϑ(↗ϖ)↘ωω(xϑ,ϖ)↗ ω↘22 = ϑ(↗ϖ) · e
↓ϑ/2

e↓ϑ/2
↘ωω(xϑ,ϖ)↗ ω↘22 =

1

eϑ/2 + e↓ϑ/2
↘vω(xϑ,ϖ)↗ (ω↗ x)↘22. (26)

If we shift with bias b, it becomes wϑ = (e↓(ϑ↓b)/2 + e(ϑ↓b)/2)↓1. In Fig. 5, we plot loss weighting functions for noise-
prediction loss and flow matching loss with different bias b ↑ {↗2,↗1, 0, 1, 2}. In practice, we select ϖ → U [↗10, 10] and
multiply wϑ to flow matching loss. Note that multiplying wϑ has a similar effect in log-normal sampling proposed in [11, 22],
where we empirically find similar performance. To ensure consistency with SDXL experiments, we use loss weighting instead
of logit-normal sampling for SD3-M experiments.

B. Implementation Details

B.1. Dataset

Reward models. For reward models learned by fine-tuning CLIP models (e.g., Pickscore [28], MPS [71]), we compute the
reward by the dot product between the image embedding and the text embedding. To compute MPS score, we additionally
multiply the text embedding from condition textual description (e.g., textual description for aesthetic quality). For VQAscore,
we use CLIP-FlanT5-XXL [37], and compute the score by probability of "Yes" token given the image and question provided
to the model:

P
(
"Yes"|x,"Does this figure shows {prompt}? Please answer yes or no."

)
, (27)

where x, prompt are image and text input. While VQAscore is not a Bradley-Terry model, we simply approximate the
win-rate by following:

P(x ⇑ x↑|c) = s(x, c)ϖ

s(x, c)ϖ + s(x↑, c)ϖ
, (28)

(a) MPS scores of training dataset (b) VQAscores of training dataset (c) VILA scores of training dataset

(d) Calibrated MPS scores of training dataset (e) Calibrated VQAscores of training dataset (f) Calibrated VILA scores of training dataset

Figure 6. Training dataset score distribution. We plot the histogram of rewards (top row) and calibrated rewards (bottom row) of training
dataset. By using calibration, the scores are centered and bounded in range [0, 1].

where s(x, c) is a VQAscore and ε > 0 is a hyperparameter to control the temperature. We find ε = 1 works well in our
experiments. Lastly, VILA-R score [24] outputs the aesthetic score between 1-10, and we apply the Bradley-Terry model to
compute the win-rate. In Fig. 6, we plot the histogram of reward scores and calibrated rewards of our training dataset.
Training dataset. We use 100K prompts from DiffusionDB [64] and generate N = 16 images per prompt. For SDXL, we use
DDIM [58] scheduler, guidance scale of 7.5 and sampling steps of 50. For SD3-M, we use the DPM solver [39] for flow-based
models, guidance scale of 5.0 and sampling steps of 50. Furthermore, as described in [11], we shift the timestep schedules to
reside more on higher timesteps, i.e., we set t ⇓ ts

1+t(s↓1) with shift scale s = 3.0.

B.2. Training and evaluation

Training configuration. Throughout experiments, we use Jax [14] and train models using the Optax library on TPU chips. For
both SDXL and SD3-M experiments, we use Adam [26] optimizer. Regarding training configuration for SDXL experiments,
we use batch size of 256, learning rate of 1e-5 with linear warmup for first 1000 steps, and train for maximum 10000 steps.
For SD3-M, we use batch size of 256, learning rate of 1.5e-5 with linear warmup for first 1000steps, and train for maximum
5000 steps. We choose hyperparameter ϱ by sweeping over {300, 500, 1000} for CaPO, {500, 1000, 2000} for IPO, and
{2000, 3000, 4000} for DPO when training SDXL model. For SD3-M, we sweep over {30, 50, 100} for CaPO, {50, 100, 200}
for IPO, and {100, 200, 300} for DPO. For all training, we use sigmoid loss weighting with b = 1.5 for SDXL and b = ↗1.0
for SD3-M (including all DPO, IPO, and CaPO). During training, we generate images using subset of Parti prompts at each
1000-th iteration, and choose the final model with maximum validation win-rate (average of win-rates for multi-reward signals).
Model soup. For model merging experiments, we follow [51]. Specifically, suppose ω0 be weights of a pretrained model and
ω1, ω2 be weights of fine-tuned models. Then the spherical linear interpolation (SLERP) between ω1 and ω2 is given by

SLERP(ω0, ω1, ω2,ϖ) = ω0 +
sin((1↗ ϖ)!)

sin(!)
(ω1 ↗ ω0) +

sin(ϖ!)

sin(!)
(ω2 ↗ ω0), (29)

where ! is the angle between two task vectors ω1 ↗ ω0 and ω2 ↗ ω0, and ϖ ↑ (0, 1) is a coefficient. To merge three fine-tuned
models, we first merge two models with ϖ = 0.5 to obtain ω12 = SLERP(ω0, ω1, ω2, 0.5), then merge ω12 and ω3 with ϖ = 1/3
to obtain final model.

Four cats surrounding a dog

Flower with cat’s face in the middle

a cat sitting on a box with a drawing of an elephant on it

Figure 7. Effect of multi-reward CaPO. We demonstrate the qualitative comparison between CaPO with single-reward with each MPS,
VQAscore, and VILA, and CaPO with multi-reward on SDXL. We see that optimizing with single-reward improves upon the base model,
yet multi-reward CaPO shows the best overall improvement. For example, while using VQAscore alone improves the image-text alignment,
the image aesthetics are significantly improved when using multi-reward. Also, when using VILA score, the image aesthetics improve, but it
often lose the image-text alignment (e.g., the image becomes drawing style, while only the elephant should be in a drawing style).

Evaluation. For evaluation, we generate images with the same configuration as in Sec. B.1 for different benchmark prompt
dataset. For SDXL, we use Parti [69] prompts, and for SD3-M we use DPG-bench [20]. Then we compute the win-rate against
the base model by comparing one-by-one comparison for each image, e.g., if we have K images from base model and K
images from fine-tuned model, we make K2 comparison and count the number of win and divide by K2. We also report the
average reward scores. Remark that the average reward scores and win-rate could show different trends, as the model achieves
a higher score gain for some prompts, but it fails to improve on others. Thus, we found win-rate is a more general metric to see
the generalization over different prompts.

Benchmark evaluation. We use GenEval [16] and T2I-Compbench [21] to evaluate our models. For T2I-Compbench, we
use BLIP-VQA model [34] to evaluate Color, Shape, Texture, Complex, and UniDet [72] for Spatial, and CLIP [46] for Non
Spatial. For baselines, we compare with the state-of-the-art open-source text-to-image diffusion models Flux-dev (12B) [29],
Flux-schnell (12B) [29], and Stable Diffusion 3.5-Large (8B) [11]. Since those models are much larger than SDXL (2.6B) and
SD3 (2B), we remark that this is not a fair comparison, yet we show the comparable performance of our method.

MPS VQA VILA

Constant weighting 54.9 53.6 55.7

Sigmoid weighting (b = 0) 57.0 53.9 66.9
Sigmoid weighting (b = ↑1.0) 59.0 55.7 69.3

Table 6. Ablation on loss weighting for SD3-M. We show the results of CaPO multi-reward fine-tuning SD3-M with constant weighting
(i.e., ↑wtω

→
t = 1), and sigmoid weighting by varying bias b = 0.0,↑1.0. Similar to SDXL, using sigmoid weighting shows better results

than constant weighting, and b = ↑1.0 performs the best.

CaPO+SDXL SDXL Improvement CaPO+SDXL Diffuion-DPO Improvement CaPO+SD3-M SD3-M Improvement

54.5% 45.5% +10% 52.0% 48.0% +4% 53.5% 46.5% +7%

Table 7. User study results. We report the win-rate from the user study by using 200 images. We compare CaPO+SD3-M vs SD3-M,
CaPO+SDXL vs SDXL, and CaPO+SDXL vs Diffusion-DPO [63]. CaPO achieves consistent win against baseline.

C. Additional ablation study

Effect of multi-reward. We demonstrate the effect of multi-reward CaPO compared to single-reward CaPO. As we
demonstrated in Tab. 1 and Tab. 2 in our main draft, the single-reward model achieves the best score in which they have
trained with, but the other metrics score below the multi-reward cases. We showcase the qualitative examples on the effect of
multi-reward preference optimization compared to single-reward cases in Fig. 7. We notice that single-reward fine-tuning
is often imperfect, e.g., fine-tuning with only VILA score loses image-text alignment, and fine-tuning with only VQAscore
lacks image aesthetics. On the other hand, multi-reward fine-tuning complements those issues and improves the overall image
quality.
Loss weighting for SD3-M. We show the effect of loss weighting when training SD3-M models. Similar to SDXL, we
compare the results of CaPO multi-reward fine-tuning with different bias parameters. In Tab. 6, we show that sigmoid
weighting with bias b = ↗1.0 shows the best result, outperforming the constant weighting counterpart. Note that for SDXL,
b = 1.5 performs the best, while for SD3-M, negative bias b = ↗1.0 performs the best. Remark that as SD3-M performs
diffusion modeling on 16⇔ 128⇔ 128, and SDXL performs on 4⇔ 128⇔ 128, the bias shifts toward negative as the total
variance becomes higher, and the log-SNR should be increased [18, 19].

User study evaluation. We conduct additional user evaluations to compare our method with base models. For SDXL vs
CaPO+SDXL, we randomly select 200 prompts from Parti prompt dataset [69], and for SD3-M vs CaPO+SD3-M, we randomly
select 200 prompts from GenAI bench prompt dataset [33]. Additionally, we compare CaPO+SDXL with Diffusion-DPO [63]
again with 200 randomly selected prompts. We give following instructions to the raters:

• Instruction: Given the text below, pick the left or the right image with better looking.
• Good example: Images are beautiful and following text description.
• Bad example: Images are not looking good or not following text description.

We use Amazon mechanical Turk [2] and 5 raters answered to each pair. In Tab. 7, we show the results of user study. We
observe that CaPO+SD3-M and CaPO+SDXL consistently outperform SD3-M and SDXL, respectively. Also, CaPO+SDXL
outperforms Diffusion-DPO, yet the margin is smaller than CaPO+SDXL vs SDXL.

Three cameras on the table A cat with visible ears is riding

… room with a painting of a corgi on the wall above a
couch and a round coffee table in front of a couch…

A rabbit in a fluffy dress is hopping through a garden of
flowers.

A hiking trail marker with 'Journey Begins Here.' Five purple umbrellas open in a line.

a painting of a house on a mountain (Aesthetic ↑) A train going to the moon (Aesthetic ↑)
Figure 8. Additional qualitative comparison between CaPO SDXL and SDXL. We provide additional qualitative comparison between
CaPO SDXL and SDXL. The CaPO SDXL model demonstrates better image-text alignment (e.g., counting, attribute binding, etc), as well
as image aesthetics (e.g., artistic style, detail, etc). We bold the text to highlight the prompts that demonstrate improvement in image-text
alignment, and (Aesthetic ↓) to demonstrate the improvement in image aesthetic quality.

A dog, a cat and a chicken on a table. An elegant doorway with 'Welcome Paradise'
painted above it.

The word 'START' written in chalk on a sidewalk A t-shirt with Carpe Diem written on it

A white bird in front of a dinosaur standing by some trees A dog tunes violin (Aesthetic ↑)

An orange wearing a cowboy hat (Aesthetic ↑) Graffiti of a funny dog on a street wall (Aesthetic ↑)

Figure 9. Additional qualitative comparison between CaPO SDXL and Diffusion-DPO [63]. We provide additional qualitative
comparison between CaPO SDXL and Diffusion-DPO [63]. CaPO SDXL shows better image-text alignment and image aesthetics compared
to Diffusion-DPO without using any human annotated data. We bold the text to highlight the prompts that demonstrate improvement in
image-text alignment, and (Aesthetic ↓) to demonstrate the improvement in image aesthetic quality.

This is a fridge without any food. There are some apples on the table,
but no oranges

Three curious monkeys three brown chairs and one ceramic spoons

…brightly colored storefront with large, bold letters
spelling out ‘Awesome Purchase’ above the entrance…

‘I love you’ written in serif font in grass

A Bullfrog croaking loudly by a pond, startling a nearby cat. … vibrant pink lipstick… necklaces with glittering
pendants… (Aesthetic ↑)

Figure 10. Additional qualitative comparison between CaPO SD3-M and SD3-M. We provide additional qualitative comparison between
CaPO SD3-M and SD3-M. CaPO SD3-M shows better image-text alignment, e.g., negation (first row), counting (second row), visual
text rendering (third row). Also it demonstrates better image aesthetics (fourth row right). We bold the text to highlight the prompts that
demonstrate improvement in image-text alignment, and (Aesthetic ↓) to demonstrate the improvement in image aesthetic quality.

	Introduction
	Related Work
	Preliminaries
	Proposed Method
	Motivation
	CaPO
	Preference Pair Selection
	Loss weighting

	Experiments
	Single reward experiments
	Multi-reward experiments
	Ablation Studies
	Discussions

	Conclusion
	Additional description
	Background on diffusion and flow-based models
	Diffusion preference optimization
	Loss weighting

	Implementation Details
	Dataset
	Training and evaluation

	Additional ablation study

