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Figure 1. (a) CoC sizes based on the position of object relative to the focus plane, and (b) CoC sizes based on the aperture size.

1. Implementation Details
CoCoGaussian is built upon 3DGS [1] and Deblurring
3DGS [2], trained with a total of 30k iterations with the
number of CoC Gaussians, M , set to 5. For coarse geom-
etry in the early training stages, hθ is not trained during
the first 2k iterations and begins training afterward. We set
δqmax and δsmax to 1.1. Additionally, after hθ has been
coarsely trained for 4k iterations, CNN F starts training.
Note that, prior to the training of F , the (M + 1) output
images are averaged to obtain a blurry image. Additionally,
we apply a positional encoding layer [5], γ, to 3D points
(i.e., xcam and µB):

γ(xcam) =
(
sin(2kπxcam), cos(2kπxcam)

)L−1

k=0
, (1)

γ(µB) =
(
sin(2kπµB), cos(2

kπµB)
)L−1

k=0
, (2)

where L denotes the number of the frequencies. The hθ

consists of 3 serial MLP layers, each with 64 hidden units,
and parallelized 4 head layers for K, β, d, and δ(q, s). The

CNN F comprises 4 convolutional layers with 64 channels
each. To compensate for the sparse initial point cloud, we
adopt the approach from Deblurring 3DGS, adding approxi-
mately 200k additional points after 2.5k iterations and prun-
ing Gaussians based on depth. All experiments are con-
ducted on either an NVIDIA RTX 3090 or NVIDIA V100
GPU.

2. Circle of Confusion

In this section, we explain the principles behind the gener-
ation of the Circle of Confusion (CoC) based on the focus
plane and aperture size. As shown in Fig. 1 (a), when a
subject is precisely located on the focus plane, the radiance
emitted from a point on the subject is projected onto the im-
age sensor as a single point. However, when the subject is
positioned away from the focus plane, the radiance passes
through the lens and forms a circular point spread function
on the image sensor. As this circle increases in size, the de-
focus effect becomes more pronounced. However, even if
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Figure 2. The Luminance Difference between Defocused and Sharp Images. All the luminance values are normalized ranging between 0
and 1.

the subject is off the focus plane, the circle is perceived as a
single point if its radius remains below a certain threshold,
known as the “acceptable CoC.” Thus, even when a CoC
exists on the image sensor, the resulting image is perceived
as all-in-focus if the CoC is smaller than this threshold.

Additionally, the size of the aperture is another key fac-
tor influencing the size of the CoC. As illustrated in Fig. 1
(b), radiance emitted from a subject passes through the
lens and the aperture. With a larger aperture, the radiance
forms a larger CoC on the image sensor. With a smaller
aperture, only a portion of the light passing through the
lens reaches the sensor, resulting in a smaller CoC. Con-
sequently, a smaller aperture produces CoCs smaller than
acceptable CoC, leading to an all-in-focus image. However,
a smaller aperture also reduces the amount of light reaching
the image sensor during the same exposure time, requiring
a longer exposure to collect sufficient light. Therefore, cap-
turing an all-in-focus image necessitates (1) a small aperture
size and (2) stability to prevent camera movement during
the extended exposure time.

Difference from DoF-NeRF [8]. DoF-NeRF is the first
study to apply a physical CoC to 3D scene representation.
As it uses NeRF [5], a ray tracing-based method, as its back-
bone, it has the advantage of directly modeling the CoC that
reaches the image sensor for a single ray. Specifically, each
ray is represented as a CoC on the image sensor, and the
color derived from the ray is divided by area of the CoC,
ensuring uniform pixel color within a single CoC. However,
this approach has three major limitations: (1) it assumes a
uniform point spread function (PSF), significantly reducing
the flexibility of learning in real-world scenario, (2) it heav-
ily relies on the CoC based on estimated depth, even when
derived from uncertain depth, and (3) as an implicit neu-
ral representation, its training and rendering are extremely
slow.

In contrast, while our CoCoGaussian also models the
CoC in different way, it overcomes these three limitations:
(1) By generating multiple Gaussians to form the CoC and
performing a weighted sum of the resulting images using
a CNN F , our approach provides much greater learning
flexibility for the PSF. (2) While 3DGS also suffers from
challenges with uncertain depth, we propose methods to
make CoCoGaussian robust to such depth inaccuracies, as
described in Sec. 4.3 of the main paper. (3) Since our back-
bone, 3DGS, is an explicit rasterization-based method, it
guarantees fast training and rendering speeds. Thus, while
CoCoGaussian draws inspiration from DoF-NeRF, the con-
tributions are clearly distinct and independent.

3. Deblur-NeRF [4] Real-World Dataset
As shown in Tab. 1 of the main paper, not only our method
but also other methods on the Deblur-NeRF [4] Real-World
dataset exhibit relatively poor PSNR and SSIM scores com-
pared to their LPIPS performance. This discrepancy arises
from inherent issues within the dataset itself, primarily the
luminance differences between the defocused images used
for training and the sharp images used for evaluation. As
illustrated in Fig. 2, the CISCO and CORAL scenes have
higher luminance in the sharp images, while the SAUSAGE
scene has higher luminance in the defocused images. These
differences result in lower PSNR and SSIM scores. How-
ever, LPIPS evaluates high-level features that align with hu-
man visual perception, making it the most reliable metric
for this dataset. Consequently, as shown in Tab. 1, CoCo-
Gaussian achieves the best LPIPS score, highlighting the
comprehensive performance of our approach.

4. Additional Ablation Study
In this section, we conduct two ablative experiments. The
first focuses on qualitative results related to the CoC scaling



factor β, and the second evaluates the quantitative results
based on the number of CoC Gaussian sets M .

CoC Scaling Factor. As shown in Tab. 3 of our main pa-
per, excluding the CoC scaling factor when modeling CoC
Gaussians results in slightly lower performance. This fac-
tor is designed to enable robust training of CoC Gaussian
positions, even with imperfectly optimized depth, which of-
ten occurs in scenes involving reflection or refraction. We
visualize scenes with reflections and refractions in Fig. 3.
The top scene models a transparent cup where light refracts,
and the rendered result without CoC scaling shows signif-
icant artifacts on the cup. Similarly, in the bottom scene,
where a metallic pipe causes light reflection, the absence
of CoC scaling leads to many floaters in the affected ar-
eas. This indicates that the CoC Gaussians without CoC
scaling factor are overfitted to the training images, resulting
in poorly optimized base Gaussian positions µB . Further-
more, this overfitting may potentially affect the covariance
of the Gaussians and their SH coefficients. In other words,
objects with reflections or refractions often exhibit incon-
sistent radiance depending on the view direction, making
it challenging for 3DGS [1] to properly optimize for such
textures. This inherent limitation of 3DGS causes the CoC
Gaussians to overly rely on inaccurately optimized depth,
leading to suboptimal outputs. By incorporating the CoC
scaling factor during training, we enable robust modeling
of CoC Gaussians even in scenes with challenging reflec-
tive or refractive surfaces.

Number of CoC Gaussians. We conduct ablative exper-
iments on the number of CoC Gaussians, M , with the re-
sults as shown in Tab. 1. For PSNR and SSIM, the scores
vary inconsistently as M changes. This inconsistency arises
primarily from differences in light exposure between de-
focused images for training and sharp images for evalua-
tion, which depends on the aperture size and exposure time
used to equalize the amount of light. In the DoF-NeRF [8]
dataset, defocused images are captured with an aperture of
f/4 and an exposure time of 1/13 seconds, while sharp im-
ages are captured with an aperture of f/11 and an exposure
time of 0.8 seconds. The change from f/4 to f/11 reduces
light by a factor of 1/8 due to a 3-stop aperture decrease.
Meanwhile, the exposure time increases by a factor of ap-
proximately 10.4, from 1/13 seconds to 0.8 seconds. Ac-
counting for both aperture and exposure time, sharp images
receive 1.3 times more light than defocused images, mak-
ing the latter slightly darker. Consequently, higher PSNR
and SSIM scores do not necessarily indicate better quality.

On the other hand, for LPIPS, larger values of M gen-
erally result in better performance. Since LPIPS evaluates
quality based on high-level features, such as geometric dif-
ferences, rather than pixel-level or luminance-based differ-
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Figure 3. Qualitative Ablation of CoC Scaling Factor. The figures
are from CUP and TOOLS scenes of Deblur-NeRF [4] real-world
dataset.

ences, it aligns more closely with human visual perception.
As a result, a lower LPIPS score is a more reliable measure
of image quality compared to higher PSNR or SSIM scores.
Further details are provided in Sec. 3.

5. Computational Efficiency and Speed
We compare our GPU usage, training time, and render-
ing speed with BAGS [7], a state-of-the-art method, on
the Deblur-NeRF real-world dataset using an NVIDIA RTX
3090. As shown in the Tab. 2, CoCoGaussian achieves com-
parable resource consumption and training time while deliv-
ering superior performance.



Table 1. Quantitative Results for the Number of CoC Gaussian Sets M . The orange and yellow cells respectively indicate the highest
and second-highest values.

Methods
AMIYA BOOK CAMERA DESK

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

M = 2 30.06 0.9313 0.0915 30.74 0.9277 0.0626 29.44 0.9276 0.0725 30.07 0.9163 0.0652
M = 3 31.02 0.9389 0.0882 31.89 0.9377 0.0576 29.36 0.9270 0.0723 30.57 0.9273 0.0592
M = 4 30.71 0.9395 0.0858 30.45 0.9207 0.0600 29.63 0.9283 0.0707 29.68 0.9193 0.0532
M = 5 30.59 0.9406 0.0867 31.58 0.9304 0.0585 30.21 0.9372 0.0609 29.94 0.9188 0.0559
M = 6 31.21 0.9411 0.0829 30.94 0.9255 0.0573 29.39 0.9266 0.0698 29.48 0.9151 0.0524

Methods
KENDO PLANT SHELF AVERAGE

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

M = 2 25.77 0.8414 0.1303 31.21 0.8899 0.0901 32.02 0.9351 0.0455 29.90 0.9099 0.0797
M = 3 25.83 0.8441 0.1264 30.78 0.8814 0.0859 29.91 0.9131 0.0462 29.91 0.9099 0.0765
M = 4 25.76 0.8246 0.1277 29.59 0.8642 0.0830 31.20 0.9245 0.0480 29.57 0.9030 0.0755
M = 5 26.26 0.8560 0.1160 31.01 0.8881 0.0693 31.38 0.9181 0.0431 30.14 0.9127 0.0701
M = 6 26.67 0.8607 0.1117 27.58 0.8661 0.0894 31.42 0.9243 0.0460 29.53 0.9085 0.0728

Table 2. Computational Efficiency and Speed. * indicates that the
rendering speed is identical to that of the corresponding model.

Methods GPU Memory Training Time Rendering Speed(GB) (min)

BAGS [7] 4.7 47 *Mip-Splatting [9]
CoCoGaussian 5.3 45 *3DGS [1]

After the training phase, CoCoGaussian renders sharp
images using only the GB through a naive 3DGS. In the
other words, the rendering speed and memory cost are the
same as 3DGS alone. Therefore, our method is feasible for
real-time applications that rely on 3DGS rendering speeds.

6. CoC Visualization
We visualize the CoC for various types of images in Fig. 4
and Fig. 5. To simplify the visualization, we randomly sam-
ple a subset of positions from numerous Gaussians. The
points in Fig. 4 represent the positions of Gaussians for de-
focused images. For images where the focus plane is close
to the camera, CoCoGaussian generates CoC sizes that are
very small for shallow depths and progressively larger for
deeper depths. However, when the focus plane is farther
from the camera, the CoC sizes reconstructed at greater
depths are smaller. This demonstrates the effectiveness of
our modeling, accurately reflecting the principles of defo-
cus blur.

In contrast, Fig. 5 visualizes the CoC for an all-in-focus
scene [5], where the CoC sizes remain uniformly small re-
gardless of depth. This suggests that the learned aperture
size is very small, ensuring precise modeling of all-in-focus
images. In other words, CoCoGaussian can model small
apertures and capture subtle defocus effects that are imper-

ceptible to the human eye, which contributes to its superior
performance compared to naive 3DGS [1], as demonstrated
in Tab. 4 of the main paper. In summary, our model can
accurately represent 3D scenes for both defocused and all-
in-focus images, highlighting its versatility and robustness.
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Figure 4. Gaussian Positions of Defocused Images. The black and gray dots indicate base and CoC Gaussians, respectively.
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Figure 5. Gaussian Positions of All-in-Focus Images.



7. Per-Scene Quantitative Results
We present the performance for individual scenes across all
datasets in Tabs. 3 to 5. CoCoGaussian achieves the best
LPIPS scores in all scenes except for the CORAL scene
in the Deblur-NeRF Real-World dataset. As discussed in
Secs. 3 and 4, this indicates that CoCoGaussian exhibits the
most superior high-level feature representation.



Table 3. Per-Scene Quantitative Results on Deblur-NeRF [4] Synthetic Dataset.

Methods
FACTORY COZYROOM POOL TANABATA TROLLEY

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF [5] 25.36 0.7847 0.2351 30.03 0.8926 0.0885 27.77 0.7266 0.3340 23.90 0.7811 0.2142 22.67 0.7103 0.2799
3DGS [1] 24.52 0.8057 0.1842 30.09 0.9024 0.0692 20.14 0.4451 0.5094 23.08 0.7981 0.1710 22.26 0.7400 0.2281

Deblur-NeRF [4] 28.03 0.8628 0.1127 31.85 0.9175 0.0481 30.52 0.8246 0.1901 26.26 0.8517 0.0995 25.18 0.8067 0.1436
PDRF-10 [6] 30.90 0.9138 0.1066 32.29 0.9305 0.0518 30.97 0.8408 0.1893 28.18 0.9006 0.0819 28.07 0.8799 0.1210
DP-NeRF [3] 29.26 0.8793 0.1035 32.11 0.9215 0.0386 31.44 0.8529 0.1563 27.05 0.8635 0.0779 26.79 0.8395 0.1170

Deblurring 3DGS [2] 27.39 0.8922 0.1160 31.29 0.9201 0.0505 31.27 0.8565 0.1556 27.04 0.9029 0.0872 27.53 0.8843 0.1167
BAGS [7] 30.87 0.9334 0.0724 32.45 0.9312 0.0289 31.78 0.8645 0.0932 29.19 0.9278 0.0405 28.97 0.9070 0.0804

Ours 30.15 0.9300 0.0489 33.02 0.9410 0.0213 31.96 0.8788 0.0803 29.65 0.9396 0.0263 29.41 0.9165 0.0620

Table 4. Per-Scene Quantitative Results on Deblur-NeRF [4] Real-World Dataset.

Methods
CAKE CAPS CISCO CORAL CUPCAKE

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF [5] 24.42 0.7210 0.2250 22.73 0.6312 0.2801 20.72 0.7217 0.1256 19.81 0.5658 0.2155 21.88 0.6809 0.2689
3DGS [1] 20.16 0.5903 0.2082 19.08 0.4355 0.4329 20.01 0.6931 0.1781 19.50 0.5519 0.3111 21.53 0.6794 0.2081

Deblur-NeRF [4] 26.27 0.7800 0.1282 23.87 0.7128 0.1612 20.83 0.7270 0.0868 19.85 0.5999 0.1160 22.26 0.7219 0.1214
PDRF-10 [6] 27.06 0.8032 0.1622 24.06 0.7102 0.2854 20.68 0.7239 0.0943 19.61 0.5894 0.2335 22.95 0.7421 0.1862
DP-NeRF [3] 26.16 0.7781 0.1267 23.95 0.7122 0.1430 20.73 0.7260 0.0840 20.11 0.6107 0.0960 22.80 0.7409 0.1178

Deblurring 3DGS [2] 26.91 0.8039 0.1136 24.45 0.7391 0.1509 20.55 0.7227 0.0816 18.99 0.5534 0.2767 22.11 0.7356 0.1021
BAGS [7] 26.53 0.7996 0.1113 24.15 0.7422 0.1391 20.31 0.7230 0.0759 19.63 0.6016 0.1114 21.52 0.6971 0.1214

Ours 26.65 0.8043 0.1037 24.62 0.7472 0.1334 20.83 0.7359 0.0680 19.57 0.5925 0.1105 22.48 0.7515 0.0739

Methods
CUPS DAISY SAUSAGE SEAL TOOLS

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF [5] 25.02 0.7581 0.2315 22.74 0.6203 0.2621 17.79 0.4830 0.2789 22.79 0.6267 0.2680 26.08 0.8523 0.1547
3DGS [1] 20.55 0.6459 0.3211 20.96 0.6004 0.2629 17.83 0.4718 0.2855 22.25 0.5905 0.3057 23.82 0.8050 0.1953

Deblur-NeRF [4] 26.21 0.7987 0.1271 23.52 0.6870 0.1208 18.01 0.4998 0.1796 26.04 0.7773 0.1048 27.81 0.8949 0.0610
PDRF-10 [6] 26.39 0.8066 0.1370 24.49 0.7426 0.1024 18.94 0.5686 0.2126 26.36 0.7959 0.1927 28.00 0.8995 0.1395
DP-NeRF [3] 26.75 0.8136 0.1035 23.79 0.6971 0.1075 18.35 0.5443 0.1473 25.95 0.7779 0.1026 28.07 0.8980 0.0539

Deblurring 3DGS [2] 26.23 0.8230 0.1014 23.39 0.7288 0.0979 18.83 0.5609 0.1470 26.04 0.8087 0.0988 27.86 0.9069 0.0619
BAGS [7] 26.14 0.8194 0.0901 23.00 0.7332 0.0540 18.66 0.5721 0.1176 26.16 0.8050 0.0967 28.72 0.9148 0.0450

Ours 26.20 0.8317 0.0773 23.39 0.7425 0.0503 19.20 0.5864 0.1007 26.10 0.8243 0.0663 27.91 0.9149 0.0416

Table 5. Per-Scene Quantitative Results on DoF-NeRF [8] Real-World Dataset.

Methods
AMIYA BOOK CAMERA DESK

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS [1] 26.16 0.8718 0.1761 24.73 0.8480 0.1980 25.05 0.8429 0.1641 27.47 0.8760 0.1422

DP-NeRF [4] 28.64 0.8849 0.1421 28.51 0.8520 0.1669 26.50 0.8667 0.1332 27.57 0.8238 0.1712

Deblurring 3D-GS [6] 26.21 0.8728 0.1815 27.29 0.8754 0.1584 25.63 0.8486 0.1796 29.08 0.8478 0.1672
BAGS [3] 31.86 0.9453 0.0874 29.41 0.7515 0.2214 29.20 0.9248 0.0730 29.77 0.9175 0.0722

Ours 30.59 0.9406 0.0867 31.58 0.9304 0.0585 30.21 0.9372 0.0609 29.94 0.9188 0.0559

Methods
KENDO PLANT SHELF AVERAGE

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS [1] 20.63 0.6839 0.2715 26.64 0.7897 0.2047 29.37 0.8913 0.1150 25.72 0.8291 0.1817

DP-NeRF [4] 19.64 0.6166 0.3205 28.07 0.8158 0.1668 28.64 0.8415 0.1525 26.80 0.8145 0.1790

Deblurring 3D-GS [6] 22.74 0.7559 0.1904 26.66 0.7900 0.2081 28.44 0.8798 0.1102 26.58 0.8386 0.1708
BAGS [3] 26.19 0.8457 0.1291 30.66 0.8644 0.1128 32.03 0.9223 0.0741 29.87 0.8816 0.1100

Ours 26.26 0.8560 0.1160 31.01 0.8881 0.0693 31.38 0.9181 0.0431 30.14 0.9127 0.0701
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