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A. Further Details of Experimental Setup

Datasets For the datasets in unsupervised domain adapta-
tion (UDA), we use OfficeHome and DomainNet. Office-
Home contains four domains (images of art, clipart, prod-
uct, real world) with 65 categories and 16,107 of images in
total. While DomainNet originally includes six domains,
we conduct experiments on four domains, images of cli-
part, real world, sketch, and painting, following the previ-
ous studies [17, 20, 23], with 345 classes and 373,061 of
images in total. For the ImageNet in semi-supervised learn-
ing (SSL), we use 13000 and 128000 images during training
for the evaluation settings of 1% and 10% of labeled sam-
ples, respectively, following SimMatch [33].
Implementation details Eq. 5 in the main paper indicates
the entropy minimization loss, LU , which we apply to all
feature-level KD baseline methods [18, 19, 21] (including
ours) using a consistent λU value of 0.1 across all methods.
Since prediction-level KD baseline methods [1, 8, 32] have
target predictions for xU obtained from the teacher mod-
els, we replace the entropy minimization loss with KD loss
functions using those target predictions for them.

While using the default values of hyper-parameters of
each baseline method, we find the lambda value for each
KD loss function through a grid search of {0.1, 1, 10, 100}.
For UDA, we use the lambda value of 0.1 for Soft Tar-
gets [8], 1.0 for Logits [1], 0.1 for DKD [32], 10.0 for
RKD [18], 10.0 for CC [19], and 10.0 for FitNet [21]. For
CustomKD, while fixing 10.0 for λft , we set λf̃t

as 10.0
and 1.0 for OfficeHome and DomainNet, respectively. For
SSL, we use the lambda value of 0.1 for Soft Targets [8], 0.1
for Logits [1], 0.1 for DKD [32], 0.1 for RKD [18], 1.0 for
CC [19], and 100.0 for FitNet [21]. For CustomKD, we set
λft = λf̃t

= 100.0 for CIFAR-100 and λft = λf̃t
= 10.0
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for ImageNet. For training KD baselines in UDA, we use
the learning rate of 0.1 for both datasets, and we use 60
epochs and 20 epochs for OfficeHome and DomainNet, re-
spectively. For SSL, we use the learning rate of 0.0001 for
CIFAR-100 and 0.00005 for ImageNet with 50 epochs of
training for both datasets. For linear probing, we train θct for
20 epochs for OfficeHome in UDA while using 10 epochs
for DomainNet and CIFAR-100. All experiments were con-
ducted with a single GPU of RTX A5000 using less than
24GB GPU memory usage.

We fix the resolution size of the input image for teacher
models to 224×224 while using the image size of edge
models by following the protocol we used. This leads us to
use 224×224 for UDA and ImageNet in SSL, while using
32×32 for CIFAR-100 in SSL. Regarding the computations
for the number of parameters and Multiply-Accumulate Op-
erations (MACs) in Table 5 of the main paper, we use the
repository named pytorch-OpCounter 1. Again, we com-
pute the number of parameters and MACs by using the input
size of 224×224 and 32×32 for the teacher and the student,
respectively.

Regarding θht , we use a non-linear layer that consists of
1) a linear layer that transforms the embedding dimension
of ft to that of fs, 2) a batch normalization layer, and 3)
ReLU function. For θhs , the input dimension and the output
dimension for the first linear layer correspond to the embed-
ding dimension of fs and ft, respectively, while also using
the batch normalization layer and ReLU function. We re-
move the batch normalization layers in both θht and θhs for
ImageNet in SSL.

B. Pseudocodes for CustomKD

Along with the description in Sec. 3.3 of the main paper,
we also explain our proposed method CustomKD through
pseudocodes. Stop gradient denotes that we do not allow
gradient backpropagation for the process in the correspond-

1https://github.com/Lyken17/pytorch-OpCounter
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ing line. As mentioned in the main paper, we do not modify
the forward process of the edge models during the inference
stage.

Algorithm 1 Pseudocodes for CustomKD

1: Require: Pre-trained edge model θs, pre-trained LVFM
θt, labeled dataset DL, unlabeled dataset DU

2: for epoch = 1, 2, . . . , N do
3: for all (x, y) ∈ DL do ▷ Feature customization
4: Obtain ft = θet (x) ▷ Stop gradient
5: Obtain f̃t = θht (ft)
6: Compute Lt = CE(θcs(f̃t), y)
7: Update only θht via ∇Lt

8: end for
9: for all (x, y) ∈ (DL ∪DU ) do ▷ KD

10: Obtain ft = θet (x), f̃t = θht (ft) ▷ Stop gradient
11: Obtain fs = θes(x), f̃s = θhs (fs)
12: Compute Lf̃t

= ||fs − f̃t||2, Lft = ||f̃s − ft||2
13: Compute LL = CE(θs(xL), yL), LU =

H(θ̂s(xU ))
14: Compute Ls = LL+λULU +λftLft +λf̃t

Lf̃t

15: Update θhs , θcs, θes via ∇Ls

16: end for
17: end for

C. Further Experiments and Results
In the main paper, we could not include the experiments
of SSL task using ImageNet due to the page limit. Ta-
ble 1 shows that CustomKD again improves the SSL perfor-
mance on ImageNet, demonstrating the scalability of Cus-
tomKD on large-scale datasets. Again, we want to em-
phasize again that CustomKD does not require complicated
techniques such as artificial label augmentation or predic-
tion augmentations, which are widely used in SSL stud-
ies [4, 13, 25, 31, 33]. Therefore, we believe that the su-
periority of CustomKD is well established considering its
consistent performance gains on various datasets and the
simplicity of its training process.

In Table 2, we include the results of other SSL baseline
methods on CIFAR-100 that we could not report due to the
space limit in Table 4 of our main paper. We also com-
pare our method with other KD baseline methods by using
the pretrained model trained without any SSL module, de-
noted as Source. Again, we observe that our method consis-
tently improves the SSL performance on both edge models
of AdaMatch and Source, demonstrating the wide scalabil-
ity of our method regardless of the pretrained edge mod-
els. Additionally, applying our method on Source model
achieves a comparable performance with our reproduced
AdaMatch.

Table 3 shows that CustomKD also improves the UDA

Methods Top-1 Top-5
1% 10% 1% 10%

Vat + EntMin [7, 15] - 68.8 - 88.5
S4L-Rotation [30] - 53.4 - 83.8

UDA [27] - 68.8 - 88.5
FixMatch [22] - 71.5 - 89.1
CoMatch [13] 67.1 73.7 87.1 91.4
SimMatch [33] 67.2 74.4 87.1 91.6

CustomKD 67.5 74.7 87.6 91.9

Table 1. Image classification accuracy of semi-supervised learning
on Imagenet.

performances of other student models regardless of the
backbone scale, following Table 5 of the main paper that
reports the results on SSL. For the experiments, we use Mo-
bileNetV3 [9] and ShuffleNet [14] for the edge models and
OpenCLIP [10] for the teacher model. As shown, addition-
ally using Lf̃t

consistently improves the UDA performance
compared to using only Lft . Also, the performance gap
between our method and using only Lft increases as we
change the backbone of the teacher model from a small one
(i.e., ViT-B) to a big one (i.e., ViT-L). Such a result demon-
strates that it is challenging to improve the UDA perfor-
mance with large backbones, while CustomKD can consis-
tently improve it through customizing the well-generalized
knowledge of teachers to a given edge model.

Due to the space limit in the main paper, only the average
results are reported in Section 5. The results in Table 4, Ta-
ble 5, Table 6 include the results of each domain in Table 6,
Table 7(a), Table 7(b) of the main paper, respectively.

D. Limitations
One limitation, as previously mentioned in the conclusion
of the main paper, is that this paper mainly focuses on ad-
dressing the image classification task. While computer vi-
sion encompasses a plethora of tasks such as object detec-
tion or semantic segmentation, we leave them as the future
work of our study. However, we believe that our approach
can be modified in a task-specific manner and applied to
these tasks, potentially inspiring future researchers.



Category Methods Labels
400 2500 10000

DINO-V2 [16] 17.92 11.49 9.13
Supervised* [29] 28.20 28.20 28.20

SSL

Pseudolabel [12] 87.15 59.09 38.86
Meanteacher [24] 90.34 61.13 39.05

Vat [15] 83.11 53.17 36.58
MixMatch [3] 79.95 49.58 32.10

RemixMatch [2] 57.10 34.77 26.18
AdaMatch [4] 47.82 33.26 27.53
FixMatch [22] 53.37 34.29 28.28
FlexMatch [31] 50.15 33.35 27.12

Dash [28] 53.98 34.47 27.72
Crmatch [6] 49.39 31.35 26.24

CoMatch [13] 60.98 37.24 28.15
SimMatch [33] 48.82 32.54 26.42
FreeMatch [26] 49.24 32.79 27.17
SoftMatch [5] 49.64 33.05 27.26

Pretrained AdaMatch* [4] 52.07 37.92 32.5

KD

Soft Target [8] 48.71 31.73 27.66
Logits [1] 49.71 33.42 28.16
DKD [32] 45.18 30.43 26.19
RKD [18] 50.11 34.24 29.11
CC [19] 49.85 33.72 28.75

FitNet [21] 48.58 30.87 29.41
Ours 32.51 25.52 24.66

Pretrained Source* [4] 90.36 69.73 49.60

KD

Soft Target [8] 66.67 61.77 41.81
Logits [1] 75.03 62.75 42.43
DKD [32] 54.51 57.19 39.19
RKD [18] 92.20 64.00 42.73
CC [19] 91.90 63.62 41.76

FitNet [21] 68.00 49.40 37.72
Ours 52.02 38.59 31.06

Table 2. Error rates of semi-supervised learning on CIFAR-100. For the results of SSL methods, we report the mean results in Unified
SSL Benchmark (USB) [25]. * indicates reproduced results using codes of USB. We compare our method with other KD baselines using
edge models pretrained 1) with AdaMatch and 2) without any SSL module, denoted as Source. Supervised indicates using all labels for
the entire data samples.



Teacher Teacher Teacher Methods MobileNetV3 [9] ShuffleNet [14]
Type Backbone Accuracy* (2.54M, 0.06G) (7.39M, 0.60G)

- - - Source 52.70 62.16

OpenCLIP [10]

ViT-B 77.24 Lft 56.37 66.84
(57.26M, 11.27G) Lft + Lf̃t

62.76 (+6.39) 69.56 (+2.72)

ViT-L 85.55 Lft 57.66 68.06
(202.05M, 51.89G) Lft + Lf̃t

68.02 (+10.36) 72.50 (+4.44)

Table 3. Averaged image classification accuracy on art, clipart, and product using the student model pretrained on the images of real world
as the source domain in OfficeHome. The first and second numbers in the bracket of each model indicate the number of parameters and
Multiply-Accumulate Operations (MACs), respectively. * indicates that we performed linear probing using only labeled samples (i.e.,
images of source domain) for the teacher.

Metric θct Init. A2CA A2P A2RW CA2A CA2P CA2RW P2A P2CA P2RW RW2A RW2CA RW2P Avg.

Teacher Acc. Random 63.96 80.92 85.17 72.23 81.12 80.26 68.65 66.87 85.31 77.75 68.82 89.3 76.70
θcs 65.59 79.95 84.51 70.29 80.15 79.66 65.68 64.72 82.76 76.02 66.76 89.64 75.48

Student Acc.↑ Random 32.71 43.59 58.30 35.15 52.89 50.91 30.00 33.33 59.65 53.36 44.81 71.07 47.15
θcs 44.77 61.03 66.79 46.77 63.35 59.97 38.77 40.99 66.90 59.66 51.48 77.16 56.47

CKA(fs, ft)↑
Random 0.29 0.50 0.47 0.36 0.55 0.47 0.34 0.42 0.49 0.42 0.50 0.59 0.45

θcs 0.53 0.60 0.56 0.43 0.63 0.53 0.41 0.50 0.57 0.49 0.55 0.69 0.54

CKA(fs, f̃t)↑
Random 0.31 0.50 0.49 0.34 0.51 0.42 0.33 0.41 0.46 0.44 0.49 0.58 0.44

θcs 0.65 0.72 0.69 0.47 0.65 0.57 0.48 0.57 0.64 0.61 0.65 0.76 0.62

Table 4. Comparisons on the initialization of the head classifier of teacher models during the feature customization stage. We report the
results of each domain of Table 6 in the main paper. CKA refers to the centered kernel alignment [11].

LL, LU Lft Lf̃t
RW2A RW2CA RW2P Avg.

✓ – – 52.62 43.96 71.91 56.16
✓ ✓ – 52.49 44.93 71.53 56.32
✓ – ✓ 59.99 49.67 76.75 62.14
✓ ✓ ✓ 59.66 51.50 77.13 62.76

Table 5. Ablation study on our loss functions. Given that the real world images are used for the source domain, we report the results of
three target domains for Table 7(a) of the main paper.

Alternating Epochs RW2A RW2CA RW2P Avg.

30:1 59.25 50.74 76.68 62.22
10:1 59.13 50.90 76.57 62.20
5:1 59.29 51.02 76.53 62.28
1:1 59.66 51.50 77.13 62.76

Table 6. Analysis on the frequency of the feature customization stage. Given that the real world images are used for the source domain, we
report the results of three target domains for Table 7(b) of the main paper.
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