
Dense-SfM: Structure from Motion with Dense Consistent Matching

Supplementary Material

1. Experiment
1.1. Sparse feature matching with our refinement

Sparse Det. & Matcher Refinement Accuracy (%) Completeness (%)

1cm 2cm 5cm 1cm 2cm 5cm

SIFT + NN

Raw 66.4 78.62 89.38 0.12 0.60 3.02
PixSfM 76.81 86.72 94.28 0.15 0.66 3.12
DFSfM 82.66 90.41 96.3 0.14 0.59 2.78

Ours 82.37 90.42 96.3 0.15 0.63 3.01

R2D2 + NN

Raw 59.7 73.92 87.25 0.34 1.4 6.42
PixSfM 76.31 85.62 93.37 0.42 1.52 6.43
DFSfM 81.51 89.81 95.81 0.47 1.63 6.57

Ours 83.1 90.5 96.03 0.45 1.58 6.54

SP + SG

Raw 67.04 78.85 89.42 0.31 1.35 6.82
PixSfM 79.98 87.84 94.52 0.49 1.85 8.31
DFSfM 81.4 89.23 95.74 0.37 1.42 6.69

Ours 83.37 90.74 96.58 0.38 1.49 7.01

Table 1. Comparison of sparse local features accompanied with
our refinement and PixSfM, DetectorFree-SfM (DFSfM). Our
method is compared with the baselines on the ETH3D dataset us-
ing accuracy and completeness metrics with different thresholds.

Our track refinement module (multi-view kernelized
matching described in Sec.3.3) can also be applied to re-
fine SfM models reconstructed using sparse detection and
matching to further improve the robustness of SfM. We
evaluate each SfM result on the ETH3D dataset, assessing
accuracy and completeness following the ETH3D bench-
mark [9].

As shown in Tab. 1, our refinement module consistently
outperforms PixSfM and DFSfM in accuracy when accom-
panied by the same sparse detectors and matchers. Fur-
thermore, our refinement module does not compromise the
completeness much for higher accuracy.

1.2. Semi-dense matching with our pipeline

Matcher Matching Preprocess Refinement Accuracy (%) Completeness (%)

1cm 2cm 5cm 1cm 2cm 5cm

LoFTR
Quantization DFSfM 80.38 89.01 95.83 3.73 11.07 29.54
Quanzization Ours 82.93 90.74 96.56 4.28 12.49 32.09

Ours(GS-Extension) Ours 85.47 92.63 97.44 6.05 15.01 33.45

Table 2. Comparison of LoFTR(semi-dense matching) accom-
panied with matching process for track consistency and track
refinement. Our method is compared with the baselines on the
ETH3D dataset using accuracy and completeness metrics with dif-
ferent thresholds.

We also apply our pipeline with semi-dense matcher,
LoFTR, by replacing dense matchers (e.g. DKM or RoMa)

with LoFTR for building an initial SfM (without mutual
verification). Specifically, to address pairwise matching’s
inconsistency, we compare our proposed Gaussian Splatting
(GS) based track extension with quantization, and also eval-
uate our refinement module against DFSfM’s refinement
module.

As shown in Tab. 2, our GS based track extension not
only provides superior accuracy but also improves com-
pleteness compared to quantization, highlighting its effec-
tiveness. Furthermore, our refinement module consistently
outperforms the one proposed in DFSfM, demonstrating the
overall superiority of our pipeline when paired with a semi-
dense matcher.

1.3. Implementation Details
As in PixSfM and DFSfM, we obtain match results from
exhausitive pairs within a set of images. To obtain dense
matching from image pairs, we resize images to 1162 ×
768 for the ETH3D dataset and IMC 2021 dataset, while
maintaining the original size of 840 × 840 for the Texture-
Poor SfM dataset.

Since dense matching methods (e.g. DKM and RoMa)
are computationally heavier than detector-based or semi-
dense approaches due to their pixel-wise matching process,
we improve efficiency by obtaining coarse matches at a
lower resolution (560× 560 for the ETH3D and IMC 2021,
420 × 420 for the Texture-Poor SfM dataset) in the global
matching stage of RoMa, which dominates the runtime. We
then refine the matches to the target resolution. Under this
configuration, on the ETH3D dataset, RoMa achieves a run-
time of 0.08 seconds per image pair on a single A6000 GPU.
In comparison, DFSfM with LoFTR operates at a higher
resolution (1600× 1200) and requires 0.2 seconds per pair.
Our matching pipeline, which includes bidirectional match-
ing with verification, runs in 0.17 seconds per pair, out-
performing the LoFTR-based pipeline while maintaining a
comparable matching speed.

1.4. More Ablation Study
In this section, we validate the effectiveness of our refine-
ment pipeline by evaluating its performance on the recon-
struction task, which involves recovering both camera poses
and 3D point cloud. For evaluating point cloud accuracy, we
use the Pipes scene from the ETH3D dataset, as the scene
provides ground-truth point clouds. We align reconstructed
poses with the ground truth poses through COLMAP [8],
aligning 3D point as well, and evaluate the accuracy of point
cloud following the ETH3D benchmark [9].

As shown in Tab. 4, our pipeline improves the accuracy



Matching Design Scene Name Avg.courtyard delivery area electro facade kicker meadow office pipes playground relief relief2 terrace terrains
Average Track Length

Raw 2.19 2.06 2.12 2.41 2.09 2.08 2.07 2.03 2.04 2.08 2.05 2.12 2.08 2.11
Quantized Matching (r=4) 3.43 3.11 3.37 4.82 2.90 2.86 2.91 2.89 3.05 3.21 3.13 3.19 3.14 3.23
Track Extension via GS 5.12 4.59 5.11 9.48 4.18 3.58 4.23 3.97 4.25 5.75 5.15 4.61 4.64 4.97

Table 3. Comparison of average track length accompanied with matching strategies (Quantization, Track Extension via GS) to obtain
consistent tracks.

Refinement Camera Pose Estimation Accu.(%) (Pipes)

AUC@1◦ AUC@3◦ AUC@5◦ 1cm 2cm 5cm

No Refine 39.20 66.51 74.12 55.02 78.91 93.90
Iter 1 60.83 78.26 82.54 66.35 85.71 95.95

Track Extension via GS + Iter 2 60.92 78.41 82.63 74.75 92.06 97.98

Table 4. Ablation Study of Refinement Iterations. On the
ETH3D dataset, we quantitatively evaluate the impact of the num-
ber of refinement iterations. The AUC of pose error and accuracy
of 3D points at different thresholds are reported.

of both pose and point cloud through refinement. Note that
the point cloud of No Refine is triangulated from two-view
non-quantized matching results (resulting in most tracks
having a length of 2), based on coarse poses obtained from
quantized matching as DFSfM. Thanks to track extension
via Gaussian Splatting, we can feed more views into our
multi-view kernelized refinement module, resulting in a
slight improvement on camera pose accuracy, and a signifi-
cant improvement on point cloud accuracy.

1.5. Runtime Comparison
We evaluate the runtime of our multi-view kernelized
matching module against the multi-view matcher module in
DFSfM[2] on the Pipes scene, using the same SfM model
for refinement. Our proposed refinement module costs a
runtime increase about 22%, from 35.3s to 43.2s on a sin-
gle A6000 GPU, due to the added computational cost of the
Gaussian Process and CNN Decoder.

2. Details of Track extension via Gaussian
Splatting

We present here the detailed implementation of track exten-
sion via Gaussian Splatting.

2.1. Training Gaussians
Initialization. As described in Sec.3.2 in the main paper,
3D Gaussians are initialized based on the initial SfM point
cloud. We set the initial Gaussians’ position to the 3D point
coordinates, opacity to 1, and rotation to the identity matrix.
The scale parameter S is determined using the method in
Splatem [3], where each Gaussian’s radius is set such that it
is projected as an one-pixel radius circle on the 2D image.
Specifically, we compute depth values for each 3D point
based on the camera poses of its keypoints. Then we select

the maximum value across the depth values and divide it by
the focal length as follows:

S =
Dmax

f
(1)

where Dmax represents the maximum depth value for
the 3D point, and f is the focal length.

Training details. Since the images of the dataset we
used for evaluation consist of sparse views on a scene,
we use training setup with Few-Shot Gaussian Splatting
(FSGS) [12] where it uses Proximity-guided Gaussian Un-
pooling [12] for densifying Gaussians. For training loss, we
only use photometric loss between rendered image and orig-
inal image (excluding depth regularizer), because the esti-
mated depth from a monocular depth estimation network
can differ from the semi-dense depth provided by the ini-
tial SfM, potentially interfering with the visibility checks
for the initialized Gaussians (SfM’s 3D points).

All images used in the SfM reconstruction are leveraged
for training 3D Gaussians. Gaussians are densified every
500 iterations from the 1,500 iterations to 5000 iterations,
with total optimization steps set to 6,000. The training
time requires approximately 5 minutes on Pipes scene in the
ETH3D dataset on a single RTX 4090 GPU. Other training
parameters follow those outlined in FSGS [12].

Unlike the standard training of GS [4] that requires over
10,000 iterations for high-quality rendering, our process fo-
cuses only on verifying the visibility of the initial SfM’s 3D
points. Thus, we do not need as many iterations as the gen-
eral training for high quality image rendering [4, 12].

2.2. Track length analysis
Tab. 3 compared average track length. The results show
that our method significantly increases track length, which
enables our refinement module to leverage more views, con-
tributing to the higher accuracy reported in Tab.3 (1) of the
main paper.

3. Applying Gaussian Splatting
To demonstrate the utility of our framework, we use it
to initialize 3D Gaussians for novel view synthesis in a
few-shot setting. Starting from SfM points, we apply



SfM Initialization Metrics
L1↓ PSNR↑ SSIM↑ LPIPS↓

SIFT 0.0784 18.41 0.612 0.377
LoFTR+DFSfM 0.0750 18.63 0.633 0.358

RoMa+Ours 0.0697 19.27 0.660 0.332

Table 5. Quantitative Comparison in the LLFF Dataset, with 3
Training Views. Initialization with our method achieves the best
performance in terms of rendering accuracy on all metrics.

Few-Shot Gaussian Splatting (FSGS) [12] on the LLFF
dataset[7]. We compare the performance of 3D Gaus-
sian models initialized using SIFT [6] with COLMAP,
DetectorFree-SfM (DFSfM) with LoFTR, and our frame-
work with RoMa, using fixed camera poses and intrinsics
provided by FSGS [12] pipeline. For Gaussian initializa-
tion and training, we use only three views and render the
original image size provided in the dataset.

For evaluation, test images are selected from the same
scene in the LLFF dataset, excluding training images used
for initialization and training. As shown in Tab. 5, our
method demonstrates significantly superior performance,
thanks to dense and accurate initialized point cloud gener-
ated by our framework.

4. Limitations and Future works

A key limitation of our framework is that track extension
via Gaussian Splatting struggles in scenes with high pho-
tometric variation or transient occlusions. As future work,
our pipeline can be extended with more advanced Gaussian
Splatting models [1, 5, 10, 11], to better handle occlusions
and appearance changes, allowing our framework to per-
form robustly in a wider range of scenarios.

References
[1] Hiba Dahmani, Moussab Bennehar, Nathan Piasco, Luis

Roldao, and Dzmitry Tsishkou. Swag: Splatting in the wild
images with appearance-conditioned gaussians, 2024. 3

[2] Xingyi He, Jiaming Sun, Yifan Wang, Sida Peng, Qixing
Huang, Hujun Bao, and Xiaowei Zhou. Detector-free struc-
ture from motion. CVPR, 2024. 2

[3] Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula,
Gengshan Yang, Sebastian Scherer, Deva Ramanan, and
Jonathon Luiten. Splatam: Splat, track & map 3d gaussians
for dense rgb-d slam. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2024.
2

[4] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 2

[5] Jonas Kulhanek, Songyou Peng, Zuzana Kukelova, Marc

Pollefeys, and Torsten Sattler. WildGaussians: 3D gaussian
splatting in the wild. arXiv, 2024. 3

[6] David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60:91–110, 2004. 3

[7] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 2019. 3

[8] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 1

[9] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,
Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-
dreas Geiger. A multi-view stereo benchmark with high-
resolution images and multi-camera videos. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2538–2547, 2017. 1

[10] Yuze Wang, Junyi Wang, and Yue Qi. We-gs: An in-the-wild
efficient 3d gaussian representation for unconstrained photo
collections, 2024. 3

[11] Dongbin Zhang, Chuming Wang, Weitao Wang, Peihao Li,
Minghan Qin, and Haoqian Wang. Gaussian in the wild: 3d
gaussian splatting for unconstrained image collections, 2024.
3

[12] Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang.
Fsgs: Real-time few-shot view synthesis using gaussian
splatting, 2024. 2, 3


	Experiment
	Sparse feature matching with our refinement
	Semi-dense matching with our pipeline
	Implementation Details
	More Ablation Study
	Runtime Comparison

	Details of Track extension via Gaussian Splatting
	Training Gaussians
	Track length analysis

	Applying Gaussian Splatting
	Limitations and Future works

