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Supplementary Material

In this supplementary material, we provide more imple-
mentation details, introduce additional evaluations on var-
ious tasks, and conduct further ablation studies with more
qualitative and quantitative analysis.
• More implementation details are provided in Sec. A.
• We conduct the user study in Sec. B to further evaluate

the visual quality of our method.
• Additional evaluations on single image deblurring task is

introduced in Sec. C.
• Further ablation studies for our DiET-GS++ are presented

in Sec. D to validate our design choice.
• More qualitative and quantitative results on novel-view

synthesis are provided in Sec. E.

A. Implementation Details
Training. During training, we follow the configuration of
the original 3DGS. The learnable camera response function
CRF(·) is introduced after a 1,500-iteration warm-up. Sim-
ilarly, the regularization term Ledi simul is employed after
a 7,000-iteration warm-up, since DiET-GS should be able
to simulate the blurry images properly. Following [1], we
leverage the color events in Lev during training on real-
world scenes, where the color events record color inten-
sity changes following a Bayer pattern [6]. In this case,
the luma conversion h(·) is dropped from Eq. 6 and Lev is
directly applied to the color channel responsible for trigger-
ing events. Furthermore, since green pixels appear twice as
often in an RGBG Bayer pattern, we weigh the events’ con-
tributions by 0.4, 0.2, and 0.4 for each of the RGB channels.

Leveraging Diffusion Prior. We use Stable Diffusion ×4
Upscaler (SD×4) [11] as a pretrained diffusion model to
provide diffusion prior. SD×4 is originally designed to
upscale the image while recovering high-resolution details,
with the low-resolution image as a conditional input to the
diffusion UNet. However, we find that SD×4 is also effec-
tive at enhancing edge details at the same resolution. During
the RSD optimization, we sample uniform random crops
of 128×128 resolution in latent space for fast optimization
speed, following [5]. A constant learning rate of 1e−2 is
employed for all learnable parameters fg in Stage 2.

Color Correction. As also noted in [3, 14], we empiri-
cally find that leveraging diffusion prior alone in Stage 2
can exhibit color shifts. To address this issue, we adopt
wavelet-based color correction proposed in [14] as a post-
processing step. Specifically, let us denote the two images
Ĉ and C̃ rendered from DiET-GS and DiET-GS++ respec-
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Figure 7. User study. DiET-GS++ is compared to E2NeRF, Ev-
DeblurNeRF (denoted as EDNeRF) and DiET-GS by 60 evaluators
for each pair. DiET-GS++ gains significantly higher votes against
the baselines, showing at least 37.96% difference.

tively as follows:

C̃ = D(f2D + E(Ĉ)), Ĉ = g(p), (8)

where g(·) is the pretrained 3D Gaussians from DiET-GS
with a rendering function and p is the given camera pose.
We assume that Ĉ is capable of preserving the accurate
color due to the color guidance from ground-truth blurry
images and EDI prior in Stage 1. In contrast, C̃ from DiET-
GS++ tends to show a color shift since it solely relies on
diffusion prior while the edge details are effectively en-
hanced. To combine the accurate color information from
Ĉ and sharp edge details of C̃, we first decompose both
images into high-frequency and low-frequency components
via the wavelet decomposition. Considering that color in-
formation belongs to the low-frequency components while
fine-grained details are mostly high-frequency components,
we simply incorporate the low-frequency parts of Ĉ and
high-frequency parts of C̃ to obtain the final output. More
details about wavelet-based color correction can be found
in [14].

B. User Study

To evaluate the visual quality in terms of human perception,
we conduct a user study with 60 evaluators. Specifically,
we collect 30 pairs of samples from the test views of both
synthetic and real-world datasets, where each pair consists
of two images rendered from identical poses using different
methods. During the user study, evaluators were asked to
select the image with better quality between the two pre-
sented options for every pair.

Baselines. We compare our DiET-GS++ to event-based de-
blurring rendering methods, including E2NeRF [10] and
Ev-DeblurNeRF [1]. Furthermore, DiET-GS++ is also



Methods Batteries Powersupplies Labequipment Figures Drones Average
MUSIQ↑ CLIP-IQA↑ MUSIQ↑ CLIP-IQA↑ MUSIQ↑ CLIP-IQA↑ MUSIQ↑ CLIP-IQA↑ MUSIQ↑ CLIP-IQA↑ MUSIQ↑ CLIP-IQA↑

MPRNet [16] 23.50 0.1074 34.01 0.1284 23.34 0.1082 24.10 0.1326 30.97 0.1034 27.18 0.1160
NAFNet [2] 34.43 0.2363 49.25 0.2045 35.47 0.2023 28.87 0.2264 41.64 0.1543 37.93 0.2047
Restormer [17] 28.71 0.1210 42.32 0.1154 32.13 0.1252 30.99 0.1631 36.37 0.0790 34.10 0.1207
EDI [9] 38.80 0.2013 49.63 0.2260 33.53 0.1338 41.77 0.2675 41.75 0.1991 41.10 0.2055
EFNet [12] 35.32 0.1503 45.23 0.1934 30.13 0.1435 38.45 0.2234 39.12 0.1762 37.65 0.1773
BeNeRF [7] 47.31 0.1704 56.06 0.2445 44.25 0.1789 46.97 0.2653 48.71 0.2054 48.66 0.2129
DiET-GS++ 51.23 0.2654 56.32 0.2598 45.14 0.2034 52.43 0.3012 50.34 0.2078 51.09 0.2475

Table 3. Quantitative comparisons on single image deblurring with real-world datasets.

Methods MUSIQ↑ Training time (hr) Rendering time (s)Stage 1 Stage 2 Total

E2NeRF [10] 39.47 24.3 - 24.3 2.4139
Ev-DeblurNeRF [1] 39.70 3.4 - 3.4 0.8861

DiET-GS 45.31 9.8 - 9.8 0.0014
DiET-GS++ 51.71 9.8 0.17 10.0 1.8703
DiET-GS++-light 50.23 1.1 0.17 1.3 1.8703

Table 4. Comparison on training time and rendering time.

compared with DiET-GS trained from Stage 1 to demon-
strate the efficacy of leveraging diffusion prior in Stage 2.

Results. As shown in Fig. 7, our DiET-GS++ gains at least
68.98% of the votes in each comparison, further validating
the effectiveness of our framework. It also shows the clear
gap of 37.96% over DiET-GS (cf . Fig. 7c), highlighting the
efficacy of enhancing the edge details with diffusion prior
in Stage 2.

C. Single Image Deblurring

We also conduct experiments on the single image deblurring
task using the real-world Ev-DeblurCDAVIS dataset [1].
For evaluation, we randomly select 5 blurry images per
scene and compare our DiET-GS++ against various single
image deblurring baselines on these sampled images.

Baselines. We classify the baselines into three categories.
The first category is frame-based single image deblurring
methods that rely solely on RGB frames to recover a clean
image. MPRNet [16], NAFNet [2], and Restormer [17] are
selected for this category. The second category is event-
enhanced deblurring methods that utilize additional event
data to improve visual quality, consisting of EDI [9] and
EFNet [12]. The third category combines NeRF and events
to tackle single image deblurring, where BeNeRF [7] is cho-
sen for this category. BeNeRF reconstructs the 3D scenes
by learning the camera trajectory from a single blurry image
and corresponding event stream to deblur the given single
view. Once we have trained BeNeRF, the deblurred image
is produced by rendering the mid-exposure pose of the im-
age along the estimated camera trajectory.

Evaluation metrics. Since real-world dataset lacks the
ground-truth images for the mid-exposure poses of blurry
views, we employ the No Reference Image Quality Assess-
ment (NR-IQA) metrics: MUSIQ [4] and CLIP-IQA [13]
for the evaluation.

Results. We present the quantitative comparisons in Tab. 3.
Our DiET-GS++ consistently outperforms all baselines in
every 5 real-world scenes. Specifically, compared to BeN-
eRF, performance is improved by an average of 2.43 and
0.0346 in MUSIQ and CLIP-IQA scores, respectively.
Furthermore, we also present qualitative comparisons in
Fig. 10. As shown in 2nd column, frame-based image
deblurring method NAFNet often produces inaccurate de-
tails since it solely relies on blurry images to recover fine-
grained details. EDI and BeNeRF recover more precise de-
tails, benefiting from the event-based cameras while severe
artifacts are still exhibited. Our DiET-GS++ shows the best
visual quality with cleaner and well-defined details by lever-
aging EDI and pretrained diffusion model as prior.

D. Ablation Study
We present additional ablation studies to thoroughly inves-
tigate each component of DiET-GS++. All the experiments
are conducted on a real-world scene, namely, Figures sam-
ple.

D.1. Training and Rendering Efficiency.

We compare the optimization and rendering efficiency of
our method to event-enhanced rendering methods, includ-
ing E2NeRF [10] and Ev-DeblurNeRF [1] in Tab. 4. We
present the training time of Stage 1 and Stage 2 separately,
while the training time of Stage 2 remains blank if the cor-
responding method employs single-stage training. We ob-
serve from Tab. 4: 1) DiET-GS and DiET-GS++ require
longer training time compared to Ev-DeblurNeRF. We find
that RSD optimization in Stage 1 is the main factor of
prolonged training time, since the gradient from the RSD
loss flows to the 3D Gaussians through the pretrained VAE
encoder, which introduces significant computational over-
head. We thus propose the light variant of our DiET-GS++
in the 5th row by simply excluding the RSD loss in Stage 1,
which we refer to as DiET-GS++-light. Despite a slight per-
formance drop in MUSIQ scores, our variant DiET-GS++-
light shows the fastest optimization speed with a ×2.6
speedup in convergence compared to Ev-DeblurNeRF. 2)
Training time for Stage 2 in DiET-GS++ only requires 0.17
hours, while showing a significant improvement in MUSIQ
scores compared to DiET-GS. In contrast to RSD optimiza-
tion in Stage 1, the learnable latent residual is directly ren-



CRF(·) PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑ CLIP-IQA↑

✘ 32.93 0.8703 0.1123 38.93 0.2000
✓ 34.89 0.9049 0.0600 45.31 0.2471

Table 5. Ablation on camera response function CRF(·).
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Figure 8. Qualitative analysis on camera response function.
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Figure 9. Ablation on wavelet-based color correction.

dered from DiET-GS without exploiting the VAE encoder,
which thus leads to faster gradient computation. 3) DiET-
GS enables real-time rendering, benefiting from the explicit
representations of 3DGS. However, our DiET-GS++ ex-
hibits longer rendering time compared to Ev-DeblurNeRF,
since the rendered image is further refined through the VAE
encoder and decoder. Nonetheless, leveraging diffusion
prior is reasonable given the performance improvement of
12.0 MUSIQ scores compared to Ev-DeblurNeRF.

D.2. Camera Response Function

Tab. 5 shows the effectiveness of leveraging the learn-
able camera response function CRF(·), showing the perfor-
mance improvement in all 5 metrics. Furthermore, Fig. 8
demonstrates that the CRF(·) function is capable of restor-
ing more well-defined details. As noted in [1], employing
the learnable camera response function naturally fills the
gap between the RGB space and the brightness change per-
ceived by the event camera, thus effectively restoring the
intricate details.

Discussion. Although we adopt the similar strategy with [1]
by leveraging learnable camera response function, we dif-
fer from [1] as follows: We further combine the CRF(·)
function into the EDI formulation, proposing the novel EDI
constraint for enhancing fine-grained details. As shown in
the Fig. 5b, EDI color guidance Ledi color proposed by [1]
often yields over-smoothed details since it treats each RGB
channel as brightness which deviates from the real-world
setting. To compensate the well-defined details, we pro-
pose Ledi gray by modeling the EDI in the brightness do-
main with exploiting learnable CRF(·) function. Using the
Ledi color and Ledi gray together enables the mutual com-

Conditional input PSNR↑ SSIM↑ LPIPS↓ MUSIQ↑ CLIP-IQA↑

EDI-processed image 34.25 0.8964 0.0754 41.47 0.2233
ground-truth blurry image 34.89 0.9049 0.0600 45.31 0.2471

Table 6. Ablation on conditional input of RSD optiimzation in Stage 1.

pensation between accurate color and well-defined details,
achieving the best visual quality as shown in the Fig. 5c.

D.3. Conditional Input of Diffusion UNet

In Tab. 6, we explore the various options for conditional in-
put of the diffusion UNet during the RSD optimization in
Stage 1. The 1st row of Tab. 6 exploits the EDI-processed
image as conditional input, while the sharp image rendered
from 3DGS is given as the input to the diffusion process.
However, this choice leads to inferior performance com-
pared to leveraging the ground-truth blurry image as con-
ditional input (2nd row). We postulate that this is because
the unnatural artifacts introduced by EDI are often detri-
mental to the noise inference of the diffusion UNet. De-
spite the motion blur in the image, the ground-truth blurry
image provides more natural guidance to noise prediction,
such as accurate color prior, since it is real-captured from
the frame-based camera.

D.4. Wavelet-based Color Correction

Fig. 9 presents the effectiveness of wavelet-based color cor-
rection. It effectively mitigates the color shift introduced
from diffusion prior, achieving better color.

E. More Results on Novel-View Synthesis

Quantitative Results. In Tab. 7 and Tab. 8, we present
the additional quantitative results on novel-view synthesis
for each scene in both real-world and synthetic datasets. In
most cases, our DiET-GS and DiET-GS++ significantly out-
perform existing baselines across all five evaluation metrics,
showing the effectiveness of our framework.

Qualitative Results. In Fig. 11 and Fig. 12, we present
more qualitative comparisons on novel-view synthesis in
both real-world and synthetic datasets. Our DiET-GS++
is capable of restoring: 1) accurate color, 2) fine-grained
details and 3) clean texture, thus achieving the best visual
quality compared to the existing baselines.

F. Limitation

Following previous works [1, 10], we structure DiET-GS as-
suming uniform-speed camera motion and dense, low-noise
events. While real-world scenarios may not always meet
these ideal conditions, advanced techniques like [8] could
extend our method’s applicability.



Scene Metric MRPNet+GS EDI+GS EFNet+GS BAD-NeRF BAD-GS E2NeRF Ev-DeblurNeRF DiET-GS DiET-GS++
[16] [9] [12] [15] [18] [10] [1] (Ours) (Ours)

batteries

PSNR↑ 28.42 33.11 31.30 28.29 28.73 31.49 32.63 34.52 33.51
SSIM↑ 0.7518 0.8994 0.8556 0.8086 0.8217 0.8715 0.8938 0.9304 0.9118
LPIPS↓ 0.1948 0.0613 0.0804 0.2245 0.1651 0.0932 0.0443 0.0435 0.0444

MUSIQ↑ 22.13 37.90 35.51 17.71 20.20 37.48 42.99 45.66 49.89
CLIP-IQA↑ 0.2338 0.2182 0.2293 0.1887 0.1918 0.2445 0.2292 0.2327 0.2603

figures

PSNR↑ 28.18 33.51 31.28 29.31 30.12 32.59 32.82 34.89 33.86
SSIM↑ 0.7311 0.8723 0.8317 0.7703 0.7767 0.8543 0.8577 0.9049 0.8846
LPIPS↓ 0.2146 0.0977 0.1324 0.2935 0.2438 0.1108 0.0687 0.0600 0.0634

MUSIQ↑ 23.45 38.48 37.13 19.50 22.13 39.47 39.70 45.37 51.71
CLIP-IQA↑ 0.2418 0.2384 0.2218 0.1836 0.1898 0.2624 0.2441 0.2584 0.2955

drones

PSNR↑ 27.13 33.02 31.18 28.51 29.19 31.03 31.62 34.08 32.92
SSIM↑ 0.7634 0.9025 0.8617 0.8123 0.8317 0.8780 0.8866 0.9339 0.9152
LPIPS↓ 0.2012 0.0832 0.1293 0.2122 0.1687 0.1075 0.0538 0.0387 0.0396

MUSIQ↑ 28.38 42.35 41.18 19.05 22.20 39.00 41.81 47.58 50.17
CLIP-IQA↑ 0.1718 0.1633 0.1526 0.1723 0.1743 0.1877 0.1773 0.1778 0.2028

powersupplies

PSNR↑ 26.37 32.10 30.92 27.35 28.38 31.06 32.05 33.54 32.37
SSIM↑ 0.7513 0.8955 0.8516 0.7953 0.8071 0.8820 0.8980 0.9271 0.9108
LPIPS↓ 0.1824 0.0657 0.1029 0.2756 0.2247 0.0826 0.0492 0.0460 0.0459

MUSIQ↑ 31.48 46.04 44.15 24.68 24.90 45.17 47.97 50.25 55.83
CLIP-IQA↑ 0.2477 0.2307 0.2219 0.1762 0.1701 0.2373 0.2501 0.2078 0.2531

labequipment

PSNR↑ 27.47 33.00 30.18 28.89 29.19 31.51 32.36 34.06 33.13
SSIM↑ 0.7598 0.8911 0.8512 0.8042 0.8276 0.8578 0.8772 0.9150 0.8971
LPIPS↓ 0.2138 0.0871 0.1262 0.2563 0.2037 0.1355 0.0696 0.0599 0.0575

MUSIQ↑ 20.18 35.54 33.18 18.84 21.19 32.95 34.14 40.21 44.60
CLIP-IQA↑ 0.1722 0.1534 0.1418 0.1749 0.1804 0.1854 0.2048 0.1708 0.1958

Table 7. Quantitative comparisons on novel-view synthesis in 5 real-world scenes

Scene Metric MRPNet+GS EDI+GS EFNet+GS BAD-NeRF BAD-GS E2NeRF Ev-DeblurNeRF DiET-GS DiET-GS++
[16] [9] [12] [15] [18] [10] [1] (Ours) (Ours)

factory

PSNR↑ 17.44 22.46 19.74 18.81 21.35 22.28 23.33 26.54 26.00
SSIM↑ 0.5918 0.7629 0.6415 0.6038 0.6709 0.7822 0.8189 0.8856 0.8707
LPIPS↓ 0.3817 0.1448 0.3319 0.2822 0.2391 0.1838 0.1858 0.0898 0.0962

MUSIQ↑ 26.18 56.74 37.12 27.43 36.19 45.88 41.58 54.24 57.62
CLIP-IQA↑ 0.2211 0.2177 0.2118 0.1668 0.1718 0.2014 0.1947 0.2215 0.2270

pool

PSNR↑ 19.49 24.83 21.79 25.58 26.18 27.63 27.26 27.40 26.5880
SSIM↑ 0.4718 0.6496 0.5238 0.6888 0.7418 0.7488 0.7440 0.7512 0.7283
LPIPS↓ 0.3219 0.1897 0.3718 0.2601 0.2118 0.1995 0.2230 0.1895 0.1827

MUSIQ↑ 15.19 47.12 26.14 30.81 39.14 47.68 44.63 51.01 53.03
CLIP-IQA↑ 0.1729 0.2106 0.2037 0.1860 0.1911 0.2473 0.2635 0.2126 0.2384

tanabata

PSNR↑ 18.54 23.02 20.80 16.91 20.18 23.43 23.74 26.18 25.90
SSIM↑ 0.6203 0.8088 0.6817 0.6483 0.7661 0.8156 0.8059 0.8965 0.8896
LPIPS↓ 0.3645 0.1232 0.3128 0.2175 0.1608 0.1505 0.1727 0.0754 0.0712

MUSIQ↑ 28.71 59.13 39.28 17.56 27.19 47.81 41.53 63.94 65.54
CLIP-IQA↑ 0.2818 0.3288 0.2518 0.2018 0.2167 0.1914 0.2572 0.3115 0.3504

trolley

PSNR↑ 19.58 24.43 21.79 17.81 21.20 24.83 24.70 26.67 26.43
SSIM↑ 0.6811 0.8563 0.7182 0.6114 0.7064 0.8505 0.8465 0.9094 0.9026
LPIPS↓ 0.3499 0.0923 0.2691 0.2362 0.1931 0.1157 0.1335 0.0708 0.0708

MUSIQ↑ 26.39 57.56 37.98 18.71 27.19 47.87 41.80 61.48 63.43
CLIP-IQA↑ 0.2894 0.3434 0.2583 0.2007 0.2176 0.2113 0.2047 0.3618 0.3683

Table 8. Quantitative comparisons on novel-view synthesis in 4 synthetic scenes
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