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– Appendix –
This appendix provides details for dataset preprocessing

in Section A, dynamic scene generation analysis in Section B,
action generation analysis in Section C, and additional abla-
tion studies in Section D.

A. Data Preprocessing
Data Preprocessing for ARNOLD The ARNOLD
dataset [8] was used as a benchmark for robotic manipulation
tasks. It includes eight tasks with task-specific instructions,
environments, and robot actions. Each instruction defines
a goal state and related actions for the task (e.g., open cab-
inet: “slide the cabinet entirely open”). The environment
data provides room layouts and object information. Robot
actions are divided into four phases: the initial phase, the
pre-grasp phase, the grasp phase, and the manipulation phase.
Among the eight tasks, pour water and transfer water have
manipulation phases consisting of three sequential actions.
For instance, in the pour water task, the manipulation phase
includes:
1. Lifting the cup to the target height for pouring.
2. Moving the cup horizontally to the pouring position.
3. Gradually tilting the cup until the goal is reached.

The remaining tasks have a single manipulation action,
such as the pickup object task, which involves “lifting the
object to the goal height.” The data configuration follows
the description provided in the main paper (Section 3.1).
The static phase includes the initial environment setup, the
initial phase, and task-specific instructions. The action phase
encompasses the pre-grasp, grasp, and manipulation phases.
To process the shape code f for each object, an autoencoder
was trained, generating latent vectors that represent object
point clouds, as illustrated in Figure 6.

Figure 6. Point clouds of bottle class objects. The shape codes f are latent
vectors obtained by training an autoencoder on point clouds of objects in the
ARNOLD dataset. This figure illustrates how these shape codes represent
the point clouds of bottle class objects.

Data Preprocessing for Generated Data For effective
agent training, it is important to use only the generated dy-
namic scenes where commands are executed correctly. To

assess data success, we used NVIDIA’s Isaac Sim [21], a
simulation tool that provides realistic and accurate simula-
tions for robotics research. Figure 7 shows the Isaac Sim
evaluation of 100 dynamic scenes generated by DynScen.
Figures 7a and 7b illustrate the end-effector positions (pee

2

and pee
3 ) as dots during the grasp and manipulation phases of

the ‘reorient object’ task. To enhance clarity, all robot base
positions (pbase) are projected to the origin. In this projection,
black points represent the robot’s base positions, red points
indicate failures identified by Isaac Sim, and blue points
denote successful executions. The simulation images below
each figure show the scenes corresponding to the red points.
Figure 7a shows an episode where the robot fails to grasp a
bottle, leading to task failure. Figure 7b shows an episode
where the robot grasps the bottle but collides with a nearby
shelf, causing the bottle to drop and the task to fail. Through
this evaluation, only correctly executed data were used for
agent training.

B. Dynamic Scene Generation Analysis
Diversity Evaluation for Static Scenes Section 4.2 of the
main paper reports the results from 10 generated dynamic
scenes for five random text prompts. Table 11 presents the
text instructions (or prompts) for each task. Table 13 shows
that the entropy of the generated scenes is higher than the
ARNOLD dataset. The entropy measures the diversity of the
static scenes, focusing on the variety of object types and the
diversity of sampled layouts. This result indicates that the
generated static scenes include more diverse combinations
of objects and layouts than training data.

Diversity Evaluation for Actions Figure 8 visualizes the
diversity of actions along the x, y, and z axes for each task.
Blue and red dots represent the mean and standard deviation
of actions from DynScene and the ARNOLD dataset, respec-
tively. DynScene exhibits greater diversity than ARNOLD
across most tasks, indicating that its generated actions span a
broader range of end-effector positions compared to training
actions from ARNOLD. This suggests that DynScene’s ac-
tions are more varied and not confined to specific trajectories.
The graphs are derived from succeeded data validated by the
simulator, reflecting achieved goal states. For instance, in
the pickup object task, the y-axis graph illustrates goal states
transitioning from the second to the third stage, with heights
ranging from 10 to 30 cm. In contrast, tasks involving open
actions, such as open drawer and open cabinet, show lower
diversity due to a reduced success rate in generating dy-



(a) Grasp failure in reorient Object Task. The robot fails to grasp a bottle, resulting in the termination of the scene without task completion.

(b) Manipulation failure in reorient object task. Although the robot successfully grasps the bottle, it collides with a nearby shelf during manipulation,
causing the bottle to be dropped and the task to fail.

Figure 7. Failure cases in the reorient object task evaluated by Isaac Sim. The figures illustrate failure episodes during the grasp and manipulation phases.
End-effector positions (pee

2 and pee
3 ) are shown as dots, with robot base positions (pbase) projected to the origin for clarity (black points). Red points indicate

failures identified by Isaac Sim, and blue points denote successful executions. The simulation images below each subfigure correspond to the red points (failed
actions).



Table 11. Text prompts (instructions) for each task

Task Prompt Task Prompt

Pickup
Object

“increase the height of the bottle ten centimeters above the ground”

Reorient
Object

“angle the bottle 45 degrees away from the high axis”
“pick up the bottle ten centimeters above the ground” “tilt the bottle about 180 degrees away from the upward axis”
“raise the bottle thirty centimeters from the ground” “tilt the bottle 45 degrees away from the upward axis”
“pick up the bottle twenty centimeters from the ground” “the bottle is 0 degrees away from the axis of elevation”
“put the bottle ten centimeters above the ground” “tilt the bottle one hundred and eighty degrees away from the up axis”

Open
Drawer

“open the top drawer fifty percent”

Close
Drawer

“adjust the top dresser a quarter closed”
“pull the middle drawer one hundred percent open” “make the top left drawer seventy five percent open”
“slide the top left drawer twenty five percent open” “adjust the top left drawer half open”
“drag the top left dresser twenty-five percent open” “make the top drawer 0% open”
“open the top left dresser 50%” “adjust the top left drawer 50% open”

Open
Cabinet

“open the cabinet a quarter”

Close
Cabinet

“adjust the cabinet closed completely”
“slide the cabinet entirely open” “shut the cupboard midway open”
“slide the closet midway” “adjust the closet twenty five percent open”
“open the cabinet entirely open” “adjust the cabinet seventy five percent closed”
“slide the cabinet two quarters” “close the cupboard twenty five percent open”

Pour
Water

“dump fifty percent water from the glass”

Transfer
Water

“transfer eighty percent of the liquid to the glass”
“pour one hundred percent water out of the cup” “add 80% of the liquid to the cup”
“remove seventy-five percent liquid from the glass” “add twenty percent of the liquid to the cup”
“remove one hundred percent water out of the cup” “put eighty percent of the liquid to the cup”
“remove seventy-five percent water from the glass” “transfer eighty percent of the water to the cup”

Table 12. Success rates of DynScenaction trained on different datasets. Comparison of success rates (%) for various tasks when DynScenaction is trained on
the ARNOLD dataset alone versus a combined dataset of DynScen-generated data and ARNOLD.

Train Dataset Pickup Object Reorient Object Open Drawer Close Drawer Open Cabinet Close Cabinet Pour Water Transfer Water Average

ARNOLD 20.00 80.00 20.00 80.00 10.00 40.00 41.67 30.00 40.20
DynScen + ARNOLD 70.00 75.00 35.00 75.00 20.00 45.00 73.33 13.33 50.83

Table 13. Entropy comparison on robotic manipulation tasks. We com-
pare ARNOLD and DynScen on object entropy and scene entropy across
various robotic manipulation tasks.

Task Object Entropy ↑ Scene Entropy ↑

ARNOLD [8] DynScen ARNOLD [8] DynScen

Pickup Object 0.61 0.64 0.74 0.77
Reorient Object 0.13 0.20 0.21 0.25
Open Drawer 0.25 0.39 0.32 0.50
Close Drawer 0.14 0.14 0.26 0.26
Open Cabinet 0.23 0.40 0.23 0.40
Close Cabinet 0.66 0.76 0.73 0.84
Pour Water 0.76 0.90 0.57 0.78
Transfer Water 0.25 0.30 0.25 0.30

Average 0.38 0.47 0.41 0.51

namic scenes compared to other tasks. For all other tasks,
DynScene consistently demonstrates a wider coverage of
action diversity.

C. Action Generation Analysis

Visualization of Action Augmentation Dynamic scenes
consist of static scenes and actions, enabling action augmen-
tation to create new datasets by combining these components.
Figure 9 displays the end-effector positions of generated ac-
tions (blue dots) and augmented actions (red dots) for the
close drawer task, derived from the same static scene. To
enhance clarity, all robot base positions (pbase) are projected
to the origin, shown as black dots. The generated actions,
marked in blue, achieve a goal state of 75%, while the aug-
mented actions, marked in red, reach a new goal state of

25%, as depicted in their respective dashed boxes. Simula-
tion screens within these boxes highlight one successfully
generated action and one augmented action. Both are se-
lected from 100 dynamic scenes augmented from 10 original
scenes and validated by Isaac Sim for success. This augmen-
tation, leveraging residual coordinates learned from static
scenes, effectively expands goal state diversity with limited
data.

Action Generation as Robot Agent The actions of Dyn-
Scene can function as an agent, referred to as DynSceneaction,
utilizing initial object and robot information to generate
task-specific actions. DynSceneaction was trained in the same
manner as previous agent training, using the ARNOLD
dataset and a combined dataset of ARNOLD and DynScene-
generated data. The evaluation was carried out using the
ARNOLD test dataset [8], which was also employed for
agent assessment in the main paper. Since the inputs to the
PerAct [32] and DynSceneaction differ with DynSceneaction us-
ing initial object information direct numerical comparisons
between the two models are not possible. Table 12 presents
that training with both DynScene and ARNOLD data leads
to superior outcomes compared to training solely on the
ARNOLD dataset. In particular, success rates improved from
40% to 50%, demonstrating that the model generates more
generalized actions across tasks when trained with dynamic
scenes produced by DynScene.



DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

Pickup Object

Reorient Object

Open Drawer

Close Drawer

Open Cabinet

Close Cabinet

Transfer Water

co
or

din
ate

 of
co

or
din

ate
 of

co
or

din
ate

 of

co
or

din
ate

 of
co

or
din

ate
 of

co
or

din
ate

 of

co
or

din
ate

 of
co

or
din

ate
 of

co
or

din
ate

 of

a

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

15

10

  5

  0

-5

-10

-15
0 1 2 3 4 5

Action StepAction Step

DynScene Mean ± Std
Arnold Mean ± Std

40

30

20

10

0

-10

-20

0 1 2 3 4 5
Action Step

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

20

15

10
5

0

-5
-10

-15
0 1 2 3 4 5

co
or

din
ate

 of

co
or

din
ate

 of

co
or

din
ate

 of

Action Step

co
or

din
ate

 of

Pickup Object

(b) Reorient Object

DynScene Mean ± Std
Arnold Mean ± Std

Action Step

co
or

din
ate

 of

DynScene Mean ± Std
Arnold Mean ± Std

Action Step

co
or

din
ate

 of
Action Step

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

Action Step

co
or

din
ate

 of

co
or

din
ate

 of

Action Step
(a) Pickup Object

Reorient Object

Open Drawer

co
or

din
ate

 of

Close Drawer

Open Cabinet

Close Cabinet

Transfer Water

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

co
or

din
ate

 of

Action Step

co
or

din
ate

 of

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

co
or

din
ate

 of

Action Step

co
or

din
ate

 of

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

Pickup Object

(c) Open Drawer

DynScene Mean ± Std
Arnold Mean ± Std

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

Action Step

co
or

din
ate

 of

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

(d) Close Drawer

DynScene Mean ± Std
Arnold Mean ± Std

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of
Action Step

co
or

din
ate

 of

Action Step

co
or

din
ate

 of

DynScene Mean ± Std
Arnold Mean ± Std

(e) Open Cabinet

DynScene Mean ± Std
Arnold Mean ± Std

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

Action Step

co
or

din
ate

 of

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

(f) Close Cabinet

DynScene Mean ± Std
Arnold Mean ± Std

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

Action Step

co
or

din
ate

 of

Action Step

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

(g) Transfer Water
Action Step

co
or

din
ate

 of

Action Step

co
or

din
ate

 of

Action Step

co
or

din
ate

 of

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

co
or

din
ate

 of

DynScene Mean ± Std
Arnold Mean ± Std

DynScene Mean ± Std
Arnold Mean ± Std

Figure 8. Action diversity per task. We analyze the diversity of generated actions (blue) and augmented actions (red) for all tasks except pour water, based
on the mean and standard deviation of delta changes along the x, y, z axes. Tasks excluding open drawer and open cabinet show a wider range of action
diversity.



Goal state: 25% Goal state: 75%

Figure 9. Action augmentation for the close drawer task. End-effector positions (pre-grasp, grasp, manipulation) from 10 dynamic scenes are visualized,
with all robot base positions (pbase) projected to the origin (black dots) for clarity. Blue and red dots represent generated and augmented actions evaluated by
Isaac Sim for success. Simulation screens in blue and red dashed boxes illustrate a generated action (blue, goal state 75%) and an augmented action (red, new
goal state 25%) from the same static scene.

Table 14. Ablation study results for DynScene with and without quaternion quantization and layout sampling.

Eq. (6). eq. (7). P.OBJECT R.OBJECT O.DRAWER C.DRAWER O.CABINET C.CABINET P.WATER T.WATER AVERAGE

(a) ✗ ✗ 47.00 44.00 23.00 40.00 14.00 17.00 49.00 24.00 32.00
(b) ✗ ✓ 50.00 44.00 21.00 49.00 19.00 30.00 49.00 18.00 35.00
(c) ✓ ✗ 87.00 86.00 49.00 78.00 14.00 27.00 85.00 43.00 58.00

DynScene (Ours) ✓ ✓ 92.00 88.00 41.00 95.00 37.00 58.00 83.00 62.00 69.50

Table 15. Task-wise diversity with top-k layout sampling. For each task,
100 dynamic scenes were generated using layouts with the top k smallest
distances between the robot base and object positions in the static scene.

Task Top 1 Top 3 Top 5 Top 10

Pickup Object 1.00 1.01 1.07 1.45
Reorient Object 1.00 1.00 1.03 1.21
Open Drawer 1.00 1.00 1.01 1.10
Close Drawer 1.00 1.01 1.02 1.11
Open Cabinet 1.00 1.01 1.07 1.26
Close Cabinet 1.00 1.00 1.03 1.18
Pour Water 1.00 1.09 1.16 1.82
Transfer Water 1.00 1.12 1.17 1.40

D. Additional Ablation Studies

This section presents further ablation studies on Top-k lay-
out sampling and the choice of quantization interval for
quaternion quantization. These experiments help determine
optimal settings for the model to balance diversity and suc-
cess rates effectively.

Effect of Layout Sampling and Quaternion Quantization
Table 14 presents the ablation study results for layout sam-
pling (equation 6) and quaternion quantization (equation 7).
Model (a) resulted in the lowest success rate of 32%, indi-
cating that both components are crucial for the generation
process. Model (b), which uses only layout sampling, shows
limited improvement as objects still suffer from orientation
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Figure 10. Average success rates by quantization interval. A value of
δ = 10 achieves the highest success rate of 69.50%, marking it as the
optimal choice for performance.

issues during interaction. In contrast, Model (c), which ap-
plies only quaternion quantization, achieves slightly better
results than Model (b) but struggles with accurate object
placement. These results highlight that both components
must work together to achieve best performance.

Top-k Layout Sampling The layout sampling method
chooses the room layout with the smallest distance between
static scene coordinates pbase (robot base) and pobj (object).
We evaluated its diversity by comparing Top 1 against Top
k selections, where k = 3, 5, 10, using 100 dynamic scenes
per task with k layouts each. Diversity is quantified as the
average number of unique layouts, normalized to the Top 1
baseline (1.00). Table 15 shows that larger k values slightly
increase diversity, with Top 10 achieving the highest across
all tasks. However, Top 10 consistently lowers the success
rate of dynamic scene generation, likely due to less optimal
layouts. To balance diversity and success rate, we adopt the
Top 1 layout with the smallest distance.

Quaternion Quantization with δ Quaternion quantization
ensures precise orientation alignment between generated
objects and the robot. Figure 10 presents the average success
rates for quantization intervals (δ) in Equation 7: 0, 1, 2, 5,
10, and 15. As shown, δ = 10 yields the highest success
rate. Based on these results, DynScene adopts a quantization
interval of 10.
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