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Supplementary Material

Overview

This supplementary material introduces further details and

experimental results of our proposed method, EditSplat.

• Sec. A introduces additional results of EditSplat, includ-

ing comparison of CLIP score trends over iteration with

baselines.

• Sec. B provides a detailed explanation of Multi-View Fu-

sion Guidance (MFG), including the multi-view fusion

process and the formulation of MFG.

• Sec. C elaborates on Attention-Guided Trimming (AGT)

details, including preparing attention maps and further

analysis of ablation study on pruning method, a key com-

ponent of AGT, across iterations.

• Sec. D outlines the experimental setup, including imple-

mentation details and user study.

A. Additional Results

A.1. Extensive Results

We present extensive results to demonstrate the capabil-

ity of EditSplat to handle a variety of scenarios, including

large-scale scenes and complex text instructions, as shown

in Fig. 9 and Fig. 10.

Video Results and Supplementary Files. To further

demonstrate our method with additional results not included

in the main and this supplementary paper, we provide ren-

dered videos and a project page.

Comparison of CLIP Score Trends. We present a graph in

Fig. 1 that illustrates the trends of CLIP [13] text-image di-

rectional similarity and CLIP text-image similarity across

iterations for baselines on the “Face” scene in IN2N [5]

with text prompt “Make his face resemble that of a marble

sculpture.” The graph highlights the optimization effective-

ness and performance trajectory of EditSplat compared to

the baselines throughout iterations.

The results demonstrate that EditSplat achieves supe-

rior semantic alignment with the given instructions and im-

proved optimization efficiency compared to the baselines.

Both EditSplat’s CLIP text-image directional similarity and

CLIP text-image similarity scores are the highest and in-

crease significantly faster, indicating superior convergence

efficiency. These results suggest that the AGT technique

improves optimization efficiency, while the MFG editing

process ensures multi-view consistency.
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Figure 1. Comparison of CLIP Scores Across Iterations.. This

figure compares the CLIP similarities between EditSplat and other

baseline models over iterations. The results highlight the superior

effectiveness of EditSplat in maintaining semantic alignment with

the given instructions.

A.2. Comparison with NeRF-based Method

We compare our EditSplat framework with recent Neural

Radiance Fields (NeRF)[11]-based approaches that were

not included in the main paper’s baselines, as those focused

on state-of-the-art models that utilize 3D Gaussian Splatting

(3DGS)[7]. Specifically, we evaluate EditSplat against In-

structNeRF2NeRF (IN2N)[5], Vica-NeRF[4], and WatchY-

ourSteps [12], as illustrated in Fig. 8.

The results demonstrate that NeRF-based methods pro-

duce outputs that are less aligned with target prompts

and exhibit inferior editing quality compared to EditSplat.

These methods often suffer from blurriness, artifacts, and

minimal edits, with limited capability for precise local edit-

ing. In contrast, EditSplat achieves clear and high-quality

rendered results with accurate local and global edits. More-

over, EditSplat completes the 3D editing process for the

“Face” scene in the IN2N dataset in approximately 6 min-

utes, while NeRF-based methods require over 50 minutes,
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Figure 2. Multi-View Fusion Guidance (MFG) 2D Editing Process. MFG resolves multi-view inconsistency in the initially edited

images through a multi-view fusion process that integrates information from multiple views to produce multi-view fused images. These

fused images are subsequently incorporated into the diffusion process, ensuring consistent editing across all views.

with WatchYourSteps taking nearly four hours. These com-

parisons underscore EditSplat’s superior efficiency, higher-

quality edits, and better alignment with target prompts.

B. Multi-View Fusion Guidance (MFG) Details

B.1. Multi-View Fusion

Filtering. The ImageReward model [18] is trained on 137k

pairs of expert comparisons and evaluates image fidelity and

text-image alignment based on human preferences. This

model’s scoring capabilities surpass those of CLIP [13],

Aesthetic [14], and BLIP [10], as demonstrated in the orig-

inal paper. We leverage the ImageReward model to rank

the initially edited images by their alignment with the text

prompt and select the top 85% of high-scoring images. This

filtering step improves the quality of the multi-view fused

images, ensuring more accurate integration across views.

We provide the ImageReward’s capability in our filtering

process in Fig. 7.

Depth-based Multi-View Fusion. Following the filtering

step, we project the top-ranked initially edited images to

each target view. Specifically, we select the top 5 adjacent

views based on proximity to the target view. A naive pro-

jection from multiple views to a single target view leads

to suboptimal results, including inaccuracies and blurriness

caused by the improper handling of overlapping pixels. To

address this, we employ an iterative alpha blending strategy

guided by depth values, enhancing both consistency and ac-

curacy in the fused results. The algorithm for multi-view fu-

sion is detailed in Algorithm 1. In Algorithm 1, the input se-

lected source data \x@protect \{\protect \{  (\mathcal {I}_{\text {src}}^i, \mathcal {D}_{\text {src}}^i, \xi _{\text {src}}^i, K_{\text {src}}^i)\}_{i=1}^{N'}














represents the

selected initially edited images, their corresponding depth

maps from 3DGS [6], extrinsic camera parameters, and in-

trinsic camera parameters, respectively. The target camera

parameters \x@protect \{\protect \{  (\xi _{\text {trg}}^j, K_{\text {trg}}^j)\}_{j=1}^{N}



define the extrinsic \xi _{\text {trg}}^j

 and in-

trinsic K_{\text {trg}}^j

 parameters for each of the N target views. Here,

N represents the total number of views, while N'  denotes

the number of selected images.

Algorithm 1: Depth-based Multi-View Fusion in MFG

Input : Selected source data \x@protect \{\protect \{  (\mathcal {I}_{\text {src}}^i, \mathcal {D}_{\text {src}}^i, \xi _{\text {src}}^i, K_{\text {src}}^i)\}_{i=1}^{N'}














,

Target camera parameters  \{(\xi _{\text {trg}}^j, K_{\text {trg}}^j)\}_{j=1}^{N}



Output: Multi-view fused images \x@protect \{\protect \{   \mathcal {I}_{\text {trg}}^j \in \mathbb {R}^{H \times W \times 3} \}_{j=1}^{N}
 



1 foreach target view j = 1   to N do

2 Select Nearest Source Views:

3 \protect \mathcal  {I}_{\text {sel}} \leftarrow   Select 5 nearest views to \xi _{\text {trg}}^j

 from \x@protect \{\protect \{   \mathcal {I}_{\text {src}}^i \}_{i=1}^{N'}






4 Initialization:

5 \protect \mathcal  {I}_{\text {trg}}^j \leftarrow \mathbf {0}

   tensor of size (3, H, W) 

6 Reprojection:

7 foreach source view i in \protect \mathcal  {I}_{\text {sel}} do

// P_i: 3D points, C_i: RGB colors.

8 (P_i, C_i) \in \mathbb {R}^{HW \times 3}, u_i \in \mathbb {R}^{HW \times 2}  
  



9 (P_i, C_i) \mkern -1mu \leftarrow \text {Reproject}(\mathcal {I}_{\text {src}}^i, \mathcal {D}_{\text {src}}^i, \xi _{\text {src}}^i, K_{\text {src}}^i, \xi _{\text {trg}}^j, K_{\text {trg}}^j)  

















10 u_i \leftarrow \text {MapToPixelCoordinates}(P_i) 
// u_i within image bounds.

// \protect \mathcal  {I}_{\text {list}}, \mathcal {D}_{\text {list}}: List of RGB, depth.

11 \protect \mathcal  {I}_{\text {list}}[i][u_i] \leftarrow C_i,   \protect \mathcal  {D}_{\text {list}}[i][u_i] \leftarrow \text {depth of } P_i   

12 end

13 Blending Based on Depth:

14 Sort (\mathcal {D}_{\text {list}}, \mathcal {I}_{\text {list}})  in descending order by \protect \mathcal  {D}_{\text {list}}.

15 foreach (\mathcal {D}_l, \mathcal {I}_l)  in (\mathcal {D}_{\text {list}}, \mathcal {I}_{\text {list}})  do

16 if l = 0   then

17 w \leftarrow 1 

18 else

19 w \leftarrow \frac {\mathcal {D}_l}{\mathcal {D}_l + \mathcal {D}_{prev}} 



20 end

21 \protect \mathcal  {I}_{\text {trg}}^j \leftarrow (1-w) \cdot \mathcal {I}_l + w \cdot \mathcal {I}_{\text {trg}}^j

         



22 end

23 end

24 return \x@protect \{\protect \{   \mathcal {I}_{\text {trg}}^j \}_{j=1}^{N}
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Figure 3. Ablation Study on Pruning in AGT. The top row illustrates the inefficiency of 3DGS optimization during editing. High-attention

regions, which require significant modifications, remain under-edited due to the presence of numerous source Gaussians. In contrast, the

application of pruning through AGT effectively removes Gaussians in high-attention areas, enabling more accurate and efficient editing.

As demonstrated in the bottom row, this approach allows for better optimization even with fewer iterations.

Background Refinement. The initial multi-view fused im-

ages I_{trg} often exhibit a sparse background, while the tar-

get editing object in the image, which is often located in the

center of the scene, appears dense. This issue arises due

to the limitations of reprojection caused by discrepancies

in camera viewpoints. To address this, we refine I_{trg} by

replacing its sparse background with the background from

the corresponding source image, using SAM [9] to preserve

the original background. First, as the source image’s object

is generally misaligned with the target object’s range, we

extract a binary mask M_{trg} of the target object from I_{trg}:

  M_{trg}(x, y) = \begin {cases} 1 & \text {if } (x, y) \text { belongs to the target object,} \\ 0 & \text {otherwise}. \end {cases}  



       



(1)

Using M_{trg} , we isolate the background from the source im-

age \protect \mathcal  {I}_{\text {src}} as:

  B_{src}(x, y) = \mathcal {I}_{\text {src}}(x, y) \cdot (1 - M_T(x, y)).            (2)

Finally, the refined multi-view fused image h_M is obtained

by combining the target object from \protect \mathcal  {I}_{\text {trg}} with the back-

ground from \protect \mathcal  {I}_{\text {src}}, ensuring seamless integration:

  h_M(x, y) = \begin {cases} \mathcal {I}_{\text {trg}}(x, y), & \text {if } M_{trg}(x, y) = 1, \\ \mathcal {I}_{\text {src}}(x, y), & \text {if } M_{trg}(x, y) = 0. \end {cases}   



     

     
(3)

This process effectively replaces the sparse background in

\protect \mathcal  {I}_{\text {trg}} while preserving the target object, resulting in smoother

and more cohesive multi-view fused images h_M .

We illustrate the intermediate results of the MFG edit-

ing process in Fig. 2. The initially edited images exhibit

misaligned edits with the text prompt and lack consistency

across views. In contrast, the multi-view fused images

produced through the multi-view fusion process are well-

aligned with the text prompt, consistent across views, and

incorporate multi-view information. Finally, the 2D edited

images ensure multi-view consistency and precise align-

ment with the text prompt.

B.2. Alignment with Multi-View Information

To seamlessly incorporate multi-view information during

the editing process, we extend the classifier-free guidance

method. This allows the integration of multi-view fusion

details into the diffusion process to facilitate multi-view

consistent editing. Below is our Multi-view Fusion Guid-

ance, an extended score estimate for multi-view aligned

editing with classifier-free guidance, as specified in the

main paper:

  \begin {aligned} \tilde {\epsilon _\theta }\left (z_t, h_S, h_T, h_M\right ) & = \; {\epsilon _\theta }\left (z_t, \varnothing , \varnothing \right ) \\ & + s_T \left ({\epsilon _\theta }\left (z_t, h_M, h_T\right ) - {\epsilon _\theta }\left (z_t, h_M, \varnothing \right )\right ) \\ & + s_M \left ({\epsilon _\theta }\left (z_t, h_M, \varnothing \right ) - {\epsilon _\theta }\left (z_t, \varnothing , \varnothing \right )\right ) \\ & + s_S \left ({\epsilon _\theta }\left (z_t, h_S, \varnothing \right ) - {\epsilon _\theta }\left (z_t, \varnothing , \varnothing \right )\right ), \end {aligned} \label {eq:supp_MFG_same}          

           

       

        
(4)

Here,  h_M  represents the multi-view fusion image,  h_S  is the

source image, and  h_T  corresponds to the text prompt. The

guidance strength for each conditioning is modulated by the

respective scale factors  s_M  ,  s_S  , and  s_T  .

Conditional Probability Formulation. In our approach,

the conditional probability distribution  P(z | h_M, h_S, h_T)     
can be expressed as:

  P(&z | h_M, h_S, h_T) = \frac {P(z, h_M, h_S, h_T)}{P(h_M, h_S, h_T)} \nonumber \\[0.2cm] = & \; \frac {P(h_T | h_M, h_S, z) P(h_M | h_S, z) P(h_S | z) P(z)}{P(h_M, h_S, h_T)}      
      

     


            

     
(5)
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“Make him appear like paper with folded edges”

𝑠௠ = 0.1 ࢓࢙ = ૚. ૙ 𝑠௠ = 2.0

Figure 4. Influence of Guidance Scale  s_M  . Qualitative analysis

of  s_M  in MFG for 3D editing. Higher  s_M  improves multi-view

consistency, but excessively large value reduces the editing effect.

“Make it autumn”

𝑤௧ℎ௥௘௦ = 0.01 ࢙ࢋ࢘ࢎ࢚࢝ = ૙. ૚ 𝑤௧ℎ௥௘௦ = 0.2

Figure 5. Influence of w_{thres}. Qualitative comparison of  w_{thres} 

in AGT for local editing. Lower w_{thres} fails to preserve original

structures, while higher values overly restrict the editing scope.

Log Probability and Score Estimation. Taking the loga-

rithm of the conditional probability results in:

  \log (P(z | h_M, h_S, h_T)) & = \log (P(h_T | h_M, h_S, z)) \nonumber \\ & + \log (P(h_M | h_S, z)) \nonumber \\ & + \log (P(h_S | z)) \nonumber \\ & + \log (P(z)) \nonumber \\ & - \log (P(h_M, h_S, h_T))             

    

  

 

        (6)

Calculating the gradient with respect to  z and rearranging

terms, we obtain:

  \nabla _z \log (P(z | h_M, h_S, h_T)) & = \nabla _z \log (P(z)) \nonumber \\ & + \nabla _z \log (P(h_S | z)) \nonumber \\ & + \nabla _z \log (P(h_M | h_S, z)) \nonumber \\ & + \nabla _z \log (P(h_T | h_M, h_S, z))          

   

     

       
(7)

Guidance Interpretation. Each guidance scale (e.g.,  s_M  ,

 s_S  , and  s_T  ) effectively shifts the probability mass toward

outputs that align with the corresponding conditioning. For

instance,  s_M  biases the implicit classifier  p_{\theta }  toward assign-

ing higher probabilities to multi-view information, thereby

ensuring consistent 2D editing across views and enhancing

the quality of the resulting 3D edits (see Fig. 4). However,

excessively increasing  s_M  reduces the influence of the text

guidance scale  s_T  , resulting in less pronounced editing ef-

fects. Conversely,  s_S  preserves the original content from

the source image, and  s_T  promotes adherence to the pro-

vided text prompts. By carefully balancing these guidance

scales, our model effectively achieves multi-view consistent

edits that accurately reflect both structural and color details

specified by textual instructions.

k
 =

 0
.1

5
k
 =

 1
k
 =

 5

Iteration = 0 Iteration = 112 Iteration = 224

Figure 6. Ablation study on pruning threshold k in AGT.

The figure illustrates the training progress under different prun-

ing thresholds k using the same source images and text prompt as

in Fig. 3. Excessively high values of k result in the removal of too

many Gaussians, hindering the editing process.

C. Attention-Guided Trimming (AGT) Details

C.1. Extracting Attention Map

When the latent representation of the input image added

noise and the text prompt are fed into the diffusion model

for denoising, we select the semantic keyword that repre-

sents the intended editing outcome (e.g., “autumn” in the

instruction “Make it autumn” or “clown” in “Turn him into

a clown”). We then extract all cross-attention maps asso-

ciated with this keyword, which are computed during the

MFG editing process. These attention maps are resized

to rendering resolution using bilinear interpolation, aggre-

gated, and normalized to the [0, 1] range using Min-Max

normalization. This process allows us to accurately assign

these semantic maps to each Gaussian, ensuring they con-

tain meaningful regions for pruning, facilitating efficient

optimization, and selectively optimizing semantically rich

local editing.

C.2. Qualitative Analysis over Iterations

We further validate the effectiveness of AGT by analyzing

the editing results across iterations. Notably, the ablation

study presented here analyzes the effect of pruning inde-

pendently within AGT while maintaining its selective opti-

mization for local editing.

Fig. 3 highlights the contrast in edited results with and

without pruning the Gaussians. Based on the instruction

“Turn him into a Tolkien elf”, the attention map on the far

left identifies the ear as the most prominent region, requir-

ing significant modifications in the source scene. For opti-

mal editing, our AGT first assigns attention weights to each

4



source Gaussians. Then, the top 0.15% of Gaussians (1,296

in total) based on assigned weights, are pruned. The ren-

dered image in the bottom row at iteration 0 shows that the

upper part of the ear has been cleared. As a result, the ear is

edited more effectively into the desired elf ear. In contrast,

the top row shows that the remaining source Gaussians in

the unpruned case interfere with the convergence.

Fig. 6 illustrates how editing quality varies with different

pruning threshold k%. Especially in the third row, pruning

the top 5% of Gaussians results in excessively empty re-

gions, requiring additional iterations to fill these gaps. Con-

versely, when k% is appropriately set to 0.15%, optimal

editing is achieved. Through heuristic analysis across vari-

ous scenes, we find that pruning the top 0.15% of Gaussians

is the most suitable approach for overall scenes.

In addition, both Fig. 3 and Fig. 6 demonstrate that the

attention weights assigned by AGT effectively reflect the

semantic importance of the editing regions. Given the text

instruction “Turn him into a Tolkien elf”, the ear, rather than

the head, should undergo more significant changes. Our re-

sults highlight that our AGT accurately reflects this seman-

tic importance during editing and that pruning an appropri-

ate percentage of Gaussians ensures effective convergence

toward the target.

C.3. Analysis of Local Editing

We provide an analysis of local editing in Attention-Guided

Trimming (AGT), focusing specifically on the impact of the

threshold  w_{thres}  for semantic local editing. As illustrated in

Fig. 5, varying  w_{thres}  significantly affects the balance be-

tween preserving original scene details and effectively ap-

plying the intended semantic edits.

When the threshold  w_{thres}  is set too low, attention-

guided selection becomes excessively inclusive, causing

unintended modifications beyond the target area. Con-

sequently, critical structural elements of the original

scene—such as the table in Fig. 5—fail to be properly pre-

served. In contrast, higher values of  w_{thres}  significantly

narrowing the scope of editing. Although this helps main-

tain structural integrity by protecting essential regions, it

simultaneously limits the effectiveness of the semantic edit-

ing. As demonstrated in our qualitative evaluation, the ed-

its within regions of secondary semantic importance (e.g.,

grass or background foliage in Fig. 5) become overly con-

strained, resulting in less pronounced visual changes and

diminishing the overall impact of the edit.

Therefore, selecting an appropriate  w_{thres}  is critical to

achieving an optimal trade-off between preserving essen-

tial structures of the original scene and effectively imple-

menting localized semantic editing. Our experiments re-

veal that intermediate values of  w_{thres}  successfully balance

these competing objectives, enabling precise and semantic

localized editing.

Only use Top 85% filtered first edits

Filter out

✅

“Turn the bear statue into a grizzly bear”

“a photo of a grizzly bear”

Human Preference Model

ImageReward

Figure 7. Filtering To prevent misaligned images from negatively

affecting MFG, we leverage ImageReward [18] to rank the initially

edited images. Only the top 85% of these images, based on their

rankings, are utilized for MFG, ensuring high-quality inputs.

D. Experiment Set Up

D.1. Implementation Details

EditSplat utilizes the vanilla 3DGS [6] framework for 3D

reconstruction. For each scene, we train the model for

30,000 iterations to serve as the source scene. All 3DGS

training phases employ the Adam optimizer [8], an iden-

tical learning rate with vanilla 3DGS. We apply the same

densification strategy across all scenes, with a densification

interval of 100 and a gradient threshold of 0.01.

For the 2D image editor, we use Instruct-

Pix2Pix(IP2P) [3] from Diffusers library [16] with

our novel method, MFG. In a more detailed setup, we

perform 20 sampling steps using the DDIM scheduler [15],

with noise sampled from t P r0.7, 0.98s.

D.2. Evaluation

Quantitative. We adopt a train/test split for our

datasets following the methodology suggested by Mip-

NeRF360 [2], taking every 8th image for test. Our evalu-

ation metrics include measuring text-image directional sim-

ilarity and text-image similarity using CLIP [13]. The text

descriptions used for calculating CLIP similarity are de-

tailed in Tab. 1. In Tab. 2, we summarize the instructions

employed for 3D editing. For one of our comparison base-

lines, GaussCtrl [17], which does not support instruction-

based editing, Tab. 2 provides the source and target scene

descriptions used in its evaluation. Additionally, since

GaussCtrl leverages a different 2D image editor, such as

ControlNet [19], we set its guidance scale to the recom-

mended value of 5.
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User Study. To ensure a fair and rigorous user study,

we recruit 100 participants through Amazon Mechanical

Turk [1], a widely-used platform for human evaluation. Par-

ticipants are provided with images rendered from the source

scene along with the corresponding text prompt used for

editing. They are tasked with evaluating how well the edited

images align with the given text prompt and assessing the

overall quality of the edits. The choices include rendered

views edited by our method and those generated by baseline

models, all presented in a randomized order to prevent par-

ticipants from inferring which model produced which im-

ages. Furthermore, the randomization is applied separately

for each scene to ensure unbiased evaluation across differ-

ent examples. This setup allows us to measure both the se-

mantic accuracy of the edits and the perceived quality of the

rendered images, as shown in Fig. 11.
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Source OursIN2N WatchYourStepsVICA-NeRF

“Make the bonsai snowy”

“Turn the ground into a Namibian desert”

“Turn him into a Minecraft character”

“Make it autumn”

“Make his face resemble that of a marble sculpture”

● Face: 38 / 3
● bonsai: 32 / 282
● bicycle: 103 / 166
● person: 223 / 36
● garden: 71 /24

Figure 8. Qualitative Comparison with NeRF-Based Methods. EditSplat provides more intense and precise editing compared to recent

NeRF-based methods. The leftmost column displays the source images, while the subsequent columns show rendered images. To evaluate

multi-view consistency, different views of the corresponding images are included in each corner. Notably, EditSplat demonstrates superior

performance in both local and global editing tasks.
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“Make the scene appear as though it’s underwater”

“Make it autumn”

“Turn him into a Pixar character” “Make him look like a robot with metallic skin and mechanical joints”

“Turn the horse statue into a jade carving”

Figure 9. Additional extensive results 1. We present extensive qualitative results to highlight the robustness and versatility of our

proposed method. Our EditSplat ensures multi-view consistency and provides flexible editing, ranging from fine-grained modifications to

global stylization.

8



“Turn the horse statue into a wooden carving”

“Make the scene look foggy”

“Make the entire scene look as if it’s painted in watercolor style”

“Transform him into a comic book character” “Make him wear a suit”

Figure 10. Additional extensive results 2. We present extensive qualitative results to highlight the robustness and versatility of our

proposed method. Our EditSplat ensures multi-view consistency and provides flexible editing, ranging from fine-grained modifications to

global stylization.
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Scene Source Description Target Description Editing Instruction

bear a photo of a bear a photo of a wild

boar

Turn the bear statue into a wild boar

bear a photo of a bear a photo of a metallic

robot bear

Turn the bear statue into a metallic robot

bicycle a photo of a park a photo of a

Namibian desert

Turn the ground into a Namibian desert

bicycle a photo of a park a watercolor style

paint of a park

Make the entire scene look as if it’s

painted in watercolor style

bonsai a photo of a plant a photo of a plant,

snowy

Make the bonsai snowy

bonsai a photo of a plant a photo of a plant

made of paper

Change the bonsai to look like it’s made

of paper, folded into intricate origami

shapes

face a photo of a face of a

man

a photo of a marble

sculpture

Make his face resemble that of a marble

sculpture

face a photo of a face of a

man

a photo of a face of a

man, made of paper

Make him appear like he’s made of paper

with folded edges

fangzhou a photo of a face of a

man

a photo of a face of

Jocker

Turn him into a Jocker

fangzhou a photo of a face of a

man

a photo of a face of

Steve Jobs

Turn him into a Steve Jobs

garden a photo of an

outdoor garden

a photo of an outdoor

garden in autumn

Make it autumn

garden a photo of an

outdoor garden

a photo of a garden

in underwater

Make the scene appear as though it’s

underwater

person a photo of a person a photo of a person

wearing a suit

Make him wear a suit

person a photo of a person a photo of a person

in Minecraft

Turn him into a Minecraft character

stone horse a photo of a horse

statue

a photo of a horse

made of wood

Turn the horse statue into a wooden

carving

stone horse a photo of a horse

statue

a photo of a horse

made of jade

Turn the stone horse into a jade carving

Table 1. Details of the descriptions used for the CLIP similarity. CLIP similarity is computed as the cosine similarity between

embeddings in the CLIP space. The source description depicts the scene before editing, while the target description represents the desired

edited scene. Both descriptions are transformed into text embeddings in the CLIP space and are used to evaluate the semantic alignment of

the 3D scene.
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Scene Editing Instruction Source Description Target Description

bear Turn the bear statue into a wild boar a photo of a bear

statue in the forest

a photo of a wild

boar in the forest

bear Turn the bear statue into a metallic robot a photo of a bear

statue in the forest

a photo of a metallic

robot in the forest

bicycle Turn the ground into a Namibian desert a photo of a bicycle

at grass

a photo of the

bicycle at the

namibian desert

bicycle Make the entire scene look as if it’s

painted in watercolor style

a photo of a bicycle

at grass

a photo of a bicycle

scene as if it’s

painted in watercolor

style

bonsai Make the bonsai snowy a photo of a bonsai

in the desk

a photo of a snowy

bonsai

bonsai Change the bonsai to look like it’s made

of paper, folded into intricate origami

shapes

a photo of a bonsai

in the desk

a photo of a tree

made of paer, folded

into intricate origianl

shapes

face Make his face resemble that of a marble

sculpture

a photo of a face of a

man

a photo of a marble

sculpture

face Make him appear like he’s made of paper

with folded edges

a photo of a face of a

man

a photo of a man

made of paper with

folded edges

fangzhou Turn him into a Jocker a photo of a face of a

man

a photo of a Joker

fangzhou Turn him into a Steve Jobs a photo of a face of a

man

a photo of a Steve

Jobs

garden Make it autumn a photo of a fake

plant on a table in

the garden

a photo of a garden

scene with autumn

garden Make the scene appear as though it’s

underwater

a photo of a fake

plant on a table in

the garden

a photo of a garden

scene appear as

though underwater

person Make him wear a suit a photo of a person a photo of a man

wearing a suit

person Turn him into a Minecraft character a photo of a person a photo of a

Minecraft character

stone horse Turn the horse statue into a wooden

carving

a photo of a stone

horse statue in front

of the museum

a photo of a wooden

carving statue in

front of the museum

stone horse Turn the stone horse into a jade carving a photo of a stone

horse statue in front

of the museum

a photo of a stone

horse of a jade

carving

Table 2. Detailed text prompts used for 3D scene editing. While models using IP2P as a 2D image editor can perform editing directly

based on instructions, model employing inversion-based 2D image editor such as GaussCtrl [17] requires both source and target descrip-

tions. To ensure a fair comparison, we designed the source and target descriptions to ensure that the semantic difference between source

and target accurately reflects the given editing instructions.
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Figure 11. User Study Survey Form. Participants are presented with the source 3D scene and four edited scenes, which include results

from three baselines and our EditSplat. These edited scenes are randomly shuffled for each question to prevent bias. Participants evaluate

the edits based on how well they align with the given text prompt and their overall quality.
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